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Ionizing radiation

ionizing = direct production of charge (electrons, ions)
particles: ,, , e, p, + ..... 

source

medium,
e.g. air

Ionization chamber:

amperemeter
= measurement,
proportional to radiation 

current

Exposure („ion dose“) Di = produced charge/mass in AIR, unit: [A s/kg] = [C/kg], 
old unit: „Röntgen“ = R = 2.58 x 10-4 C/kg

= basic quantity and definition of radioactivity in the past
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Radiation: the ability to damage

(significant) energy is absorbed by tissue, bones 
(and other material) 

 damage

1 kg

absorbed energy: 1 J

1 Gy

Energy dose: 
M
EDE 


 unit: J   = 1 Gray [Gy], 1 Gy = 100 rd (rad)

material
dependent !

kg

works also for neutrons!
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Prompt radiation: during accelerator operation

Radiation at accelerators

Residual radiation: after accelerator operation,
important during maintenance,

depends on irradiation before and time passed

beam on:

beam off:

cooling time 

primary beam

secondary 
beam/particles,
shower

material
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Prompt radiation
• production of almost any particle (dependent on energy of primary beam),
• lots of nuclear reactions,
• huge number of particles produced

Radioprotection:
- control of entries (closed doors): security chain              

beam permit: 
security chain closed

controlled access:
on notice, using keys

free access



Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

Measurement of prompt radiation

• inside the accelerator facility:

• outside of the accelerator facility:

active controlling 

passive controlling 

neutrons

photons
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half value thickness: HVT

= Transmission(x)/



x

particle
flux 

(x= HVT) 

 



thickness shielding

ions, D, p

HVT HVT

HVT
HVT

neutrons

Radioprotection: Shielding

charged particles are stopped earlier,
 neutrons, photons are left

x1 , x3 averaged range
x2 , x4 maximum range

HVT

only qualitative picture:
Details depend on energy and
shielding materials!
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• high energetic n needs large, massive shielding (iron, conrete)
 expensive, needs space

• low energetic n like to backscatter from conrete walls
 unwanted n background
(sometimes) leakage to radiologically uncontrolled areas 

( increase shielding!)

• n & 

 

produce damage at electronics,
 extra shielding 

around sensitive devices

Consequences due to the long range of n & 

lead mats as shielding
against -radiation
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2. Heterogeneity: Physical, Chemical, and Biological 
Considerations Journal of the ICRU (2011) 11(2): 17-3
Report 86: Quantification and Reporting of Low-Dose 
and other Heterogeneous Exposures

Shielding of photons (the theory)
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shielding thickness x (cm)
HVT d1/10

I(x)/Io

   xE
oIxI  e

: linear attenuation coefficient
: mass attenuation coefficient,

~ Z2 for E > 10 MeV

0.1

Example: E= 100 MeV
HVT for concrete: 12.5 cm, Iron: 2.1 cm, Pb: 0.64 cm

high Z material
works best
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Shielding of photons (the praxis)

   xe E
oIxI 

point
source

shielding

2) Contribution of scattered
photons to primary beam

correction by geometric
factor

Attenuation law                                     (*)
only valid for monoenergetic photons and pencil beam 
Corrections:
1) build-up of lower energetic photons
high energetic photons are not absorbed but produce a shower of
lower energetic photons (and electrons) 
 continuous energy loss of photons + angular spread


 

larger shielding required

Example: 14 cm Iron


 

shielding factor 40 instead 
of 350 after (*)
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Shielding of neutrons (1)

For monoenergetic neutrons:    xe E
oIxI 



 

strongly depends on energy and material

High energetic neutrons: > 20 MeV
energy loss by scattering
 dense material like iron

Medium energy neutrons: ~ 1 – 20 MeV
most energy loss at light atoms due to recoil
 moderation
number of collisions needed for 2 MeV n  0.025 eV (thermal):
at H: 18
at C: 114
at U: 2172
 Concrete, Polyethylen contains lots of H ! 

