

Content:

- Definition of radioactive radiation
- Prompt radiation
- Shielding against photons & neutrons
- Residual radiation
- α, β, γ radiation: ranges and shielding
- Quantifying damage:
 - Ionizing density & Linear Energy Transfer (LET)
 - Quality factor & radiation weighting factor
 - Dose equivalent, organ dose, effective dose
- The measured dose and personal dosimeters
- Time evolution of activation
- Activity A → dose rate
- The law of distance: point source and extended source
- Legal dose limits and "natural" exposure
- Direct and indirect damage of DNA
- Repairment mechanism & prediction of cancer mortality
- Summary of Radiation & Radioprotection rules

Consequences due to the long range of n & γ

- high energetic n needs large, massive shielding (iron, conrete)
 → expensive, needs space
- low energetic n like to backscatter from conrete walls
- → unwanted n background
- →(sometimes) leakage to radiologically uncontrolled areas

(→ increase shielding!)

 n & γ produce damage at electronics,
 ⇒ extra shielding around sensitive devices

lead mats as shielding against γ-radiation

Shielding of photons (the praxis)

 $I(x) = I_o e^{-\mu(E)x} \quad (*)$ Attenuation law only valid for monoenergetic photons and pencil beam

Corrections:

- 1) build-up of lower energetic photons high energetic photons are not absorbed but produce a shower of lower energetic photons (and electrons)
- → continuous energy loss of photons + angular spread
- → larger shielding required

Example: 14 cm Iron

- → shielding factor 40 instead of 350 after (*)
- 2) Contribution of scattered photons to primary beam
- →correction by geometric factor

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

Shielding of neutrons (1)

For monoenergetic neutrons: $I(x) = I_o e^{-\mu(E)x}$

μ strongly depends on energy and material

High energetic neutrons: > 20 MeV energy loss by scattering

→ dense material like iron

Medium energy neutrons: ~ 1 − 20 MeV most energy loss at light atoms due to recoil

→ moderation

number of collisions needed for 2 MeV n \rightarrow 0.025 eV (thermal):

at H: 18 at C: 114 at U: 2172

→ Concrete, Polyethylen contains lots of H! (HVT ~ 7 cm for 1 MeV neutrons in concrete)

More general: Energy transfer

only ~ 50 % of the energy is used for ionization, depends on energy and particle type

neutrons: no ionization at all but energy transfer by capture/absorption

→ averaged energy transferred per unit length to tissue

LET: Linear Energy transfer: $LET = \frac{\overline{dE}}{dl}$

LET ~ 200

→ High LET radiation

LET < 3.5

→ Low LET radiation

Quality factor

based on LET (nowadays):

LET (keV/cm) in H ₂ O	Q(L)
< 10	1
10 - 100	0.32 LET – 2.2
> 100	$300/\sqrt{LET}$

ICRP60, 1991

Dose equivalent: $H = Q D_T$

unit: Sv, 1 Sv = 100 rem

energy dose absorbed by tissue

For a mixed particle or particle energy field, Q is an average:

$$\overline{Q} = \frac{1}{D} \int Q(L) \frac{dD}{dL} dL$$

Dose equivalent is a more theoretical quantity!

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

PAUL SCHERRER INSTITUT

More practical: The organ dose H_T

(also called equivalent dose ("Äquivalentdosis"))

 $H_T = W_R D_T$ for the judgement of biological damage

 \mathbf{D}_{T} : energy dose averaged over organs, tissue

w_R: radiation weighting factor ≈ quality factor averaged used to represent relative biological effectiveness (RBE)

Organ Dependent Effects - Effective Dose E

Various organs react differently when irradiated with the same $H_{\scriptscriptstyle T}$.

 \rightarrow Effective Dose E = W_T H_T

 W_T = tissue weighting factors for different body parts:

gonads 0.08
breast, bone marrow, lung 0.12
colon, stomach 0.12
thyroid, liver 0.04
bone surface, skin, brain 0.01

sum of all organs (whole body) 1

If more than one organ is affected, sum over all contributions.

ICRP103

Q

Example: Incorporation of radioactive iodine \rightarrow thyroid gets H_T = 100 mSv. E = 100 mSv x 0.04 = 4 mSv

i.e. same effect as if the whole body were irradiated with 4 mSv.

