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Beam Transfer Lines

• Distinctions between transfer lines and circular machines

• Linking machines together

• Trajectory correction

E itt d i t h t• Emittance and mismatch measurement

• Blow-up from steering errors, optics mismatch and thin screens

• Phase-plane exchange

Brennan Goddard (presented by Malika Meddahi)

CERN

Injection, extraction and transfer

CERN Complex• An accelerator has limited 
dynamic range

• Chain of stages needed to 
reach high energy

P i di filli f

Transfer lines transport the
beam between accelerators,
and onto targets dumps

• Periodic re-filling of 
storage rings, like LHC

• External experiments, like 
CNGS 

LHC: Large Hadron Collider
SPS: Super Proton Synchrotron
AD: Antiproton Decelerator
ISOLDE: Isotope Separator Online Device
PSB: Proton Synchrotron Booster
PS: Proton Synchrotron
LINAC: LINear Accelerator
LEIR: Low Energy Ring
CNGS: CERN Neutrino to Gran Sasso

and onto targets, dumps,
instruments etc.
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Normalised phase space

• Transform real transverse coordinates x, x’ by



1
x

S
X



































'

011

' x

x

x

x

SSS 
N

'X
X

'
1

xx SS
S




'X

Normalised phase space


x’

Real phase space Normalised phase space

'X


 1



x


 1

max'x

Area = 

max'X

Area = 


X

maxx

maxX

22 ''2 xxxx   22 'XX 



3

General transport
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Beam transport: moving from s1 to s2 through n elements, each with transfer matrix Mi
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• The solution is periodic 

• Periodicity condition for one turn (closed ring) imposes 1=2, 1=2, D1=D2

• This condition uniquely determines (s)(s), (s), D(s) around the whole ring
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Circular Machine

• Periodicity of the structure leads to regular motion

– Map single particle coordinates on each turn at any location 

– Describes an ellipse in phase space, defined by one set of  and 
values  Matched Ellipse (for this location)
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• For a location with matched ellipse (, an injected beam of 

emittance , characterised by a different ellipse (*, *) generates 

(via filamentation) a large ellipse with the original ,  but larger 
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Transfer line
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• No periodic condition exists

• The Twiss parameters are simply propagated from beginning to end of line

• At any point in line, (s) (s) are functions of 1 1

Transfer line

• On a single pass there is no regular motion 

– Map single particle coordinates at entrance and exit.

– Infinite number of equally valid possible starting ellipses for single particle
……transported to infinite number of final ellipses…
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Transfer Line

• Initial  defined for transfer line by beam shape at entrance
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Non-Gaussian beam
(e.g. slow extracted)

x x

Gaussian beam
Non-Gaussian beam
(e.g. slow extracted)

• Propagation of this beam ellipse depends on line elements

• A transfer line optics is different for different input beams

(e.g. slow extracted)(e.g. slow extracted)
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Transfer Line

• The optics functions in the line depend on the initial values

- Design x functions in a transfer line
 x functions with different initial conditions
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• Same considerations are true for Dispersion function:

– Dispersion in ring defined by periodic solution  ring elements 

– Dispersion in line defined by initial D and D’ and line elements



7

Transfer Line

• Another difference….unlike a circular ring, a change of an element 
in a line affects only the downstream Twiss values (including 
dispersion)
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10% change in 
this QF strength

- Unperturbed x functions in a transfer line
 x functions with modification of one quadrupole strength
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Linking Machines

• Beams have to be transported from extraction of one machine to 
injection of next machine

– Trajectories must be matched, ideally in all 6 geometric degrees of freedomTrajectories must be matched, ideally in all 6 geometric degrees of freedom 
(x,y,z,)

• Other important constraints can include

– Minimum bend radius, maximum quadrupole gradient, magnet aperture, 
cost, geology 
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Linking Machines

Extraction

Transfer

Injection

1x1x 1y1y
x(s)x(s) y(s)y(s)

s

2x2x 2y2y























































1

1

1

22

22

2

2

2

'''2'

''''

2









SSCC

SSSCCSCC

SCSC

The Twiss parameters can be propagated 
when the transfer matrix M is known 



































 ''''21'

2

2

x

x

SC

SC

x

x

x

x
M

Linking Machines
• Linking the optics is a complicated process

– Parameters at start of line have to be propagated to matched parameters 
at the end of the line

– Need to “match” 8 variables (x x Dx D’x and y y Dy D’y)

