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Overview 
• Methods of Acceleration 
• Accelerating Structures 
• Synchronism Condition and Phase Stability (Linac) 
• Bunching and bunch compression 
• Circular accelerators: Cyclotron / Synchrotron 
• Dispersion Effects in Synchrotron 
• Synchrotron Oscillations 
• Energy-Phase Equations 
• Longitudinal  Phase Space Motion 
• Stationary Bucket 
• Injection Matching 



Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012 3 

Bibliography 

M. Conte, W.W. Mac Kay     An Introduction to the Physics of particle Accelerators  
                          (World Scientific, 1991) 

P. J. Bryant and K. Johnsen  The Principles of Circular Accelerators and Storage Rings  
                            (Cambridge University Press, 1993) 

D. A. Edwards, M. J. Syphers An Introduction to the Physics of High Energy Accelerators  
                         (J. Wiley & sons, Inc, 1993) 

H. Wiedemann           Particle Accelerator Physics            
            (Springer-Verlag, Berlin, 1993) 

M. Reiser            Theory and Design of Charged Particles Beams 
                           (J. Wiley & sons, 1994) 

A. Chao, M. Tigner           Handbook of Accelerator Physics and Engineering  
                           (World Scientific 1998) 

K. Wille                                The Physics of Particle Accelerators: An Introduction 
                          (Oxford University Press, 2000) 

E.J.N. Wilson                        An introduction to Particle Accelerators 
                           (Oxford University Press, 2001) 
 
 
 

And CERN Accelerator Schools (CAS) Proceedings 



Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012 4 

Main Characteristics of an Accelerator 

ACCELERATION is the main job of an accelerator. 
•  It provides kinetic energy to charged particles, hence increasing their momentum.  
•  In order to do so, it is necessary to have an electric field     , preferably along the 
direction of the initial momentum. dp

dt
= eEz

BENDING is generated by a magnetic field  perpendicular to the plane of the 
particle trajectory. The bending radius ρ obeys to the relation :  

ρB
e
p
=

FOCUSING is a second way of using a magnetic field, in which the bending 
effect is used to bring the particles trajectory closer to the axis, hence 
to increase the beam density. 

E


Newton-Lorentz Force 
on a charged particle:                                             


F = d

p
dt

= e

E + v ×


B( ) 2nd term always perpendicular 

to motion => no acceleration 

B ρ [Tm] ≈ p [GeV/c]
0.3

in practical units: 
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Energy Gain 

In relativistic dynamics, total energy E and momentum p are linked by 
 

       W kinetic energy 
 

 
Hence:  
 
The rate of energy gain per unit length of acceleration (along z) is then: 
 
 
 
and the kinetic energy gained from the field along the z path is: 
 
 
 
where V is just a potential. 
 
Some relativistic relations:                                      

cpEE 222
0

2 +=

dpvdE=

dE
dz

=v dp
dz
=
dp
dt
=eEz

dW =dE=eEz dz W =e Ez dz∫ = eV

p = mv = E
c2
βc = β E

c
= βγm0c 2

11
γ

β −==
c
v

γ =
E
E0

=
m
m0

=
1
1− β 2

(E = E0 +W )
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Velocity and Energy  

=> electrons almost reach the speed of light 
    very quickly  
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Methods of Acceleration: Electrostatic 

Electrostatic Field: 

Energy gain: W=n	 e(V2-V1) 
 
limitation : Vgenerator=ΣVi 
 
⇒  insulation problems 
    maximum high voltage (~ 10 MV) 
 
used for first stage of acceleration: 
particle sources, electron guns 
x-ray tubes 

750 kV Cockroft-Walton generator 
at Fermilab (Proton source) 
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Methods of Acceleration: Induction 

From Maxwell’s Equations: 
 
The electric field is derived from a scalar potential φ and a vector potential A 
The time variation of the magnetic field H generates an electric field E 
 
 
 
 
 
 
 
 
Example: Betatron 
The varying magnetic field is used to guide 
particles on a circular trajectory as well as 
for acceleration. 
Limited by saturation in iron  