(HVT ~ 7 cm for 1 MeV neutrons in concrete)
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Shielding of neutrons (2)

Low energetic neutrons: ~ 0.025 eV (thermal)
absorption, often (n,)-reaction, called capture 
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neutron absorption often increases -background
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Example: Shielding for high-energetic neutrons

Sandwich: stacking of different materials

concrete

Fe

n-source
E~ 100 MeV

borated 
concrete

Pb

Pb (and borated concrete)
is usually omitted
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Residual activation

Production of radioactive nuclei due to prompt radiation, e.g.:
- knock-out of neutrons, protons

radioactive decay

neutron capture

prompt

16O

proton

n 15O e+


- neutron capture

15O 15N + e+ + e

+ decay:

59Co + e- + e
59Fe

- decay:

often accompanied by
-radiation

(p  n + e+ + e )

(n  p + e- + e )
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Nuclide chart

protons

neutrons

color code:

stable





n/p rad.
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-Emission

60Co            60Ni*           60Ni
 2 

excited 
state

ground
state

137mBa               137Ba


metastable (Isomer):
excited state, 
long life time

typical E

 

MeV
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no. of protons

no. of neutrons

stable 

Nuclide chart
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-Decay



 

= He2+

heavy nuclei are often -Emitters,
typical E

 



 

8 MeV

Energy [MeV]

ra
ng

e 
[c

m
]

Range of -particles in air

R = 2.5 cm for E

 

MeV
 no radiation hazard
except for incorporation
(no eating in radiological 
controlled areas!)
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Range of -particles (e-, e+)

High Z materials like Pb
stop ´s effectively
but produce bremsstrahlung
(= low energetic photons)

typical -energy

-radiation:
- ~ 1 cm into tissue (= skin)
- hazard to eyes  use glasses !
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Shielding against residual activation

Particles like 

 

and electrons have much lower energy:
: < 3 MeV
e-/ e+: 1-2 MeV (max. -energy)
: ~ 4 – 8 MeV






paper 4 mm Al 4 cm Pb

1/10

low Z material
to avoid massive 
bremsstrahlung

high Z material,
high density
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Charged particles & ´s ionize atoms
 exposure as measure



dQ/dx
(e/cm3)

Energy [MeV]

Ionizing density

low high density
 more damage

, Air

e-, Air

Ionizing density

p,Air
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http://userpage.chemie.fu- 
berlin.de/~abram/demo_radio/1280_e/ 
versuch_1/vers1_2_1.htm

only ~ 50 % of the energy is used for ionization,
depends on energy and particle type

neutrons: no ionization at all but energy transfer by capture/absorption

 averaged energy transferred per unit length to tissue

LET: Linear Energy transfer:
dl
dELET  unit:









m

keV


More general: Energy transfer

LET  ~ 200

LET < 3.5

 Low LET radiation

 High LET radiation
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Damage to the tissue

simplified cell structure

 radiation
-particles

normal cell damaged cell

Empirical observation: 
at identical absorbed doses (e.g., 2 Gy) -particles show a
20-times more damaging biological effect than , .

 introduction of a quality factor
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Quality factor

based on LET (nowadays):

LET (keV/cm) in H2O Q(L)
< 10 1
10 - 100 0.32 LET – 2.2
> 100 LET/300

Dose equivalent: H = Q DT
unit: Sv, 1 Sv = 100 rem

energy dose 
absorbed  by tissue

For a mixed particle or particle energy field, Q is an average:

  dL
dL
dDLQ

D
Q 

1

ICRP60, 1991

Dose equivalent is a more theoretical quantity!



Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

More practical: The organ dose HT

TRT DwH 
DT : energy dose averaged over organs, tissue

wR : radiation weighting factor quality factor averaged
used to represent relative biological effectiveness (RBE)



Radiation type WR

Photons, all energies 1
Electrons, muons, all 
energies 1

Protons and charged pions 2
Alpha particles, fission 
fragments, heavy ions 20

according to ICRP103 (2007)

for the judgement of biological damage

(also called equivalent dose („Äquivalentdosis“))

1E-6     1E-4       0.01      1          100       1E4
Neutron Kinetic Energy (MeV)
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5
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Various organs react differently when irradiated with the same HT . 
 Effective Dose E = wT HT

wT = tissue weighting factors for different body parts:

gonads 0.08 
breast, bone marrow, lung 0.12 

colon, stomach 0.12 
thyroid, liver 0.04 

bone surface, skin, brain 0.01

sum of all organs (whole body) 1
If more than one organ is affected, sum over all contributions.