– Maximum  and D values are imposed by magnet apertures

– Other constraints can exist 

• phase conditions for collimators,

• insertions  for special equipment like stripping foils

– Need to use a number of independently powered (“matching”) 
quadrupoles

Matching with computer codes and relying on mixture of theory– Matching with computer codes and relying on mixture of theory, 
experience, intuition, trial and error, …
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Linking Machines
• For long transfer lines we can simplify the problem by designing the 

line in separate sections

– Regular central section – e.g. FODO or doublet, with quads at regular 
spacing, (+ bending dipoles), with magnets powered in series

– Initial and final matching sections – independently powered quadrupoles, 
with sometimes irregular spacing.
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Regular lattice (FODO)

(elements all powered in series
with same strengths)

Final 
matching 

section

SPS to LHC Transfer Line (3 km)

Extraction
point

Injection
point

Initial 
matching 

section

• Magnet misalignments, field and powering errors cause the 
trajectory to deviate from the design

• Use small independently powered dipole magnets (correctors) to 
steer the beam

Trajectory correction

steer the beam

• Measure the response using monitors (pick-ups) downstream of the 
corrector (/2, 3/2, …)

Corrector dipole
Pickup

Trajectory

QF

QD QD

QF

• Horizontal and vertical elements are separated

• H-correctors and pick-ups located at F-quadrupoles (large x )

• V-correctors and pick-ups located at D-quadrupoles  (large y)

/2
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Trajectory correction

• Global correction can be used which attempts to minimise the RMS 
offsets at the BPMs, using all or some of the available corrector 
magnets.

• Steering in matching sections extraction and injection regionSteering in matching sections, extraction and injection region 
requires particular care

– D and  functions can be large  bigger beam size

– Often very limited in aperture

– Injection offsets can be detrimental for performance 

Trajectory correction

Uncorrected trajectory.

y growing as a result 
of random errors in the 
line.line. 

The RMS at the BPMs 
is 3.4 mm, and ymax is 
12.0mm

Corrected trajectory.

The RMS at the BPMsThe RMS at the BPMs 
is 0.3mm and ymax is 
1mm
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Trajectory correction

• Sensitivity to BPM errors is an important issue

– If the BPM phase sampling is poor, the loss of a few key BPMs can 
allow a very bad trajectory, while all the monitor readings are ~zero

Correction with some 
monitors disabled

With poor BPM phase 
sampling the correction 
algorithm produces a 
trajectory with 185mm 
ymax

N h h f i l lNote the change of vertical scale

Steering (dipole) errors

• Precise delivery of the beam is important.

– To avoid injection oscillations and emittance growth in rings

– For stability on secondary particle production targets

• Convenient to express injection error in (includes x and x’ errors)• Convenient to express injection error in (includes x and x  errors)

'X

a

a [] = ((X2+X’2)/) x2 xx’+ x’2
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X
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Steering (dipole) errors

• Static effects (e.g. from errors in alignment, field, calibration, …) are 
dealt with by trajectory correction (steering).

• But there are also dynamic effects, from:

– Power supply ripples

– Temperature variations

– Non-trapezoidal kicker waveforms

• These dynamic effects produce a variable injection offset which can 
vary from batch to batch, or even within a batch.

• An injection damper system is used to minimise effect on emittance

Blow-up from steering error

• Consider a collection of particles with amplitudes A

• The beam can be injected with a error in angle and position.

• For an injection error ay (in units of sigma = ) the mis-injected 
beam is offset in normalised phase space by L = a beam is offset in normalised phase space by L  ay

'X Misinjected
beam

Matched
particles

A

X

L
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Blow-up from steering error

• The new particle coordinates in normalised phase space are

cosnew LXX 0 

sinnew LXX '
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• For a general particle distribution, 
where A denotes amplitude in 
normalised phase space

Misinjected
beam

Matched
particles

A



'X

2/2

222

A

XXA







L

 X

Blow-up from steering error

   

  2'
00

'2
00

'
00

'222

DXXDXX

DXDXXXA





2

22

2 



sincos

sincosnewnewnew

• So if we plug in the new coordinates….

 

 

 

2

2'
00

2'
00

'2
00

2

L

LXXL

LXXLXXA







0

0

2

2

22

2







sincos

sincosnew

0 0

 2/1

2/2/

0

0

2

22

a

LA







 newnew

• Giving for the emittance increase



14

Blow-up from steering error

A numerical example….

Consider an offset a of 0.5 sigma for 
injected beamj

Misinjected beam

 
0

0 2/1
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 2anew

0.5
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'X

Matched
Beam 


X

• Optical errors occur in transfer line and ring, such that the beam can be 
injected with a mismatch.