E = −


∇φ −

∂

A
∂t

B = µ

H =

∇×

A

coil 

beam 
vacuum 

pipe 

iron yoke 

Bf 

B 
Bf 

E

R 

beam 
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Methods of Acceleration: Radio-Frequency (RF)  

Cylindrical electrodes (drift tubes) separated by gaps and fed by a RF 
generator, as shown above, lead to an alternating electric field polarity 

   Synchronism condition                    L = v T/2  v = particle velocity 
T = RF period 

D.Schulte 

Similar for standing wave 
cavity as shown (with v≈c) 

Wideröe-type 
structure 
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The advantages of resonant cavities 

-  Considering RF acceleration, it is obvious that when particles get high 
velocities the drift spaces get longer and one loses on the efficiency. 
=> The solution consists of using a higher operating frequency. 

-  The power lost by radiation, due to circulating currents on the electrodes, 
is proportional to the RF frequency. 
=> The solution consists of enclosing the system in a cavity which resonant 
frequency matches the RF generator frequency. 

-  The electromagnetic power is now 
constrained in the resonant volume 
 

-  Each such cavity can be independently 
powered from the RF generator 
 

-  Note however that joule losses will 
occur in the cavity walls (unless made 
of superconducting materials) 



Longitudinal Dynamics, CAS Granada, 28 Oct-9 Nov 2012 11 

The Pill Box Cavity 

From Maxwell’s equations one can derive the wave 
equations: 
 
 
 
Solutions for E and H are oscillating modes, at 
discrete frequencies, of types TMxyz (transverse 
magnetic) or TExyz (transverse electric). 
 

Indices linked to the number of field knots in polar co-
ordinates φ, r and z. 
For l<2a the most simple mode, TM010, has the lowest 
frequency, and has only two field components: 

∇2A−ε0µ0
∂2A
∂t2

= 0 (A = E or H )

Ez = J0 (kr) e
iωt

Hθ = −
i
Z0
J1(kr) e

iωt

k = 2π
λ
=
ω
c

λ = 2.62a Z0 = 377Ω

Ez Hθ 
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The Pill Box Cavity (2) 

The design of a pill-box cavity can be 
sophisticated in order to improve its 
performances: 
 
- A nose cone can be introduced in order 
to concentrate the electric field around 
the axis 
 
- Round shaping of the corners allows a 
better distribution of the magnetic field 
on the surface and a reduction of the 
Joule losses. 
It also prevents from multipactoring 
effects.  
 
A good cavity is a cavity which efficiently 
transforms the RF power into accelerating 
voltage. 
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Multi-gap Accelerating Structures 

  L = vT/2  (π mode)                         L = vT (2π mode) 

              Single Gap                                 Multi-Gap 
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L
vs

RF πω 2=

Synchronism condition 

RFsRFs TvL λβ==

( )Lg <<

g 

L1 L2 L3 L4 L5 

RF generator 

Used for protons, ions (50 – 200 MeV, f ~ 200 MHz) 

RF acceleration: Alvarez Structure 

LINAC 1 (CERN) 
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Transit time factor 

In the general case, the transit time factor is: 
Ta =

E1(s,r) cos ωRF
s
v

"
#$

%
&'
ds

−∞

+∞

∫

E1(s,r) ds
−∞

+∞

∫

Defined as: Ta =
energy gain of particle with v = βc

maximum energy gain (particle with v→∞)

const.),(1 ==
g
VrsE RF

•   0 < Ta < 1 
•  Ta → 1  for g → 0, smaller ωRF 
 
Important for low velocities (ions) 

E(s,r,t) = E1(s,r) ⋅E2 (t)for 

Simple model 
uniform field: 

Ta = sin
ωRFg
2v

ωRFg
2v

follows: 

The accelerating field varies during the passage of the particle 
=> particle does not see maximum field all the time => effective acceleration smaller 
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Important Parameters of Accelerating Cavities 

Shunt Impedance R  

Pd =
V 2

R
Relationship between gap 
voltage V and wall losses Pd 

Relationship between 
stored energy Ws in the volume 
and dissipated power on the walls 

