

The Advanced Photon Source 352-MHz RF Systems

(...... A Case for Solid State?)

Doug Horan APS RF Group CWRF2012 May 8-11, 2012

Outline

APS RF System Topology

Concepts for Solid State RF Power at APS

SOLID STATE RF POWER AT APS?.....what would we get for all that cost and effort?

CWRF 2012 May 8-11, 2012

APS Storage Ring RF Topology

- Waveguide switching system provides twelve modes of operation with different combinations of rf systems
- Routine storage ring operation is 103mA maximum stored current in "top-up" mode
- Requires two klystrons driving storage ring, each operating at ~ 675kW CW
- "Offline" rf stations are in diode, 70kV@5-6A

APS Booster RF Topology

- Uses one 1-MW klystron (RF5) operating at 400kW peak,
 120kW average power
- Waveguide switching system allows storage ring station RF3 as a back-up to RF5

APS Solid State RF Concept

APS 352-MHz 1kW Amplifier Testing

- Vd = 49.26V
- Id = 30.65A
- Pdc input = 1509.82 watts
- RF output = 1000 watts
- Eff = 66.2%
- RF input = 8.32 watts
- RF gain = 20.79dB

APS 352-MHz 4kW Demonstration

Produced 3.45kW CW

Demonstrated advantage of drain voltage control to improve efficiency at intermediate power ranges:

Why Consider Solid State RF Power for APS?

(the standard answers.....)

- Improved Operating Efficiency
- Improved Reliability
- Lower Maintenance Costs

(other pressing concerns.....)

- Cleaner RF Power
- Future Availability of 352-MHz/1MW CW Klystrons

Improved Efficiency?

 SR RF system efficiency poor (≈ 30%) at injection

→ ≈ 350kW klystron rf output

- Improves to ≈ 55% with 150mA stored beam
- Booster % efficiency is <u>very poor</u> due to low average rf power: ≈ 16%

Improvements in Reliability?

- RF downtime and mean time to fault (MTTF) since 2010:
 - → FY2010: 0.31%, 307.8 hours
 - → FY2011: 0.10%, 490.6 hours
 - → Run 2011-3: 0.11%, 769.0 hours
 - Latest run, Feb 1, 2012 to April 25, 2012:
 - → Total rf system downtime = 0.047%

 APS facility downtime 0.27% with 287 hours MTTF

The argument for solid state in terms of rf system reliability is not strong

Cleaner RF Power?

- The APS Short Pulse X-Ray (SPX) Upgrade will require a significant reduction in phase and amplitude noise on the storage ring rf
- The major source of noise has been identified as 360Hz and other ac line harmonics on the klystron HVPS output
- LLRF Adaptive feed-forward compensation techniques are being developed to address the problem in the present rf systems......

The 352-MHz/1kW solid state amplifiers tested at APS have demonstrated very low uncorrected noise

352-MHz/1MW CW Klystron Availability?

- Only one supplier remains: Thales
- Cost per unit has increased≈ 300% since 1992
- The number of sockets worldwide for these klystrons is shrinking (12?.....15?) How long will they be available?
- Other capable suppliers exist, but NRE would be significant

APS 352-MHz Klystron Inventory

Operating klystron hours as of 4/25/12:

→ RF1 ---- Thales s/n 089043 ---- 11,076 hr

→ RF2 ---- Thales s/n 089036 ---- 13,638 hr

→ RF3 ---- EEV s/n 01 ----- 71,754 hr

→ RF4 ---- Thales s/n 089030 ---- 43,174 hr

→ RF5 ---- Thales s/n 089026 ---- 62,033 hr*

Average klystron lifetime at APS is ≈ 64k hours

.....but higher output power required for 150mA operation will shorten lifetime

^{*} Longest Thales lifetime at APS to date

APS 352-MHz Klystron Inventory

Spares:

- → Thales s/n 089024 ---- rebuilt, FAT on Aug. 30, 2004
- → Thales s/n 089029 ---- rebuilt, FAT on Dec. 8, 2003
- → Thales s/n 089033 ---- rebuilt, FAT on Feb.6, 2007
- → Thales s/n 089048 ---- new, at factory for repair, FAT June 2012
- → Thales s/n 089054 ---- new, FAT 11/16/12
- → Thales s/n 089055 ---- new, FAT 11/15/11
- → E2V (Los Alamos) s/n 01 ----- retuned, tested to 1MW June 10, 2011
- \rightarrow E2V (Los Alamos) s/n 005 ---- retuned, tested to 1MW, June 10, 201
- → Philips (CWDD) s/n 73201.55 ---- retuned, tested to 1MW, Feb 10, 2011

Retired klystrons that still function:

- → Thales s/n 089041 ---- retired May 3, 2010 at 56,360 hours (sideband instabilities, high body losses, x-rays)
- → EEV s/n 01 ----- retired Jan.11, 2012 at 77,725 hours (no issues)

Do we have enough spares to last APS lifetime?