Example: Incorporation of radioactive iodine  thyroid gets HT = 100 mSv. 
E = 100 mSv x 0.04 = 4 mSv 
i.e. same effect as if the whole body were irradiated with 4 mSv.

Organ Dependent Effects  – Effective Dose E 

ICRP103
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The measurement of dose

• for high energetic radiation:
measurement independent of orientation of radiation

 Ambient dose equivalent: H*(d), d = 10 mm

( H*(d) and H can differ by 50% due to back scattering 
& production of secondary particles in medium)

Dosimeters are calibrated on the ICRU-sphere o 30 cm, 

 

= 1 g/cm3

d

equivalent 
to muscles & soft tissue
(76% O2 , 11% C, 
10% H, 3% N2 )

radiation

1) at a location (e.g. experimental hall, accelerator)

unit: Sv



Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

• for low energetic particles: 

 

< 2 MeV, 

 

< 15 keV, 
measurement depends on angle relative to incident radiation
 directional dose equivalent: H´(d,), d = 0.07 mm (surface)

Measured doses are an estimate for doses @ 
• human body (d = 10 mm) 
• skin (d = 0.07 mm)
• eyes (d = 3 mm)

2) at persons:
dosimeters are calibrated at phantoms

The measurement of dose
30

 c
m

15 cm 1.9 cm

body leg finger

finger dosimeter

measures 
Hp ́ (0.07)
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& 

 

radiation: Hp (10), Hp (0.07) 
Detector: 3 LiF (TLD700) (with different 
covers)
(stores excitations = thermoluminescence) 
Hp (10): 0.1 mSv bis 5 Sv 
Hp (0.07): 1 mSv bis 5 Sv


 

energy: 20 keV -3 MeV 

Examples for personal dosimeters

Neutron radiation:
1 CR39-Detektor (plastic polymer)
+ 3 converters: PE, PE(Li), Al 
Measurement of tracks produced by neutrons in 
converters
Hp (10): 0.5 mSv bis 5 Sv 
Energy:  thermal and 200 keV - 15 MeV 

remarks: both types are also used for monitoring prompt radiation
at PSI: ~ 100 distributed in the accelerator areal
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Dose rate D = dose/time
often used unit: [Sv/h] 

naming: officially D  
.

H*(10) = 1 mSv/h

0.25 mSv

0.5  mSv

Rules of Radioprotection: To reduce the dose 


 

be fast!


 

work planning and preparation might help
(praxis at nuclear power plants: training at a mock-up)

 Distribution of work to several persons

Dose rate D

For all kind of doses
DT , HT , E, H, H*(10), H*(0.07)
one gets the average dose rate by 
dividing by exposure time
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Time evolution: Build-up and Decay of activation

   tN
dt

tdNtA 
)(

0 5 10 15 20 25 30 35 40 45 50 55 60

0.0
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0.4

0.6

0.8

1.0
Activity of 60Co

A/
A sa

t

time [years]

     ott
o etNtN  

2/1

2ln
T



(T1/2 = 5.6 y)Law of the radioactive decay:

Definition of the activity: unit Bq

t
o

t eAe    oN 

no. of nuclei, which are 
in the sample at time t

: decay constant

T1/2 : half-life

example: A(60Co) < 1Bq/g  below the value of free release (LE value)

Specific activity: A/m [Bq/g]

½ after
tc =T1/2

tc
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The simple case: 1 radioisotope

)()( tNP
dt

tdN 

 
sat

t

APAt
ePtA


 

:
1)( 

Asat : saturation activity

Build-up of activity 

Solution of the differential equation

P: (constant) production rate

Rate equation:

0 5 10 15 20 25 30 35 40 45 50 55 60

0.0

0.2

0.4

0.6

0.8

1.0
Activity of 60Co

A/
A sa

t

time [years]

(T1/2 = 5.6 y)

~ 5 T1/2 
to reach Asat

~ 5 T1/2
for decay to 
A ~ 0

For the same production rate P (i.e. same beam current):
It is not possible to produce an activity > Asat
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Special case: short irradiation periode

     irrirr
t

irr tPtPePtA irr    111)(

i.e. tirr << T1/2

 activity increases linear with irradiation time tirr,
 activity much smaller than Asat for long-lived isotopes