Quality Factor Q 

Q =
ωWs

Pd
R
Q
=
V 2

ωWs

Filling Time τ 

τ =
Q
ω

Exponential decay of the  
stored energy Ws due to losses Pd = −

dWs

dt
=
ω
Q
Ws
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Disc loaded traveling wave structures 

-When particles gets ultra-relativistic (v~c) the drift tubes become very long 
unless the operating frequency is increased. Late 40’s the development of 
radar led to high power transmitters (klystrons) at very high frequencies 
(3 GHz). 
-Next came the idea of suppressing the drift tubes using traveling waves. 
However to get a continuous acceleration the phase velocity of the wave needs 
to be adjusted to the particle velocity. 

solution: slow wave guide with irises     ==>    iris loaded structure 

CLIC Accelerating Structures (30 & 11 GHz) 
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The Traveling Wave Case 

The particle travels along with the wave, and 
k represents the wave propagation factor. 

Ez = E0 cos ωRFt −ωRF
v
vϕ
t −φ0

"

#
$$

%

&
''

Ez = E0 cos ωRFt − kz( )

k = ωRF

vϕ
z = v(t − t0 )

wave number 

vφ = phase velocity 
v = particle velocity 

If synchronism satisfied: 
 
where Φ0 is the RF phase seen by the particle.  

Ez = E0 cosφ0v = vφ           and 
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Let’s consider a succession of accelerating gaps, operating in the 2π mode, 
for which the synchronism condition is fulfilled for a phase Φs . 

For a 2π mode, 
the electric field 
is the same in all 
gaps at any given 
time. 

eVs = eV̂ sinΦs
is the energy gain in one gap for the particle to reach the 
next gap with the same RF phase: P1 ,P2, …… are fixed points. 

Principle of Phase Stability (Linac) 

If an energy increase is transferred into a velocity increase  =>  
 M1 & N1 will move towards P1  => stable  
 M2 & N2 will go away from P2  => unstable 

(Highly relativistic particles have no significant velocity change) 
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00 <
∂

∂
⇒>

∂

∂

z

zE

t

V
Longitudinal phase stability means :  

The divergence of the field is 
zero according to Maxwell :  000. >

∂

∂
⇒=

∂

∂
+

∂

∂
⇒=∇

x
E

z
E

x
EE xzx

defocusing 
RF force  

External focusing (solenoid, quadrupole) is then necessary 

Transverse focusing fields at the entrance and defocusing at the exit of the cavity. 
Electrostatic case:  Energy gain inside the cavity leads to focusing 
RF case:    Field increases during passage => transverse defocusing! 

A Consequence of Phase Stability 
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Energy-Phase Equations 

Rate of energy gain for the synchronous particle:  

Rate of energy gain for a non-synchronous particle, expressed in reduced 
variables      and 

Rate of change of the phase with respect to the synchronous one: 

Since: 

ϕ = φ −φsw =W −Ws = E −Es
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Energy Phase Oscillations 
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ΔΕ, Δp/p 

φ	


Emittance:  phase space area including 
 all the particles  

NB: if the emittance contour correspond 
to a possible orbit in phase space, its 
shape does not change with time 
(matched beam)  

ΔΕ, Δp/p 

φ	


acceleration 

deceleration 

move  
backward 

move  
forward 

The particle trajectory in the 
phase space (Δp/p, φ) describes 
its longitudinal motion. 

reference 

Longitudinal phase space 
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- Previous results show that at ultra-relativistic energies (γ>> 1) the longitudinal 
motion is frozen. Since this is rapidly the case for electrons, all traveling wave 
structures can be made identical (phase velocity=c). 
- Hence the question is: can we capture low kinetic electrons energies (γ< 1), as 
they come out from a gun, using an iris loaded structure matched to c ? 

The Capture Problem 

Ez = E0 sinφ(t)

The electron entering the structure, with velocity v < c, is not synchronous 
with the wave. The path difference, after a time dt, between the wave and 
the particle is:  dz = (c− v)dt
Since      with propagation factor 
 
one gets      and 

φ =ωRFt − kz k = ωRF

vϕ
=
ωRF

c
dz = c

ωRF

dφ =
λg
2π

dφ dφ
dt

=
2π
λg

c 1−β( )
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The Capture Problem (2) 
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Bunching with a Pre-buncher 

A long bunch coming 
from the gun enters 
an RF cavity. 
The reference particle 
is the one which has no 
velocity change. The 
others get accelerated 
or decelerated, so the 
bunch gets an energy 
and velocity modulation. 
  
