First Experience at ELBE with the new 1.3 GHz CW RF-System based on 10 kW Solid State Amplifiers

Hartmut Büttig for

A.Arnold, A.Büchner, M.Justus, M.Kuntzsch, U.Lehnert, P.Michel, R.Schurig, G.Staats, J.Teichert,

Radiation Source ELBE, Helmholtz Zentrum Dresden- Rossendorf, Germany buettig@hzdr.de

TOPICS

- 1: Short Remarks on ELBE upgrade
- 4: 10kW@1300MHz SOLID STATE PA
- 5: 20 kW (Combination of two SSPA)
- 6: Operation of the new ELBE RF-System

HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

Cancer Research

How can malignant tumors be identified at an early stage and treated effectively?

From Matter to Materials

How does matter behave in strong fields and at small-scale dimensions?

Energy Research

How can resources and energy be utilized in an efficient and safe manner?

PET Center

Radiation Source ELBE

with Positrons, Neutrons, X- and Gamma Rays, Free-Electron Lasers & High-Intensity Laser

> High Magnetic Field Laboratory Dresden

Ion Beam Center

TOPFLOW Facility

ELBE – UPGRADE Status 3/2012

UPGRADE to HSQ

- ELBE: FUTURE CENTER OF HIGH POWER RADIATION SOURCES (HSQ)
- ELBE UPGRADE AFTER 10 YEARS OF OPERATION (MANY ACTIVITIES)
- ONE TOPIC IS: DOUBLING THE RF POWER
- Has an impact on:
- RF power amplifiers, RF couplers, WGwindows; diagnostics, beam dumps, water cooling, mains power...

ELBE SC-LINAC Beam Parameters

	Thermionic Gun	SRF Photo Gun	
Maximum permitted Energy	40 MeV (CW)	40 MeV (CW)	
Bunch Charge	77 pC > 150 pC	77pc / 2.5 nC	
Beam Current CW	0.85 mA >1.6 mA	1 mA	
Bunch Length (rms)	1 – 10 ps	4 / 20 ps	
Transv. Emittance	2/10 mm mrad (rms)	0.5 / 2.5 mm mrad	
Max. Rep.Rate	260MHz@0.77pC	13 MHz	
	13 MHz@ 77pC		
Energy Spread	35 keV /55 keV	40 keV	

Thermionic
DC Gun
250 kV
<= 260 MHz
77
pC(1mA*13MHz)
~ 500ps
~10 mm mrad

RF Bunchers 260 MHz +1,3GHz compr. ~ 100:1 Linac 1,3 GHz ~20MeV@10 MeV/m <1mA CW

Linac 1,3 GHz ~20 MeV@10MV/m <1mA CW

SRF photo gun 9.5 MeV <= 13 MHz 80pC / 1nC / 2.5 nC ~ 5-20 ps ~ 1.5-3 mm mrad

4 x 10kW CW - VKL7811St

8 x 10kW CW-SSPA

2

2001 - 2011

Since Feb.2012

ELBE-UPGRADE: RF RELATED ACTIVITIES

- RESONANT RING (CWRF-2008):
- Conditioning of RF couplers, WG-windows,
- (NIM A 612 (2010) 427 437)
- DOUBLING THE RF POWER:
- -Test of a 16 kW IOT at a SC-Cavity (2008), (Good cooperation with Bruker BioSpin+CPI)
- -(SRF 2009, TUPP026)
- -Test of a 10 kW BRUKER SSPA (CWRF-2010)

RF-input Resonant ring 3-stub tuner (input match, doorknob side) 3-stub tuner (output match, test waveguide)

> Exhauster (air cooling)

Nitrogen can (cooling of the coupler window)

Vacuum box

What kind of RF-Power Amplifier for 20 kW CW@1.3GHz?

• 2 Klystrons? (1998: VKL7811St (CPI) 38 000 USD/piece) (2008: 122 000 USD/piece)

Answer: NO

• IOT ? eventually

Year 2008: Start of cooperation with BRUKER BioSpin!

