

Paul Scherrer Institut

Wir schaffen Wissen – heute für morgen

Radiation & Radiation protection

Daniela Kiselev

- Definition of radioactive radiation
- Prompt radiation
- Shielding against photons & neutrons
- Residual radiation
- α, β, γ radiation: ranges and shielding
- Quantifying damage:
 - Ionizing density & Linear Energy Transfer (LET)
 - Quality factor & radiation weighting factor
 - Dose equivalent, organ dose, effective dose
- The measured dose and personal dosimeters
- Time evolution of activation
- Activity A \rightarrow dose rate
- The law of distance: point source and extended source
- Legal dose limits and "natural" exposure
- Direct and indirect damage of DNA
- Repairment mechanism & prediction of cancer mortality
- Summary of Radiation & Radioprotection rules

Ionizing radiation

ionizing = direct production of charge (electrons, ions) particles: $\alpha, \beta, \gamma, e, p, \pi + \dots$

amperemeter = measurement, proportional to radiation

Exposure ("ion dose") D_i = produced charge/mass in AIR, unit: [A s/kg] = [C/kg], old unit: "Röntgen" = $R = 2.58 \times 10^{-4} C/kg$

= basic quantity and definition of radioactivity in the past

Prompt radiation: *during* accelerator operation

material

beam off: Residual radiation: *after* accelerator operation, important during maintenance, depends on irradiation before and time passed ↑ cooling time

Prompt radiation

- production of almost any particle (dependent on energy of primary beam),
- lots of nuclear reactions,
- huge number of particles produced

Radioprotection:

- control of entries (closed doors): security chain

Measurement of prompt radiation

• inside the accelerator facility:

• outside of the accelerator facility:

passive controlling

active controlling

neutrons

photons

Radioprotection: Shielding

half value thickness: HVT ϕ (x= HVT) $/\phi_o = 0.5$

 x_1, x_3 averaged range x_2, x_4 maximum range

only qualitative picture: Details depend on energy and shielding materials!

- high energetic n needs large, massive shielding (iron, conrete)
 → expensive, needs space
- low energetic n like to backscatter from conrete walls
- \rightarrow unwanted n background

PAUL SCHERRER INSTITU

- \rightarrow (sometimes) leakage to radiologically uncontrolled areas
 - $(\rightarrow$ increase shielding!)
- n & γ produce damage at electronics,
 - → extra shielding around sensitive devices

lead mats as shielding against γ -radiation

PAUL SCHERRER INSTITUT

Shielding of photons (the theory)

PAUL SCHERRER INSTITU

Shielding of photons (the praxis)

Attenuation law $I(x) = I_o e^{-\mu(E)x}$ (*) only valid for monoenergetic photons and pencil beam

Corrections:

1) build-up of lower energetic photons

high energetic photons are not absorbed but produce a shower of lower energetic photons (and electrons)

- \rightarrow continuous energy loss of photons + angular spread
- \rightarrow larger shielding required

Example: 14 cm Iron

- → shielding factor 40 instead of 350 after (*)
- 2) Contribution of scattered photons to primary beam
- →correction by geometric factor

Shielding of neutrons (1)

For monoenergetic neutrons: $I(x) = I_o e^{-\mu(E)x}$

 $\boldsymbol{\mu}$ strongly depends on energy and material

High energetic neutrons: > 20 MeV energy loss by scattering → dense material like iron

Medium energy neutrons: $\sim 1 - 20 \text{ MeV}$

most energy loss at light atoms due to recoil

\rightarrow moderation

number of collisions needed for 2 MeV n \rightarrow 0.025 eV (thermal): at H: 18

- at C: 114
- at U: 2172
- → Concrete, Polyethylen contains lots of H ! (HVT ~ 7 cm for 1 MeV neutrons in concrete)

Low energetic neutrons: ~ 0.025 eV (thermal) absorption, often (n,γ) -reaction, called capture

neutron absorption often increases y-background

Production of radioactive nuclei due to prompt radiation, e.g.:

- knock-out of neutrons, protons

$$^{15}O \longrightarrow ^{15}N + e^+ + v_e$$

(p \rightarrow n + e⁺ + v_e)

- neutron capture

 β^{-} decay:

R+ decay.