After a distance L 
bunch gets shorter: 
bunching effect.  
This short bunch can 
now be captured more 
efficiently by a TW 
structure (vϕ=c). 
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Bunching with a Pre-buncher (2) 

The bunching effect is a space modulation caused by a velocity modulation, 
similar to the phase stability phenomenon. Let’s look at the particles in the 
vicinity of the reference and use a classical approach. 
 

Energy gain as a function of cavity crossing time: 

Perfect linear bunching will occur after a time delay τ, corresponding to a 
distance L, when the path difference is compensated between a particle and 
the reference one: 

ΔW = Δ
1
2
m0v

2"

#
$

%

&
'=m0v0Δv = eV0 sinφ ≈ eV0φ Δv = eV0φ

m0v0

Δv τ = Δz = v0Δt = v0
φ
ωRF

(assuming the reference particle 
enters the cavity at time t=0) 

Since L = v0 τ  one gets: L = 2v0W
eV0ωRF
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long. 
phase 
space 

N.Walker 

Bunch compression 

At ultra-relativistic energies (γ>> 1) the longitudinal motion is frozen. This is 
rapidly the case for electrons. 
For example for linear colliders, you need very short bunches (few 100-50µm). 
Solution: introduce energy/time correlation with a magnetic chicane. 
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Bunch compression (2) 

Introducing correlated energy spread increases total energy spread in the 
bunch. => chromatic effects (depend on relative energy spread ΔE/E)
Solution: compress at low energy before further acceleration 
=> absolute energy spread constant but relative is decreased 

Longitudinal phase space evolution for a bunch compressor (PARMELA code simulations) 

before after 
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Circular accelerators: Cyclotron 

Cyclotron frequency 
γ

ω
0m
Bq

=

1.   γ increases with the energy 
⇒ no exact synchronism 

2.   if  v << c  ⇒  γ ≅ 1 

Synchronism condition 

RFs

RFs

Tv=
=

ρπ

ωω

2

B  = constant 
ωRF = constant 

B 

RF generator, ωRF  

g 

Ion source 

Extraction 
electrode 

Ions trajectory 

Used for protons, ions 
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Synchrocyclotron: Same as cyclotron, except a modulation of ωRF 
 B  = constant 

 	
γ ωRF  = constant ωRF decreases with time 

The condition: 
)(

)()(
0 tm
Bqtt RFs γ

ωω == Allows to go beyond the  
non-relativistic energies 

Cyclotron / Synchrocyclotron 

TRIUMF 520 MeV cyclotron   Vancouver - Canada 
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1.   ωRF and ω increase with energy 

2.   To keep particles on the closed orbit, B should increase 
with time 

E

R 

RF 
generator 

B 

RF cavity 

Synchronism condition 

RF
s

RFs

Th
v
R

ThT

=

=

π2
h integer, 
harmonic number: 
number of RF cycles 
per revolution 

Circular accelerators: The Synchrotron 
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Circular accelerators: The Synchrotron 

The synchrotron is a synchronous accelerator since there is a synchronous RF 
phase for which the energy gain fits the increase of the magnetic field at each 
turn. That implies the following operating conditions: 

Be
PB

cteRcte

h

cte

Ve

rRF

s

⇒=

==

=

=Φ=Φ

Φ

ρ

ρ

ωω

sin
^

Energy gain per turn 
 

 
Synchronous particle 
 
 
RF synchronism  
(h - harmonic number) 
 

Constant orbit 
 
 
Variable magnetic field 

If v≈c,  ωr hence ωRF remain constant (ultra-relativistic e- ) 

B 

injection extraction 

ρ	


R=C/2π 

E

Bending  
magnet 

bending 
radius 
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PS (CERN) 
Proton Synchrotron © CERN Geneva 