Solid State Challenges at APS

Cost!

→ The cost of solid state power, plus reconfiguring 352-MHz rf topology to one 200kW amplifier per cavity (x12 or 16) would require a complete redesign of waveguide, LLRF, ac power, water, and interlock systems – even at \$5/watt for SS power, the total cost could exceed \$30-\$40M

Physical Constraints

→ Existing klystron rf systems produce ≈ 950 watts per sq-ft of floor space......a solid state system must fit in the existing building

Interruption of APS Operations

→ Reconfiguring 352-MHz HLRF topology alone could require many months of dark time

Solid State for SPX?

- SPX conceptual design calls for 10kW CW power at 2.815GHz using klystrons
- 10kW CW at S-band is possible with solid state
- Power -vs- cost break point between solid state and existing klystrons appears to be at ≈ 3-4kW CW
- SPX S-band CW power costs estimated at ≈ \$55/watt for solid state and ≈ \$20/watt for klystrons

2.815GHz/150 WATT CW DEMONSTRATION AT APS

L-3 2.815GHz/5kW CW Klystron

- 1-5/8" EIA coaxial output
- Permanent magnet focus
- Mod-anode gun, but will be operated in diode mode
- Requires 12kV @ 1.295A
- RF gain ~ 42dB
- Efficiency not so hot (≈ 32%), but no focus supplies needed
- Stable operation to full power

SPX-0 2.815GHz/5kW CW Amplifier System

- Utilizes L-3 L4442 PM-focus klystron
- 50kW output isolator and RF load
- Includes waveguide shutters between klystron and isolator input port
- Ultra-low ripple HVPS for minimal phase and amplitude noise on output

Solid-State Booster at APS?

- Seems most "do-able" cost-wise:
 - ≈ \$4-6M??
 - → Would not affect SR rf systems
- Less disruption to APS operations
- Assuming 60% overall efficiency, would reduce ac line load by ≈ 600kW
- May fit in available space due to 90° orientation of APS booster rf
- Two 240kW systems would provide 80kW of headroom over present booster operating point

Reliability Upgrades Since 2010

Upgrade of RF Interlock Systems

- Replacement of all original process meter relay logic rf interlock systems with PLC's was completed
 - → Simplified system wiring, reducing intermittents
 - → Eliminated process meters and associated failures
- Only two rf system trips attributed to PLC interlock systems since 2005!
- Eliminated at least 2-3 trips/year from old interlock systems

ORIGINAL INTERLOCK SYSTEM AT SECTOR 36 CAVITY LOCATION

PLC INTERLOCK SYSTEM
INSTALLATION AT SAME LOCATION

Reliability Upgrades Since 2010

Replacement of Original 13.2kV Fused-Disconnect Switches

- Original switch would fail and stick in open or closed position
- Typically 2-4 failures per year
- Significant downtime to make repairs
- No failures with new switch!
- See Gian Trento talk

NEW 13.2kV SWITCHES BEING PREPARED FOR INSTALLATION

Enhanced High-Voltage Power Supply Maintenance

 Detailed visual inspection of mod-anode regulator tank components

- Tests on T-R set oil to detect arcing
- See Gian Trento talk

RF1 HIGH VOLTAGE POWER SUPPLY CONTROL RACKS

Major Klystron Issues

Klystron Sidebands

- Remains an issue with Thales TH2089A klystrons
- Ability to adjust circulator bias is critical to achieve stability

ower

Δ.

everse

Current

- 1-2kW increase in reflected power is typically effective
- ≈ 2-3% efficiency penalty

Anient 10:34:47 dun 3, 200

CWRF 2012 May 8-11, 2012

Major Klystron Issues

Gun Arcing

- Typically caused by barium deposition over time
- Causes random crowbar trips
- All klystrons have developed this problem to some degree
- "Spotknocking" the klystron gun is very effective
- Extends useful life of older klystrons
- A spotknocking power supply system is essential to maintain system reliability

125kV/10mA SPOTKNOCKING POWER SUPPLY WITH PANTAK CABLE SET AND HIGH VOLTAGE JUNCTION BOX

Last But Not Least......Hardware Failures for CWRF2012!

Booster Input Coupler -- Waveguide Transition Arcing

- Arcing damage caused by degraded rf contact with waveguide transition matching post
- Coupler had to be replaced after 17 years of service!
- Same problem seen on one other coupler, but not as bad; coupler contacts will be cleaned and a new matching post will be installed
- One coupler will be disassembled for inspection every shutdown from now on

Hardware Failures for CWRF2012

Destroyed TH5188 Tetrode

- Crowbar failed to fire due to accidental disconnection of fiber optic cable
- The tetrode took it very hard
- Very loud noise, very upsetting to people
- On the bright side.....no other damage occurred

TETRODE IN HVPS MOD-ANODE REGULATOR TANK