

CWRF'2012 Brookhaven, 8-11 May 2012

New HOM Damped Cavity at the ESRF

Vincent Serrière (project leader), <u>Jörn Jacob</u>, Loys Goirand, Bernard Ogier, Anna Triantafyllou, Ayan Bandyopadhyay

European Synchrotron Radiation Facility

^{*} This work, carried out within the framework of the ESRFUP project, has received research funding from the EU Seventh Framework Programme, FP7.

Existing ESRF 5-cell copper cavity

- Synchrotron radiation losses in Storage Ring:
 - > 5 MeV/turn for each electron
- 6 highly efficient accelerating RF cavities with five coupled cells:
 - > Fundamental resonance = accelerating mode at 352.2 MHz for electron re-acceleration:
 - 300 kW to obtain 9 MV RF voltage
 - 1000 kW to compensate the synchrotron radiation losses of 200 mA of beam
 - > **BUT** Higher Order Modes = **HOMs**:
 - If HOM in resonance with eigenfrequencies of the beam ⇒ possible instabilities above

 $I_{threshold} \approx 50 \text{ mA}$

HOM driven Longitudinal Coupled Bunch Instabilities – Energy/Phase oscillations

Energy oscillation ⇒ Energy spread of electrons ⇒ Reduction of brilliance

Nice picture for machine physicist

Disaster for ESRF users

Beam stabilization at high currents

ALTERNATIVE for high operation reliability at 300 mA:

Cavities with strongly damped HOMs

- 2004 start R&D with a PhD thesis [Nicolas Guillotin]
- 2007-2011 ESRFUP / WP13 = design, build & test an operational cavity

352.2 MHz Single cell NC HOM damped cavity

Based on 500 MHz BESSY, MLS, ALBA design [E. Weihreter et al.]

ESRF 352.2 MHz design: several improvements

E-beam welding of HOM coupling sections to the body

- ⇒ to avoid a gap between ridges and cavity body, and thereby
- ⇒ to suppress residual HOM and flange over- heating (observed on BESSY/ALBA cavity)

ESRF optimization of ridge waveguides:

- Optimum coupling to all HOM
- Short HOM dampers despite lower RF frequency
- Numerical EM simulations and low power RF measurements on full scale aluminum models

Procurement of 3 operational copper cavities

- May 2009: Call for tender
 - mechanical design by ESRF
 - full set of detailed ESRF drawings
- Order of 3 power prototypes
 - validate the design
 - qualify 3 companies for a later series fabrication :
 - ♦ RI (D),
 - ♦ SDMS (F),
 - ♦ CINEL (I)
 - validate 2 different manufacturing procedures
 - obtain 3 operational cavities for phase 1 of ESRF upgrade

Initially specified mechanical design & manufacturing procedure applied by RI - Research Instruments (photos)

After brazing body & end disc 1

HOM absorbers

RI: Ferrite HOM absorber for IR thermal test at ESRF

SDMS: direct brazing to stainless steel – successful IR thermal test at ESRF

1st cavity delivered by RI – Research Instruments

- ✓ Delivered 15 June 2011
- ✓ Excellent fundamental mode impedance:

 $R_s = 4.9 \text{ M}\Omega$, $Q_0 = 33800$ (expected 30000 to 35000)

- ✓ HOM spectrum a factor two lower than design goal
- √ 600 kV obtained in CW on RF power test stand
 - Inspection of RF fingers between HOM coupling sections and dampers: no sign of degradation

October 2011: Installation on Storage Ring cell 25

- Passive operation with excellent vacuum behaviour at
 - √ 200 mA in mutlibunch fillings (a few hours after machine restart)
 - √ 95 mA in 16 bunch filling (most demanding for HOM dampers)
- Active operation first tests with beam acceleration very satisfactory
 - √ Vacc = 0.4 MV with 20 kW
 - ✓ Ibeam = 168 mA with total of 63 kW into new cavity

Alternative design proposed by SDMS, engineered by V. Serrière / ESRF applied by SDMS and CINEL

CINEL: 3 body sectors after machining of the water cooling channels, September 2010

SDMS parts of end discs ready for ebeam welding

SDMS: Body after e-beam assembly of the 3 sectors, November 2010

Difficult e-beam weld Cavity / HOM coupling section - SDMS cavity

1st attempt to repair: MIG welding, not successful

2nd attempt: further e-beam weld from inside with an intermediate copper ring

2nd delivery: SDMS cavity

- Delivered on 20 July 2011
- Successful vacuum test
- \sim Qo = 32000
- RF conditioning May-June 2012
- Installation for beam test on cell 25 in summer 2012

Very smooth fabrication of CINEL cavity (also alternative design)

3rd cavity: CINEL

- Last weld in April 2012
- All welds and surfaces perfect
- Vacuum test: these days
- HOM absorbers: assembly brazing still to be done
- Installation for beam test on cell 25 in winter 2013

Frequency tuning before assembly welding

RF upgrade phase 1 well in progress!

150 kW

150 kW pulsed

150 kW

150 kW

3 SSA from ELTA for SR:

- Powering 3 new HOM damped cavities on the storage ring
- In fabrication

4 SSA from ELTA for the booster:

☞ In operation since March 2012

3 prototype HOM damped cavities ...

- Test with beam one by one on cell 25 with klystron transmitter TRA3:
- Tst cavity (RI) installed in October 2011: excellent behaviour with beam

... 3 prototype HOM damped cavities

2013: all 3 cavities in new 7 m section/cell 23 with 3 SSA

First new Storage Ring RF unit with 3 HOM damped cavities

Summer 2013: Installation of all 3 cavities on cell 23

Cell 23 = first straight lengthened to 7 m

THANK YOU!