⁵⁹Fe
$$\longrightarrow$$
 ⁵⁹Co + e⁻ + \overline{v}_{e}
(n \rightarrow p + e⁻ + \overline{v}_{e})

often accompanied by γ -radiation

Nuclide chart

pr	oton	IS																	
10							Ne-16 2p	Ne-17 β⁺	Ne-18 β⁺	Ne-19 β⁺	Ne-20 90,48%	Ne-21 0,27%	Ne-22 9,25%	Ne-23 β-	Ne-24 β-	Ne-25 β-	Ne-26 β⁻	Ne-27 β⁻	Ne-28 β-
9							F-15 p	F-16 p	F-17 β+	F-18 β⁺	F-19 100%	F-20 β⁻	F-21 β⁻	F-22 β⁻	F-23 β⁻	F-24 β⁻	F-25 β⁻	F-26 β⁻	F-27 β⁻
8					O-12 2p	O-13 β⁺	0-14 β⁺	O-15 β⁺	O-16 99,757%	O-17 0,038%	O-18 0,205%	O-19 β⁻	O-20 β⁻	O-21 β⁻	0-22 β⁻	0-23 β⁻	0-24 β⁻		
7				N-10 p	N-11 P	N-12 β⁺	N-13 β⁺	N-14 99,636%	N-15 0,364%	N-16 β⁻	N-17 β⁻	N-18 β⁻	N-19 β⁻	N-20 β⁻	N-21 β⁻	N-22 β⁻	N-23 β⁻		
6			C-8 2p	C-9 β⁺	C-10 β⁺	C-11 β⁺	C-12 98,93%	C-13 1,07%	C-14 β⁻	C-15 β⁻	C-16 β⁻	C-17 β⁻	C-18 β⁻	C-19 β⁻	C-20 β⁻	C-21 n	C-22 β⁻		
5			В-7 р	B-8 β⁺	В-9 р	B-10 19,9%	B-11 80,1%	B-12 β-	B-13 β-	B-14 β⁻	B-15 β-	B-16 n	B-17 β-	B-18 n	B-19 β-				
4			Be-6 2p	Be-7 ɛ	Be-8 α	Be-9 100%	Be-10 β-	Be-11 β⁻	Be-12 β-	Be-13 n	Be-14 β⁻					color code:			
3		Li-4 P	Li-5 p	Li-6 7,59%	Li-7 92,41%	Li-8 β⁻	Li-9 β⁻	Li-10 n	Li-11 β-								st	able	
2		He-3 0,000134%	He -4 99,999866%	He-5 n	He-6 β⁻	He-7 n	He-8 β⁻	He-9 n	He-10 2n								β	_	
1	H-1 99,9885%	H-2 0,0115%	Н-З β⁻	H-4 n	H-5 2n	H-6 3n	H-7 2n										β	+	
		n-1 β⁻															n/	′p ra	d.
0		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	neu	utror	IS

PAUL SCHERRER INSTITUT

α -Decay

R = 2.5 cm for $E_{\alpha} \sim 4$ MeV \rightarrow no radiation hazard except for incorporation (no eating in radiological controlled areas!) heavy nuclei are often α -Emitters, typical E_{α} ~ 4 – 8 MeV

Range of β -particles (e-, e+)

β-radiation:

- ~ 1 cm into tissue (= skin)
- hazard to eyes \rightarrow use glasses !