Remarks on 16kW - IOT

- Test in 2008 with beam in principle ok
- Compared with a 10kW VKL7811St Klystron (permanent magnet system) IOT is more exp.
- Solid state technology becomes more and more competitive.
- (costs: 10...12 €/W@1.3GHz)
- The "border line between tube- and SSAtechnology" may be in the range of 30 kW at present, but moving up quickly

SOLID STATE AMPLIFIER (SSA)

- ELBE was focused on IOT but not happy.
- INSPIRATION TO SSA-Technology by:
- BRUKER EXP. (Big SSA for Orsay)
- BRUKER 1kW@1.3GHz CW IOT-drivers
- CWRF 2008 GENEVA
- The trend to solid state technology was clear!

10kW transmitter presented at SRF Berlin October 2009

- 42U cabinet
- WR650 waveguide output on top
- water cooled power modules
- water cooled driver
- built in 24kW 28V power supply

Start Development 1/2009; Prototype 9/2009

Prototype . 8 x 8 Transistors
Now: 9 x 8 Transistors

GAIN and PHASE CHANGE vs POWER SUPPLY VOLTAGE

sensitivity to voltage changes measured at different power levels

	2kW	4.6kW	8.5kW	9.1kW
Δ gain/ Δ V	0.01dB/V	0.01dB/V	0.08dB/V	0.06dB/V
Δ phase/ Δ V	0.08°/V	0.25°/V	1°/V	0.6°/V

INPUT POWER

PN-SOURCE

Date: 25.APR.2012 14:32:14

Signal Frequency: 1.300000 GHz Signal Level: -0.42 dBm $\,$ Cross Corr Mode

Date: 25.APR.2012 14:25:37

RAISE TIME and FALL TIME

measured at 8kW output power rise time ≈20ns fall time ≈ 60ns

Observation when the Klystron was replaced by a Solid State PA (SSA):

Due to a 10 times higher RF- bandwidth of the SSA at certain circumstances (e.g. detuned cavities, high loop gain) the LLRF controller locked not only on the Pi-mode but also on (Pi-1) or / and (Pi-2). The system became instable.

Solution: Improved LLRF Controller

- Redesign of the LLRF-Controller
- Loop filters with notches in both loops (amplitude, phase)
- Loop gain is now adjustable independently from the transfere function of the loop filters

Result: absolutely stable operation at all circumstances

TEST OPERATION AT ELBE

- Routine OP: 08.Feb. 2010 to 17.Dez.2011
- No failures, much smoother than klystron op
- Regimes of operation:
- CW (FEL, Cavity C4: 8MV/m/ 0.7 mA)
- Raise-/Fall time sufficient to run macropulse mode (0.1ms/40ms)
- Ok for single pulse mode
- Pulse Mode (cavity training)

TIME TABLE (RF-UPGADE)

- •Feb. 2010: Test-Operation at ELBE (one klystron replaced)
- Decision in May 2010:
 we keep the replacement, SSPA is more stable than klystron,
- Dec.2010: Order of another 9 Bruker SSPA
- •ELBE shutdown 2010/2011: Reconstruction of coolingsystem
- •Sep.2011 to Dec.2011: Delivery of 9 SSPA
- •17.Dec.2011: Begin ELBE shutdown, all klystrons removed,
- •Jan. 2012: complete new installation of the power RF system
- •1-st week in Feb.2012: test with dummy load, matching
- •4-th week in Feb.2011. start routine OP of ELBE with SSPA

CAVITIES 1 – 4 DRIVEN BY A PAIR OF 10kW BRUKER SSPA

SRF-GUN with one 10 kW SSPA

Block Diagram

RF-POWER (1dB reserve below -1dB comp.: +71 dBm = 12,6 kW (LIMIT: (each amp.8,5 kW): 72,3dBm-0,3dB= 15,58 kW

Summary

- 20 kW @1,3 GHz CW RF System with SSPA:
- Compact system (turn-key solution)
- High redundancy! If the klystron fails, the accelerator stops, if a transistor fails, tjhere is no problem to continue operation!
- SSPA technology is developing fast, there is no vacuum device, no time-limiting cathod,
- For ELBE UPGRADE: we saved about 40 % costs against tubes