Blow-up from betatron mismatch

• Filamentation will produce an 
emittance increase.

• In normalised phase space, consider 
the matched beam as a circle, and the 
mismatched beam as an ellipse.

Mismatched
beam'X

Matched
beam

X



15

Blow-up from betatron mismatch
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Blow-up from betatron mismatch
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where subscript 1 refers to matched ellipse, 2 to mismatched ellipse.

Blow-up from betatron mismatch

A numerical example….consider b = 3a for the mismatched ellipse

3/  ab

 22
0

671

1
2

1







new

o

Mismatched
beam

a b=3a

Then

'X

067.1 

Matched
Beam 

X
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Emittance and mismatch measurement

• A profile monitor is need to measure the beam size

– E.g. beam screen (luminescent) provides 2D density profile of the beam

• Profile fit gives transverse beam sizes .

I i  i ‘k ’ b l l t d f i l• In a ring,  is ‘known’ so  can be calculated from a single screen

Emittance and mismatch measurement

• Emittance measurement in a line needs 3 profile measurements in a 
dispersion-free region

• Measurements of 0,1,2, plus the two transfer matrices M01 and 
M12 allows determination of  and 

32M

M12 allows determination of and 

s0 s2s1

21M

0 1 2

2

2
2

1

2
1

0

2
0








 
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Emittance and mismatch measurement






















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

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





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
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
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






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0

0

2
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2
1

11111111

2
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2
1

1

1

1

'''2'

''''

2









SSCC

SSCSSCCC

SSCC

We have

  





 ii2

   2
0

0

2
2

0220
2
22

2
0

0

2
1

0110
2

11 1212 





 
S

SCC
S

SCC      ,so that

Using 0

2

0

2
20

2

0

1
1

2
0

0 











 
















      ,     ,

 

      




































sincossin1cos1

sinsincos

2
2

1
2121

21

211
1

2

'
1

'
1

11

SC

SC

where

W00 2

1  we find

00  

       
   2211

2
11

2
22

2
1

2
01

2
2

2
02

//

//////

SCSC

SCSCSS





 Wwhere

Emittance and mismatch measurement

Some algebra with above equations gives

      4/////1 2
22

2
22

2
2

2
020

2WW  SCSCS

0
2
0  

And finally we are in a position to evaluate  and 0

W00 2

1  

Comparing measured o, 0 with expected values gives 
measurement of mismatch
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Blow-up from thin scatterer

• Scattering elements are sometimes required in the beam

– Thin beam screens (Al2O3,Ti) used to generate profiles.

– Metal windows also used to separate vacuum of transfer lines from 
vacuum in circular machines.

– Foils are used to strip electrons to change charge state

• The emittance of the beam increases when it passes through, due 
to multiple Coulomb scattering.

s











radrad
inc

c
s L

L

L

L
Z

cMeVp
mrad 10

2 log11.01
]/[

1.14
][


rms angle increase:

c = v/c, p = momentum, Zinc = particle charge /e, L = target length, Lrad = radiation length

Blow-up from thin scatterer

 0XXnew

Ellipse after
scattering

Each particles gets a random angle change 
s but there is no effect on the positions at 
the scatterer

'X

s '
0

' XXnew

Matched
lli

After filamentation the particles have 
different amplitudes and the beam has 
a larger emittance

2/2A

X

ellipse2/Anew



20

Ellipse after
filamentation

uncorrelated

Blow-up from thin scatterer

 

  22

2

2

s







''2

'
0

2
0

'222

XXX

XX

XXA newnewnew
'X

Matched
lli

 

2
0

2
0

22

22

2

22

2

2

s

ss

ss

ss

















'
0

'
0

'2
00

2

0
2
00

X

XXXA

XXX

new

0

X

ellipse

2
0 2 snew  

Need to keep  small to minimise blow-up (small  means large spread in 
angles in beam distribution, so additional angle has small effect on distn.)

Blow-up from charge stripping foil

• For LHC heavy ions, Pb53+ is stripped to Pb82+ at 4.25GeV/u using a 
0.8mm thick Al foil, in the PS to SPS line 

•  is minimised with low- insertion (xy ~5 m) in the transfer line

• Emittance increase expected is about 8%Emittance increase expected is about 8%
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Emittance exchange insertion

• Acceptances of circular accelerators tend to be larger in horizontal 
plane (bending dipole gap height small as possible)

• Several multiturn extraction process produce beams which have 
emittances which are larger in the vertical plane  larger lossesg p g

• We can overcome this by exchanging the H and V phase planes 
(emittance exchange)

Low energy machine

High energy machine

After multi-turn 
extraction After emittance

exchange

y

x

In the following, remember that the matrix is our friend…

Emittance exchange

Phase-plane exchange requires a transformation of the form:






































0

0

0

3231

2423

1413

1

1

1

'

00

00

00

'

y

x

x

mm

mm

mm

y

x

x


















 0

0

4241

3231

1

1

'00

00

' y

y

mm

mm

y

y

A skew quadrupole is a normal quadrupole rotated by an angle . 