High Z materials like Pb stop β 's effectively but produce bremsstrahlung (= low energetic photons)

Shielding against residual activation

Particles like γ and electrons have much lower energy: γ : < 3 MeV e⁻/ e⁺: 1-2 MeV (max. β -energy) α : ~ 4 – 8 MeV

Ionizing density

only ~ 50 % of the energy is used for ionization, depends on energy and particle type

neutrons: no ionization at all but energy transfer by capture/absorption

 \rightarrow averaged energy transferred per unit length to tissue

Damage to the tissue

Empirical observation:

at identical absorbed doses (e.g., 2 Gy) α -particles show a 20-times more damaging biological effect than β , γ .

 \rightarrow introduction of a quality factor

based on LET (nowadays):

LET (keV/cm) in H ₂ O	Q(L)	
< 10	1	
10 - 100	0.32 LET – 2.2	
> 100	$300/\sqrt{LET}$	

ICRP60, 1991

Dose equivalent: $H = Q D_T$

unit: Sv, 1 Sv = 100 rem

energy dose absorbed by tissue

For a mixed particle or particle energy field, Q is an average:

$$\overline{Q} = \frac{1}{D} \int Q(L) \frac{dD}{dL} dL$$

Dose equivalent is a more theoretical quantity!

More practical: The organ dose $H_{\rm T}$

(also called equivalent dose ("Äquivalentdosis"))

 $H_T = w_R D_T$ for the judgement of biological damage

 D_T : energy dose averaged over organs, tissue

w_R: radiation weighting factor ≈ quality factor averaged used to represent relative biological effectiveness (RBE)

PAUL SCHERRER INSTITUT

Various organs react differently when irradiated with the same H_T .

 \rightarrow Effective Dose E = w_T H_T

 w_T = tissue weighting factors for different body parts:

	gonads	0.08					
	breast, bone marrow, lung	0.12					
	colon, stomach	0.12					
	thyroid, liver	0.04					
	bone surface, skin, brain	0.01					
	sum of all organs (whole body)	1					
12	an one organ is affected sum over all contributions						

If more than one organ is affected, sum over all contributions.

Example: Incorporation of radioactive iodine \rightarrow thyroid gets H_T = 100 mSv. E = 100 mSv x 0.04 = 4 mSv

i.e. same effect as if the whole body were irradiated with 4 mSv.

1) at a location (e.g. experimental hall, accelerator) Dosimeters are calibrated on the ICRU-sphere ϕ 30 cm, ρ = 1 g/cm³

equivalent to muscles & soft tissue (76% O_2 , 11% C, 10% H, 3% N_2)

- for high energetic radiation: measurement independent of orientation of radiation
 - \rightarrow Ambient dose equivalent: H*(d), d = 10 mm unit: Sv

(H*(d) and H can differ by 50% due to back scattering & production of secondary particles in medium)

- for low energetic particles: β < 2 MeV, γ < 15 keV, α measurement depends on angle relative to incident radiation
 - \rightarrow directional dose equivalent: H'(d, Ω), d = 0.07 mm (surface)

Measured doses are an estimate for doses @

- human body (d = 10 mm)
- skin (d = 0.07 mm)
- eyes (d = 3 mm)

2) at persons:

dosimeters are calibrated at phantoms

Examples for personal dosimeters

β & γ radiation: H_p(10), H_p(0.07) Detector: 3 LiF (TLD700) (with different covers) (stores excitations = thermoluminescence) H_p(10): 0.1 mSv bis 5 Sv H_p(0.07): 1 mSv bis 5 Sv γ energy: 20 keV -3 MeV

Neutron radiation:

1 CR39-Detektor (plastic polymer) + 3 converters: PE, PE(Li), Al Measurement of tracks produced by neutrons in converters $H_p(10)$: 0.5 mSv bis 5 Sv Energy: thermal and 200 keV - 15 MeV

remarks: both types are also used for monitoring prompt radiation at PSI: ~ 100 distributed in the accelerator areal

Dose rate **D**

Dose rate D = dose/timeoften used unit: [Sv/h] naming: officially D

For all kind of doses D_T , H_T , E, H, H*(10), H*(0.07) one gets the average dose rate by dividing by exposure time