Decay of Airr =A(tirr ):

  







 

2/12/1

1~
T
t

T
teAtA cirrt

irrc
c

tc : cooling time

tirr : irradiation time

0 1 2 3 4 5
0,00

0,05

0,10

0,15

0,20 Short irradiation (60Co)

A/
A sa

t

time [years]

tc << T1/2

short-lived isotopes, i.e T1/2 =tc /5 are completely decayed 

It takes much longer for decay, but
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Relevant isotopes

The isotope with the 
largest contribution 
to the -dose rate 
changes with time.

talk from L. Ulrici, 
CERN

Proton irradiation of copper

Nuclide inventory 
Depends also on the
Irradiation time 



Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

For point source 
(e.g. a hot spot):

-dose 
conversion factor

2*
*

r
AH H

.

Activity A  dose rate

-dose conversion factor H*
(from the Swiss radioprotection regulation):

Nuclide H* (mSv/h/GBq m2) E

 

(MeV)

60Co 0.366 1.2, 1.3

22Na 0.330 1.3

54Mn 0.126 0.83

7Be 0.008 0.48

152Eu 0.179 many

154Eu 0.185 1.3 (35%), 
1.0 (30%)

values depend on energy of 
(and sometimes on follow-up products)

Example: A(60Co) = 106 Bq

r = 10 cm
 H* = 0.036 mSv/h 
 = 36 Sv/h

Rule of radioprotection:
Keep distance! 
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Dose rates at extended objects

only very simple geometries can be solved analytically
in general: very complicated!
use ray trace programms or Monte Carlo simulations

Simple example: large plane

d
1) Determine -flux P (x):

flux at surface


 

(1/cm2/s)

  










 2

2

4
1ln

4 d
ax o

P

2) P  H*

H* = FH* P

flux-to-dose conversion factors

a
a

x
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Flux-to-dose conversion factors FH*

H* = FH* P

works also for prompt radiation!

The harder the radiation,
the larger the dose
(more damage)
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Comparison point source – plane source 
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distance (cm)

 point source
 plane source 200 cm x 200 cm
 plane source 30 cm x 30 cm

in 1 m distance:
point:       0.0001
30x30:     0.004
200x200: 0.075

At larger distance (d > 2 a) from the plane source it behaves like 1/d2.  
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Examples for activation

 It is important to consider later activation already in the design phase.
 Choose materials with lower activation, if possible.  

Long-time irradiation: 20 years 100 nA protons of 72 MeV on 
Cu:                24 mSv/h
Magnet-Fe: 140 mSv/h
Graphite:       1.3 mSv/h

Short-time irradiation: 20 days 100 nA protons of 72 MeV on
316L: 40 mSv/h

in 10 cm distance
after 64 h cooling

Co content: 0.16%
 Activation of steel increases with Co-content !

in 10 cm distance,
12 h cooling

Doses are calculated with MCNPX/Cinder90,
typically within a factor 2 agreement to the measurement
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Examples for activation: Ring cyclotron at PSI

mSv/h

compiled by M. Seidel from 30 data points

For maintenance/repairment:
good planning of work procedure
 50 -300 Sv per mission 

and person

In 2011/2012 shutdown:
total collected dose: 40.5 mSv
participating people: 149
 in average: 0.27 mSv

highest personal dose: 3.2 mSv
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When is a material radioactive?

1. Ambient dose equivalent:

H*(10) > 0.1 Sv/h

OR

OR

3. Surface contamination:
• > 1 Bq/cm2 in case of unidentified - and -emitters 
• > 0.1 Bq/cm2 in case of unidentified  -emitters
• > CS-value (given in regulation) for specific isotope

2. Activity: decays/sec, unit: Bq

1
i i

i

R
A Ai : specific activity [Bq/g]

Ri : exemption limit
given in the radioprotection regulation

(Sum rule)
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for workers:  20 mSv/year
150 mSv for eye lense
500 mSv for skin (on 1cm2), hands, feet

aircraft personal: get ~ 3 mSv/year 

Legal dose limits

Flight from Paris to Rio de Janeiro and back: ~ 0.1 mSv/h

0.1

1

3

5

do
se

 ra
te

 (
S

v/
h) dose rate

flight
hight

Geograhic latitude

for public:      1  mSv/year
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Effective doses for the population