Examples of different 
proton and electron 

synchrotrons at CERN 

LEAR (CERN) 
Low Energy Antiproton Ring 

© CERN Geneva 

© CERN Geneva 

EPA (CERN) 
Electron Positron Accumulator 

Circular accelerators: The Synchrotron 
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Energy ramping is simply obtained by varying the B field (frequency follows v): 

  
p = eBρ ⇒

dp

dt
= eρ B ⇒ (Δp)turn = eρ BTr =

2π eρ R B

v

Since:    E
2 = E0

2 + p2c2 ⇒ ΔE = vΔp

•  The number of stable synchronous particles is equal to the harmonic 
number h.  They are equally spaced along the circumference. 
•  Each synchronous particle satisfies the relation p=eBρ. They have the 
nominal energy and follow the nominal trajectory.  

The Synchrotron 

turn
ΔE( ) =

s
ΔW( ) =2π eρR B=eV̂ sin sφ

Stable phase φs changes during energy ramping  

RF
s V

BR ˆ2sin


ρπφ = ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

RF
s V

BR ˆ2arcsin


ρπφ
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During the energy ramping, the RF frequency 
increases to follow the increase of the 
revolution frequency : 

Since           the RF frequency must follow the variation 
of the B field with the law   

E 2 = (m0c
2 )2 + p2c2

The Synchrotron 

ωr =
ωRF

h
=ω(B,Rs )

Hence:            ( using    ) fRF (t)
h

=
v(t)
2πRs

=
1
2π

ec2

Es (t)
ρ
Rs
B(t) p(t) = eB(t)ρ, E =mc2

fRF (t)
h

=
c

2πRs
B(t)2

(m0c
2 / ecρ)2 +B(t)2

!
"
#

$
%
&

1
2

This asymptotically tends towards   when B becomes large 
compared to 
which corresponds to   

fr →
c

2πRsm0c
2 / (ecρ)

v→ c
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Dispersion Effects in a Synchrotron 

If a particle is slightly shifted in 
momentum it will have a different 
orbit and the length is different. 
The “momentum compaction factor” is 
defined as: 

α =
p
L
dL
dp

If the particle is shifted in momentum it 
will have also a different velocity.  
As a result of both effects the revolution 
frequency changes: 

dp
df

f
p r

r
=η

p=particle momentum 

R=synchrotron physical radius 

fr=revolution frequency 

E+δE 

E

cavity 

Circumference 
        2πR α =

dL
L

dp
p

⇒

η =

d fr
fr

d p
p

⇒
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α =
Dx m

R

Dispersion Effects in a Synchrotron (2) 

α =
p
L
dL
dp

θ

xρ

0s
s

p
dpp +

dθ 
x

ds0 = ρdθ
ds = ρ + x( )dθ

The elementary path difference 
from the two orbits is: 

dl
ds0

=
ds − ds0
ds0

=
x
ρ
=
Dx

ρ
dp
p

leading to the total change in the circumference: 

dL = dl
C
∫ =

x
ρ∫ ds0 =

Dx

ρ
dp
p
ds0∫

With ρ=∞ in 
straight sections 
we get: 

< >m means that 
the average is 
considered over 
the bending 
magnet only 

definition of dispersion Dx 

α =
1
L

Dx (s)
ρ(s)

ds0
C
∫
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Dispersion Effects in a Synchrotron (3) 

dfr
fr
= η

dp
p

fr =
βc
2πR

⇒
dfr
fr
=
dβ
β
−
dR
R
=
dβ
β
−α

dp
p

 

p = mv = βγ E0
c

⇒
dp
p
=
dβ
β
+
d 1− β 2( )−

1
2

1− β 2( )−
1
2
= 1− β 2( )−1

γ 2
  

dβ
β

p
dp

f
df
r

r ⎟
⎠
⎞

⎜
⎝
⎛ −= αγ 2
1 αγη −= 2

1

η=0 at the transition energy  
α

γ 1=tr

definition of momentum 
compaction factor 
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Phase Stability in a Synchrotron  

From the definition of η it is clear that an increase in momentum gives 
- below transition (η > 0) a higher revolution frequency 
  (increase in velocity dominates) while 
  
- above transition (η < 0) a lower revolution frequency (v ≈ c and longer path) 
  where the momentum compaction (generally > 0) dominates. 

