TBB investigation for SuperB

Francesco Giacomini — INFN

Forum on Concurrent Programming Models and Frameworks
2012-01-18

dne What is TBB?

| S= 4

 http://threadingbuildingblocks.org/

* Intel Threading Building Blocks (TBB) is a library
offering a rich approach to expressing parallelism in
a C++ program

* |t represents a high-level, task-based parallelism that
abstracts platform details and threading mechanisms

 For the moment we are interested mainly in a
feature called “flow graph”, an API for event-
driven/reactive programming models

raph object

 Nodes would be application modules
edges would be deps among them

2012-01-18 Forum on Concurrent Programming Models and Frameworks

£\

superB
| S= 4

TBB Example

tbb:
tbb:
tbb:
tbb:
tbb:
tbb:

:flow:
:flow:
:flow:
:flow:
:flow:
:flow:

source.activate();
g.wait_for_all();

:graph g;
:source_node<Event> source(g, GenerateEvent(n_of_events), false);
:function_node<Event, Event> a(g, tbb::flow::unlimited, Body("A"));
:function_node<Event, Event> b(g, tbb::flow::unlimited, Body("B"));
:join_node<std: :tuple<Event, Event>, tbb::flow::tag matching> j(g, tag, tag);
:function_node<std::tuple<Event, Event>> sink(g, tbb::flow::serial, OutputEvent);
make_edge(source, a);

make edge(source, b);

make_edge(a,
make edge(b,
make_edge(j, sink);

std: :get<0>(j.inputs()))
std::get<1>(j.inputs()));

Many node types \

Functional a@ @ _,@_E

(source_node continue_node function_node multioutput_function_node*

4 buffer_node queue_node priority_queue_node sequencer_node

Buffering o> s o> b ._)_i_l—l_o «>|31211l0b

J

are avallable queueing join reserving join tag matching join split_node* or_node*

P DD G D

J

\.

broadcast_node write_once_node overwrite_node limiter_node

2012-01-18

I
Other < l - W > \\/),\\/H;.|- <j>
A\

Forum on Concurrent Programming Models and Frameworks

3

e 1BB Example in SB Fastsim

X y (slide shown at the SuperB Collaboration Meeting @LNF last December)

* Modified the framework so that the loop executing
the modules in a sequence has been replaced by a
graph with the same modules

prpExecutabIe event(Event)HAppExecutable event(Event)% cee — P AppExecutabIe event(Event)

* Inefficient way of doing the same thing
« Proof of concept
« But what about the following?

I}?\ppExecutabIe::event(Event*\ijﬁ ceoe

ﬁﬁéppExecutabIe: :event(Event*S/\i . >@\ppExecutable::event(Event*)\f;

@\ppExecutable::event(Event*iiH)

2012-01-18 Forum on Concurrent Programming Models and Frameworks 4

{set How to express dependencies

| S= 4

« Contrasting guidelines — Challenge

* Expressivity in the application domain
- Syntax-friendly to the framework user

« Efficient mapping to hardware resources available at
run-time

- Leave enough flexibility to the framework developer
» e.g. replace TBB with libdispatch

* L everage the compiler as much as possible
« Profit from C++11 features

Do as much as possible at compile time

- Hashed string literals can be used as template parameters
to identify modules and products

2012-01-18 Forum on Concurrent Programming Models and Frameworks

s’..pd}} How to express dependencies /2

e Basic idea: each module declares which products it needs and
which products it provides

class M4: public Module<module_four,
Requires<product_one>,

Provides<product_three, product_four>
>

bool operator()(Event& e) const { /* ... */ }
}s

« Requires<> and Provides<> provide “safe” get() and put() of
products from/to an event

« Module instantiation causes the population of hidden (to the user)
data structures with relationships between modules and their
respective products

 Modules cannot be run in the wrong order
« Leave the door open to more flexibility at run-time

 Need requirements

2012-01-18 Forum on Concurrent Programming Models and Frameworks 6

SuperB Next steps

* Implement a small system integrating the basic
idea with TBB

* Collect requirements in the SB community

2012-01-18 Forum on Concurrent Programming Models and Frameworks