H*(10) = 1 mSv/h

Rules of Radioprotection: To reduce the dose

- \rightarrow be fast!
- → work planning and preparation might help (praxis at nuclear power plants: training at a mock-up)
- \rightarrow Distribution of work to several persons

Time evolution: Build-up and Decay of activation

$$A(t) = -\frac{dN(t)}{dt} = \lambda N(t) = \lambda N_{o}e^{-\lambda t} = A_{o}e^{-\lambda t}$$

Specific activity: A/m [Bq/g]

example: $A(^{60}Co) < 1Bq/g \rightarrow$ below the value of free release (LE value)

Build-up of activity

The simple case: 1 radioisotope Rate equation:

$$\frac{dN(t)}{dt} = P - \lambda N(t)$$

P: (constant) production rate

Solution of the differential equation $A(t) = P(1 - e^{-\lambda t})$ $t \to \infty : A \to P = A_{sat}$

A_{sat}: saturation activity

Activity of ${}^{60}Co(T_{1/2} = 5.6 \text{ y})$ 1.0-~ 5 T_{1/2} **8.0** for decay to $\mathbf{AA}_{\mathsf{sat}}$ 0.6 5 T_{1/2} 0.4 to reach A_{sat} 0.2 0.0 5 10 15 20 25 30 35 40 45 50 55 60 0 time [years]

For the same production rate P (i.e. same beam current): It is not possible to produce an activity $> A_{sat}$

Special case: short irradiation periode

i.e. $t_{irr} \ll T_{1/2}$ t_{irr} : irradiation time $A(t_{irr}) = P(1 - e^{-\lambda t_{irr}}) \cong P(1 - [1 - \lambda t_{irr}]) = P\lambda t_{irr}$

 \rightarrow activity increases linear with irradiation time t_{irr,}

 \rightarrow activity much smaller than A_{sat} for long-lived isotopes

largest contribution to the γ -dose rate changes with time.

> Nuclide inventory Depends also on the Irradiation time

Daniela Kiselev, Cern Accelerator School, Granada, 28.10.-9.11.2012

For point source (e.g. a hot spot):

 $\dot{H}^* = \Gamma_{H^*} \frac{A}{r^2}$ γ-dose conversion factor Example: $A(^{60}Co) = 10^6$ Bq r = 10 cm \rightarrow H^{*} = 0.036 mSv/h $= 36 \,\mu\text{Sv/h}$ \rightarrow

Rule of radioprotection: Keep distance!

γ -dose conversion factor Γ_{H^*}

(from the Swiss radioprotection regulation):

Nuclide	Γ_{H^*} (mSv/h/GBq m ²)	E_{γ} (MeV)		
⁶⁰ Co	0.366	1.2, 1.3		
²² Na	0.330	1.3		
⁵⁴ Mn	0.126	0.83		
⁷ Be	0.008	0.48		
¹⁵² Eu	0.179	many		
¹⁵⁴ Eu	0.185	1.3 (35%), 1.0 (30%)		

values depend on energy of γ (and sometimes on follow-up products)

only very simple geometries can be solved analytically in general: very complicated! use ray trace programms or Monte Carlo simulations

Simple example: large plane

PAUL SCHERRER INSTITUT

Flux-to-dose conversion factors F_{H*}

The harder the radiation, the larger the dose (more damage)

works also for prompt radiation!

Comparison point source – plane source

PAUL SCHERRER INSTITU

Short-time irradiation: 20 days 100 nA protons of 72 MeV on316L: 40 mSv/hin 10 cm distance,12 h cooling

Co content: 0.16% → Activation of steel increases with Co-content !

Long-time irradiation: 20 years 100 nA protons of 72 MeV onCu:24 mSv/hMagnet-Fe: 140 mSv/hin 10 cm distanceGraphite:1.3 mSv/h

 \rightarrow It is important to consider later activation already in the design phase.