Medical exposures:
examination mSv
CT
- Head 2
- Spine 6
- Chest 7
- Abdomen 15
x-ray
- Dental 0.005
- Chest 0.1
- Spine 1.5

treatment of tumors:
20 – 60 Sv

Terrestical source: 
Cosmic rays,
food, 
natural isotopes in soil and air

Worldwide average: 2.4 mSv
Kanada:                     1.8
Great Britain:              2.2
Germany:                   2.2
USA:                          3.0
Switzerland:               4.3
India (Cerala Coast): 12.5
China (YangJiang):    6.3
Worldwide range:       1  – 10 

CONSIDERABLE VARIATION
• 25 % < 1 mSv
• 65 % < 3 mSv
• 10 % > 3 mSv

+ medical treatment: 0.5 – 3 mSv
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Damage mechanism

Direct action:
damage of the DNA
 seldom (DNA ist very small)

Indirect action:
interaction of the 
radiation with the cell water
 dissoziation of H2 O
 production of radicals
 very reactiv
 diffusion to DNA
 damage of DNA & other

molecules

cell: 10 – 50 m

DNA, 
in the cell nucleus

30
 n

m

ra
dia

tio
n
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The time scale

Chemical damage
 free radicals

10-10 s

Biological Molecular
damage of
• proteins
• Membrane
• DNA

Biological damage
• cells
• tissue

s to 
hours

hours
to years

repairment
min to
hours

cell death
(Apoptosis)

cancer years
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DNA-Repairment (very simplified)

defect
detected

cutting out

replace reinsert

Bases:

Cytosin      Guanin   is a pair

Thymin       Adenin  is a pair

Base damage (highest probability):

• small parts are replaced 
in minutes

• large parts and double-strand
repairment can take hours 
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Average effective dose in CH:
5.6 mSv/year  = 15 Sv/day 
produces ~ 4 1014 radicals/day in the „standard“ human

Human has ~1013 cells  40 defects/cell per day
most of them get repaired
10-2 -10-3/cell faulty or unrepaired
 in 2.5 to 25 days 1 cell has a persistent defect

Cell reproduction mechanism:
• 1 DNA/cell
• DNA has ~3 109 base pairs
• replication of the DNA in 1-30 days
 1 -10 spontaneous mutations (important for the evolution of life)
 in < 30 days 1 cell has a persistent defect

Some numbers: Effective dose and cell defects

Damaged cells should declare cell death (Apoptosis).
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Prediction of cancer mortality

very difficult!

depends on many parameters:
• cell cycle
• kind of cell
• Chemicals can increase
or decrease the effect

• Chemicals can prevent 
repairment mechanism

• O2 content
• pH value in cell
• human´s age
• exposure time and pattern
• spatial distribution of dose

human´s age (years)

m
or

ta
lit

y/
ye

ar
 (%

)

time of
exposure spontaneous

rate

time of
exposure spontaneous

rate

m
or

ta
lit

y/
ye

ar
 (%

)

Leukemia

other cancer

stochastic effect:
+5% cancer mortality/Sv
within 40 years

latency time
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Summary of Radiation

Prompt radiation: all kind of particles when beam on
important: photons & high energetic neutrons
shielding: high Z material against photons
neutrons: iron & concrete

Residual radiation: beam off, 
buildup depends on the irradiation history
important: -radiation
dose decreases with time and distance

Definition of several doses: purpose of quantifying the damage
most damaging are heavy particles 
The measured dose H*(10) should represent the dose in the human.

cancer mortality: +5% /Sv within 40 years
„natural“ risk: 25 % 
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Summary of Radioprotection rules: ALARA

As Low As Reasonable Achievable

If possible,
• use (additional) shielding
• use remotely operating devices
• reduce time with work planning
• enter after reasonable cooling time
• keep distance (particularly from hot spots)
• use protection clothes against
contamination of skin

• use protective mask and breathing
apparatus to avoid
- inhalation (particularly tritium, when
opening vacuum systems or entering 
closed rooms)

• exposures can be significantly reduced,
if considered in design phase
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