The transfer matrix S obtained by a rotation of the normal transfer matrix Mq:

S = R-1MqR





  0sin0cos

where R is the rotation matrix  












 







cos0sin0

0cos0sin

sin0cos0

(you can convince yourself of what R does by checking that x0 is transformed to 
x1 = x0cosy0sin, y0 into -x0siny0cosetc.)
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Emittance exchange

For a thin-lens approximation






















100

0100

001

0001




qM

 0sin0cos00010sin0cos 

(where  = kl = 1/f is the 
quadrupole strength)

So that



















































































 

12cos02sin

0100

02sin12cos

0001

cos0sin0

0cos0sin

sin0cos0

0sin0cos

100

0100

001

0001

cos0sin0

0cos0sin

sin0cos0

0sin0cos

1





















RMRS q



For the case of  = 45º, 

this reduces to 




















100

0100

010

0001




S

Normal quad45º skew quad

Emittance exchange

The transformation required can be achieved with 3 such skew quads in a lattice, 
of strengths 1, 2, 3, with transfer matrices S1, S2, S3

A B














x

C

C
C

00
00

00

1 2 3

The transfer matrix without the skew quads is C = B A . 

Skew quad Skew quad Skew quad





 yC

00

 

     





























xxx
x

x

xx

xxxxxx

xxxxxx
x

x

x











sincos
sin1cos

sinsincos

2
2

1

21

2112

211
1

2

C

and similar for Cy
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Emittance exchange

With the skew quads the overall matrix is M = S3B S2A S1

    


















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
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
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
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
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
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
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
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cabcbaabc
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M










 00

00

00

4241

3231

2423

mm

mm

mm

a list of conditions result which must be met for phase-plane exchange.

Equating the terms with our target matrix form

Emittance exchange

32123422

21341211

34

12

0

0

0

0




abc

abc

c

c








 
 23312112321124443

21134134321342221

32341244

21123433

0

0

0

0







abcabc

abcabc

abc

abc









The simplest conditions are c12 = c34 = 0. 

Looking back at the matrix C, this means that x and y need to be integer 
multiples of  (i.e. the phase advance from first to last skew quad should be 180º,multiples of  (i.e. the phase advance from first to last skew quad should be 180 , 
360º, …)

We also have for the strength of the skew quads

3412

44

1234

22
32

1234

33

3412

11
21

ab

c

ab

c

ab

c

ab

c








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Emittance exchange

Several solutions exist which give M the target form. 

One of the simplest is obtained by setting all the skew quadrupole strengths the 
same, and putting the skew quads at symmetric locations in a 90º FODO 
lattice

A B ( A)

  

A B (=A)

From symmetry A = B, and the values of  and  at all skew quads are identical.

  

with the same form for yTherefore

The matrix C is similar, but with phase advances of 2

 

   










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
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
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sin1
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2BA

Emittance exchange

 












 x

xx





21

00

 0001

Since we have chose a 90º FODO phase advance, x = y = /2, and 
2x = 2y =  which means we can now write down A,B and C:
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

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
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C
i.e. 180º across the 
insertion in both planes

yx
s


 1

321 we can then write down the skew lens strength as

For the 90º FODO with half-cell length L, 
2

1
,

2

LL sDF  
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Summary

• Transfer lines present interesting challenges and differences from 
circular machines

– No periodic condition mean optics is defined by transfer line element 
strengths and by initial beam ellipse

– Matching at the extremes is subject to many constraints

– Trajectory correction is rather simple compared to circular machine

– Emittance blow-up is an important consideration, and arises from 
several sources

– Phase-plane rotation is sometimes required - skew quads 

Keywords for related topics

• Transfer lines

– Achromat bends

– Algorithms for optics matching

The effect of alignment and gradient errors on the trajectory and optics– The effect of alignment and gradient errors on the trajectory and optics

– Trajectory correction algorithms

– SVD trajectory analysis

– Kick-response optics measurement techniques in transfer lines

– Optics measurements including dispersion and p/p with >3 screens 

– Different phase-plane exchange insertion solutions