→ Choose materials with lower activation, if possible.

Doses are calculated with MCNPX/Cinder90, typically within a factor 2 agreement to the measurement

PAUL SCHERRER INSTITUT

Examples for activation: Ring cyclotron at PSI

1. Ambient dose equivalent:

```
H^{*}(10) > 0.1 \ \mu Sv/h
```

OR

2. Activity: decays/sec, unit: Bq

$$\sum_{i} \frac{A_i}{R_i} > 1 \qquad \text{(Sum rule)}$$

A_i: specific activity [Bq/g]
 R_i: exemption limit given in the radioprotection regulation

OR

- 3. Surface contamination:
 - > 1 Bq/cm² in case of unidentified β and γ -emitters
 - > 0.1 Bq/cm² in case of unidentified α -emitters
 - > CS-value (given in regulation) for specific isotope

for workers: 20 mSv/year 150 mSv for eye lense 500 mSv for skin (on 1cm²), hands, feet for public: 1 mSv/year

Flight from Paris to Rio de Janeiro and back: ~ 0.1 mSv/h

aircraft personal: get ~ 3 mSv/year

Terrestical source:

Cosmic rays, food, natural isotopes in soil and air

Worldwide average: 2.4 mSv

Kanada:	1.8
Great Britain:	2.2
Germany:	2.2
USA:	3.0
Switzerland:	4.3
India (Cerala Co	ast): 12.5
China (YangJian	g): 6.3
Worldwide range	e: 1 – 10

CONSIDERABLE VARIATION

- 25 % < 1 mSv
- 65 % < 3 mSv
- 10 % > 3 mSv

+ medical treatment: 0.5 – 3 mSv

Medical exposures:

examination	mSv
СТ	
- Head	2
- Spine	6
- Chest	7
- Abdomen	15
x-ray	
- Dental	0.005
- Chest	0.1
- Spine	1.5

treatment of tumors: 20 – 60 Sv

PAUL SCHERRER INSTITUT

The time scale

PAUL SCHERRER INSTITUT

DNA-Repairment (very simplified)

Bases: Cytosin

Guanin is a pair

A

Thymin

Adenin is a pair

 small parts are replaced in minutes

• large parts and double-strand repairment can take hours


```
Average effective dose in CH:

5.6 mSv/year = 15 \muSv/day

produces ~ 4 10<sup>14</sup> radicals/day in the "standard" human
```

Human has ~10¹³ cells → 40 defects/cell per day most of them get repaired 10⁻² -10⁻³/cell faulty or unrepaired → in 2.5 to 25 days 1 cell has a persistent defect

Cell reproduction mechanism:

- 1 DNA/cell
- DNA has ~3 10⁹ base pairs
- replication of the DNA in 1-30 days
 - \rightarrow 1 -10 spontaneous mutations (important for the evolution of life)
 - \rightarrow in < 30 days 1 cell has a persistent defect

Damaged cells should declare cell death (Apoptosis).

PAUL SCHERRER INSTITUT

Prediction of cancer mortality

Prompt radiation: all kind of particles when beam on important: photons & high energetic neutrons shielding: high Z material against photons neutrons: iron & concrete

Residual radiation: beam off, buildup depends on the irradiation history important: γ-radiation dose decreases with time and distance

Definition of several doses: purpose of quantifying the damage most damaging are heavy particles The measured dose H*(10) should represent the dose in the human.

cancer mortality: +5% /Sv within 40 years "natural" risk: 25 % Summary of Radioprotection rules: ALARA

As Low As Reasonable Achievable

If possible,

- use (additional) shielding
- use remotely operating devices
- reduce time with work planning
- enter after reasonable cooling time
- keep distance (particularly from hot spots)
- use protection clothes against contamination of skin
- use protective mask and breathing apparatus to avoid
 - inhalation (particularly tritium, when opening vacuum systems or entering closed rooms)
- exposures can be significantly reduced, if considered in design phase