Stable synchr. Particle 
for η < 0 

η > 0 

αγη −= 2
1
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Crossing Transition 

At transition, the velocity change and the path length change with 
momentum compensate each other. So the revolution frequency there is 
independent from the momentum deviation. 
Crossing transition during acceleration makes the previous stable 
synchronous phase unstable. The RF system needs to make a ‘phase jump’. 
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φ2	


φ2 	
- The particle is decelerated 
 - decrease in energy - decrease in revolution frequency 
 - The particle arrives later – tends toward φ0	


φ1 	
- The particle is accelerated 
 - Below transition, an increase in energy means an increase in revolution frequency 
 - The particle arrives earlier – tends toward φ0 
 	


	


φ1	


φ0	


RFV

tRFωφ =

Synchrotron oscillations 

Simple case (no accel.): B = const., below transition  trγγ <
The phase of the synchronous particle must therefore be φ0 = 0. 
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φ1	


φ0	


RFV

tφφ2	


p
pΔ

φ

Phase space picture 

Synchrotron oscillations (2) 
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φs 

RFV

tRFωφ =

φ	


p
pΔ

φ

ss φπφφ −<<

stable region 

unstable region 
separatrix 

The symmetry of the 
case B = const. is lost 

Synchrotron oscillations (3) 

2 

1 

Case with acceleration B increasing  trγγ <

Phase space picture 
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Longitudinal Dynamics 

It is also often called  “synchrotron motion”. 

The RF acceleration process clearly emphasizes two coupled 
variables, the energy gained by the particle and the RF phase 
experienced by the same particle. Since there is a well defined 
synchronous particle which has always the same phase φs, and the 
nominal energy Es, it is sufficient to follow other particles with 
respect to that particle. 
So let’s introduce the following reduced variables: 

               revolution frequency :             Δfr = fr – frs 

                     particle RF phase     :              Δφ = φ - φs 

               particle momentum   :              Δp = p - ps 

               particle energy         :              ΔE = E – Es 

                       azimuth angle            :             Δθ = θ - θs  
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First Energy-Phase Equation 

fRF = h fr ⇒ Δφ = −hΔθ with θ = ω r dt∫

For a given particle with respect to the reference one: 

( ) ( ) dt
d

hdt
d

hdt
d

r
φφθω 11 −=Δ−=Δ=Δ

Since: η =
ps
ω rs

dω r

dp
#

$%
&

'( s

one gets: 
( ) φηω
φ

ηωω


rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE −=Δ−=Δ

and 
2E = 0

2E + 2p 2c

ΔE = vsΔp =ω rsRsΔp

particle ahead arrives earlier 
=> smaller RF phase 

θs 

Δθ 

R 

v 
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Second Energy-Phase Equation 

The rate of energy gained by a particle is: 
π
ωφ 2sinˆ rVedt

dE=

The rate of relative energy gain with respect to the reference 
particle is then: 

 
2πΔ

E
ω r

$

%
&

'

(
) = eV̂ (sinφ − sinφs )

leads to the second energy-phase equation: 

2π d
dt

ΔE
ω rs

$

%&
'

()
= eV̂ sinφ − sinφ s( )

 
Δ ETr( ) ≅ EΔTr + TrsΔ E = ΔE Tr + TrsΔ E =

d
dt

TrsΔE( )

Expanding the left-hand side to first order: 
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 Equations of Longitudinal Motion 

( )s
rs

VeE
dt
d φφωπ sinsinˆ2 −=⎟

⎠
⎞

⎜
⎝
⎛ Δ( ) φηω

φ
ηωω


rs

ss

rs

ss

rs h
Rp

dt
d

h
RpE −=Δ−=Δ

deriving and combining 

( ) 0sinsin2
ˆ

=−+⎥⎦
⎤

⎢⎣
⎡

s
rs

ss Ve
dt
d

h
pR

dt
d φφπ

φ
ηω

This second order equation is non linear. Moreover the parameters 
within the bracket are in general slowly varying with time. 