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

PAUL SCHERRER INSTITUT

The measurement of dose

1) at a location (e.g. experimental hall, accelerator) Dosimeters are calibrated on the ICRU-sphere ϕ 30 cm, ρ = 1 g/cm³

- for high energetic radiation: measurement independent of orientation of radiation
 - → Ambient dose equivalent: H*(d), d = 10 mm unit: Sv

(H*(d) and H can differ by 50% due to back scattering & production of secondary particles in medium)

The measurement of dose

for low energetic particles: β < 2 MeV, γ < 15 keV, α measurement depends on angle relative to incident radiation
 → directional dose equivalent: H'(d,Ω), d = 0.07 mm (surface)

Measured doses are an estimate for doses @

- human body (d = 10 mm)
- skin (d = 0.07 mm)
- eyes (d = 3 mm)
- 2) at persons:

dosimeters are calibrated at phantoms

measures H_p′(0.07)

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

Examples for personal dosimeters

 β & γ radiation: $H_p(10)$, $H_p(0.07)$

Detector: 3 LiF (TLD700) (with different

covers)

(stores excitations = thermoluminescence)

 $H_p(10)$: 0.1 mSv bis 5 Sv $H_p(0.07)$: 1 mSv bis 5 Sv γ energy: 20 keV -3 MeV

Neutron radiation:

1 CR39-Detektor (plastic polymer)

+ 3 converters: PE, PE(Li), AI

Measurement of tracks produced by neutrons in converters

H_n(10): 0.5 mSv bis 5 Sv

Energy: thermal and 200 keV - 15 MeV

remarks: both types are also used for monitoring prompt radiation at PSI: ~ 100 distributed in the accelerator areal

Dose rate **D**

Dose rate **D** = dose/time often used unit: [Sv/h] naming: officially D

For all kind of doses D_T , H_T , E, H, $H^*(10)$, $H^*(0.07)$ one gets the average dose rate by dividing by exposure time

H*(10) = 1 mSv/h

Rules of Radioprotection: To reduce the dose

- → be fast!
- → work planning and preparation might help (praxis at nuclear power plants: training at a mock-up)
- → Distribution of work to several persons

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

Time evolution: Build-up and Decay of activation

Law of the radioactive decay:

$$N(t) = N(t_o) e^{-\lambda(t-t_o)}$$

no. of nuclei, which are in the sample at time t

 λ : decay constant $\lambda = \frac{\ln 2}{T_{1/2}}$

T_{1/2}: half-life

Definition of the activity: unit Bq

$$A(t) = -\frac{dN(t)}{dt} = \lambda N(t) = \lambda N_o e^{-\lambda t} = A_o e^{-\lambda t}$$

Specific activity: A/m [Bq/g]

example: $A(^{60}Co) < 1Bq/g \rightarrow below the value of free release (LE value)$

Build-up of activity

The simple case: 1 radioisotope Rate equation:

$$\frac{dN(t)}{dt} = P - \lambda N(t)$$

P: (constant) production rate

Solution of the differential equation

$$A(t) = P(1 - e^{-\lambda t})$$

$$t \to \infty : A \to P = A_{sat}$$

A_{sat}: saturation activity

For the same production rate P (i.e. same beam current): It is not possible to produce an activity $> A_{\rm sat}$

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

PAUL SCHERRER INSTITUT

Special case: short irradiation periode

i.e. $t_{irr} \ll T_{1/2}$ t_{irr} : irradiation time

$$A(t_{irr}) = P(1 - e^{-\lambda t_{irr}}) \cong P(1 - [1 - \lambda t_{irr}]) = P\lambda t_{irr}$$

- \rightarrow activity increases linear with irradiation time $t_{irr.}$
- → activity much smaller than A_{sat} for long-lived isotopes

Decay of A_{irr}=A(t_{irr}):

$$A(t_c) = A_{irr}e^{-\lambda t_c} \sim \frac{t_{irr}}{\uparrow} \left[1 - \frac{t_c}{T_{1/2}}\right]$$

$$t_c \ll T_{1/2}$$

t_c: cooling time

It takes much longer for decay, but

0,20 Short irradiation (⁶⁰Co)

0,15

0,00

0,05

0,00

1 2 3 4 5

time [years]

short-lived isotopes, i.e T_{1/2}=t_c/5 are completely decayed

Activity A → dose rate

For point source (e.g. a hot spot):

·)

conversion factor

Example: $A(^{60}Co) = 10^6 \text{ Bq}$

r = 10 cm

 \rightarrow H^* = 0.036 mSv/h

 \rightarrow = 36 μ Sv/h

Rule of radioprotection: Keep distance! $\gamma\text{-dose}$ conversion factor Γ_{H^*} (from the Swiss radioprotection regulation):

Nuclide	$\Gamma_{\mathrm{H}^{\star}}$ (mSv/h/GBq m²)	E _γ (MeV)
⁶⁰ Co	0.366	1.2, 1.3
²² Na	0.330	1.3
⁵⁴ Mn	0.126	0.83
⁷ Be	0.008	0.48
¹⁵² Eu	0.179	many
¹⁵⁴ Eu	0.185	1.3 (35%), 1.0 (30%)

values depend on energy of γ (and sometimes on follow-up products)

 ϕ_o (1/cm²/s)

1) Determine γ -flux $\phi_P(x)$:

$$\Phi_P(x) = \frac{\Phi_o}{4} \ln \left(1 + \frac{a^2}{4d^2} \right)$$

$$H^* = F_{H^*} \phi_P$$

flux-to-dose conversion factors

PAUL SCHERRER INSTITUT

Examples for activation

Short-time irradiation: 20 days 100 nA protons of 72 MeV on

316L: 40 mSv/h in 10 cm distance,

12 h cooling

Co content: 0.16%

→ Activation of steel increases with Co-content!

