
TBB investigation for SuperB

Francesco Giacomini – INFN

Forum on Concurrent Programming Models and Frameworks
2012-01-18

2012-01-18 Forum on Concurrent Programming Models and Frameworks 2

What is TBB?

● http://threadingbuildingblocks.org/
● Intel Threading Building Blocks (TBB) is a library

offering a rich approach to expressing parallelism in
a C++ program

● It represents a high-level, task-based parallelism that
abstracts platform details and threading mechanisms

● For the moment we are interested mainly in a
feature called “flow graph”, an API for event-
driven/reactive programming models
● Nodes would be application modules

edges would be deps among them

2012-01-18 Forum on Concurrent Programming Models and Frameworks 3

TBB Example
 tbb::flow::graph g;
 tbb::flow::source_node<Event> source(g, GenerateEvent(n_of_events), false);
 tbb::flow::function_node<Event, Event> a(g, tbb::flow::unlimited, Body("A"));
 tbb::flow::function_node<Event, Event> b(g, tbb::flow::unlimited, Body("B"));
 tbb::flow::join_node<std::tuple<Event, Event>, tbb::flow::tag_matching> j(g, tag, tag);
 tbb::flow::function_node<std::tuple<Event, Event>> sink(g, tbb::flow::serial, OutputEvent);
 make_edge(source, a);
 make_edge(source, b);
 make_edge(a, std::get<0>(j.inputs()));
 make_edge(b, std::get<1>(j.inputs()));
 make_edge(j, sink);
 source.activate();
 g.wait_for_all();

Many node types
are available

2012-01-18 Forum on Concurrent Programming Models and Frameworks 4

TBB Example in SB Fastsim
(slide shown at the SuperB Collaboration Meeting @LNF last December)

● Modified the framework so that the loop executing
the modules in a sequence has been replaced by a
graph with the same modules

AppExecutable::event(Event*) AppExecutable::event(Event*) AppExecutable::event(Event*)

AppExecutable::event(Event*)

AppExecutable::event(Event*)

AppExecutable::event(Event*)

AppExecutable::event(Event*)

● Inefficient way of doing the same thing
● Proof of concept

● But what about the following?

2012-01-18 Forum on Concurrent Programming Models and Frameworks 5

How to express dependencies

● Contrasting guidelines → Challenge
● Expressivity in the application domain

– Syntax-friendly to the framework user
● Efficient mapping to hardware resources available at

run-time
– Leave enough flexibility to the framework developer

● e.g. replace TBB with libdispatch

● Leverage the compiler as much as possible
● Profit from C++11 features
● Do as much as possible at compile time

– Hashed string literals can be used as template parameters
to identify modules and products

2012-01-18 Forum on Concurrent Programming Models and Frameworks 6

How to express dependencies /2

● Basic idea: each module declares which products it needs and
which products it provides

● Requires<> and Provides<> provide “safe” get() and put() of
products from/to an event

● Module instantiation causes the population of hidden (to the user)
data structures with relationships between modules and their
respective products

● Modules cannot be run in the wrong order

● Leave the door open to more flexibility at run-time

● Need requirements

class M4: public Module<module_four,
 Requires<product_one>,
 Provides<product_three, product_four>
 >
{
 bool operator()(Event& e) const { /* ... */ }
};

2012-01-18 Forum on Concurrent Programming Models and Frameworks 7

Next steps

● Implement a small system integrating the basic
idea with TBB

● Collect requirements in the SB community