Long-time irradiation: 20 years 100 nA protons of 72 MeV on

Cu: 24 mSv/h
Magnet-Fe: 140 mSv/h
Graphite: 1.3 mSv/h
in 10 cm distance after 64 h cooling

- → It is important to consider later activation already in the design phase.
- → Choose materials with lower activation, if possible.

Doses are calculated with MCNPX/Cinder90, typically within a factor 2 agreement to the measurement

Examples for activation: Ring cyclotron at PSI

compiled by M. Seidel from 30 data points

For maintenance/repairment:
good planning of work procedure
→ 50 -300 µSv per mission
and person

In 2011/2012 shutdown:
total collected dose: 40.5 mSv
participating people: 149
→ in average: 0.27 mSv

highest personal dose: 3.2 mSv

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

When is a material radioactive?

1. Ambient dose equivalent:

$$H^*(10) > 0.1 \mu Sv/h$$

OR

2. Activity: decays/sec, unit: Bq

$$\sum_{i} \frac{A_{i}}{R_{i}} > 1 \qquad \text{(Sum rule)}$$

A_i: specific activity [Bq/g]

R_i: exemption limit

given in the radioprotection regulation

OR

- 3. Surface contamination:
 - > 1 Bq/cm² in case of unidentified β and γ -emitters
 - > 0.1 Bq/cm² in case of unidentified α -emitters
 - > CS-value (given in regulation) for specific isotope

PAUL SCHERRER INSTITUT

Effective doses for the population

Terrestical source:

Cosmic rays,

food,

natural isotopes in soil and air

Worldwide average: 2.4 mSv

Kanada: 1.8
Great Britain: 2.2
Germany: 2.2
USA: 3.0
Switzerland: 4.3
India (Cerala Coast): 12.5
China (YangJiang): 6.3
Worldwide range: 1 - 10

CONSIDERABLE VARIATION

25 % < 1 mSv65 % < 3 mSv

• 10 % > 3 mSv

+ medical treatment: 0.5 - 3 mSv

Medical exposures:

examination	mSv
СТ	
- Head	2
- Spine	6
- Chest	7
- Abdomen	15
x-ray	
- Dental	0.005
- Chest	0.1
- Spine	1.5

treatment of tumors:

20 – 60 Sv

DNA-Repairment (very simplified)

Bases:

Thymin

Adenin is a pair

- small parts are replaced in minutes
- large parts and double-strand repairment can take hours

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

Some numbers: Effective dose and cell defects

Average effective dose in CH: 5.6 mSv/year = 15 μ Sv/day produces ~ 4 10¹⁴ radicals/day in the "standard" human

Human has ~10¹³ cells → 40 defects/cell per day
most of them get repaired
10⁻² -10⁻³/cell faulty or unrepaired
→ in 2.5 to 25 days 1 cell has a persistent defect

Cell reproduction mechanism:

- 1 DNA/cell
- DNA has ~3 109 base pairs
- replication of the DNA in 1-30 days
 - → 1 -10 spontaneous mutations (important for the evolution of life)
 - → in < 30 days 1 cell has a persistent defect →

Damaged cells should declare cell death (Apoptosis).

Summary of Radiation

Prompt radiation: all kind of particles when beam on

important: photons & high energetic neutrons shielding: high Z material against photons

neutrons: iron & concrete

Residual radiation: beam off,

buildup depends on the irradiation history

important: γ-radiation

dose decreases with time and distance

Definition of several doses: purpose of quantifying the damage

most damaging are heavy particles

The measured dose H*(10) should represent the dose in the human.

cancer mortality: +5% /Sv within 40 years

"natural" risk: 25 %

Summary of Radioprotection rules: ALARA

As Low As Reasonable Achievable

If possible,

- use (additional) shielding
- use remotely operating devices
- reduce time with work planning
- enter after reasonable cooling time
- keep distance (particularly from hot spots)
- use protection clothes against contamination of skin
- use protective mask and breathing apparatus to avoid
- inhalation (particularly tritium, when opening vacuum systems or entering closed rooms)
- exposures can be significantly reduced, if considered in design phase