We will study some cases later… 
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Small Amplitude Oscillations 

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ

(for small Δφ) 

 
φ +Ωs

2Δφ = 0

ss

srs
s pR

Veh
π

φηω
2

cosˆ
2=Ωwith 

Let’s assume constant parameters Rs, ps, ωs and η: 

( ) φφφφφφφ Δ≅−Δ+=− ssss cossinsinsinsin
Consider now small phase deviations from the reference particle: 

and the corresponding linearized motion reduces to a harmonic oscillation: 

where Ωs is the synchrotron angular frequency  
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Stability is obtained when Ωs is real and so Ωs
2 positive:  

Ωs
2 =

e V̂RFηhω s

2π Rs ps
cosφs ⇒ Ωs

2 > 0 ⇔ ηcosφs > 0

φ
2
π

π
2
3π

VRF 
cos (φs) 

acceleration deceleration 

0>η 0>η0<η 0<η
Stable in the region if 

Stability condition for ϕs 

γ < γtr            γ < γtr            γ > γtr            γ > γtr            
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Large Amplitude Oscillations 

For larger phase (or energy) deviations from the reference the 
second order differential equation is non-linear: 

( ) 0sinsincos
2

=−Ω+ s
s

s φφφφ (Ωs as previously defined) 

Multiplying by   and integrating gives an invariant of the motion: φ

( ) Is
s

s =+Ω− φφφφ
φ sincoscos2

22

which for small amplitudes reduces to: 

 

φ 2

2
+Ωs

2 Δφ( )2

2
= $I (the variable is Δφ, and φs is constant) 

Similar equations exist for the second variable : ΔE∝dφ/dt 
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Large Amplitude Oscillations (2) 

( ) ( ) ( )( )sss
s

s
s

s

s φφπφπφφφφφ
φ sincoscossincoscos2

222
−+−Ω−=+Ω−



( ) ( ) ssssmm φφπφπφφφ sincossincos −+−=+

Second value φm where the separatrix crosses the horizontal axis: 

Equation of the separatrix: 

When φ reaches π-φs the force goes 
to zero and beyond it becomes non 
restoring. 
Hence π-φs is an extreme amplitude 
for a stable motion which in the 
phase space(            ) is shown as 

closed trajectories.   

φ
Ωs

,Δφ

Area within this separatrix is called “RF bucket”. 
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Energy Acceptance 

From the equation of motion it is seen that    reaches an extreme 
when        , hence corresponding to        . 
Introducing this value into the equation of the separatrix gives:    

φ
0=φ sφφ =

 
φmax
2 = 2Ωs

2 2 + 2φs − π( ) tanφs{ }
That translates into an acceptance in energy: 

This “RF acceptance” depends strongly on φs and plays an important role 
for the capture at injection, and the stored beam lifetime. 

 max

ΔE
sE

"
#$

%
&'

=β −
eV̂

πhη sE
G sφ( )

G sφ( )= 2cos sφ + 2 sφ −π( )sin sφ$% &'
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RF Acceptance versus Synchronous Phase  

The areas of stable motion 
(closed trajectories) are 
called “BUCKET”. 
As the synchronous phase 
gets closer to 90º the 
buckets gets smaller.  

The number of circulating 
buckets is equal to “h”. 

The phase extension of the 
bucket is maximum for φs 
=180º (or 0°) which 
correspond to no 
acceleration . The RF 
acceptance increases with 
the RF voltage. 
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Potential Energy Function  

( )φφ F
dt
d =2
2

( ) φφ
∂
∂−= UF

( ) ( ) FdFU s
s

s
00

2
sincoscos −∫ +Ω−=−= φ φφφ

φ
φφ

The longitudinal motion is produced by a force that can be derived from 
a scalar potential: 

The sum of the potential 
energy and kinetic energy is 
constant and by analogy 
represents the total energy 
of a non-dissipative system. 
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 Hamiltonian of Longitudinal Motion 

( )sVedt
dW φφ sinsinˆ −=

WRp
h

dt
d

ss

rsηω
π

φ
2
1−=

Introducing a new convenient variable, W, leads to the 1st order 
equations: 

pREW s
rs

Δ=⎟
⎠
⎞⎜

⎝
⎛Δ= πωπ 22

The two variables φ,W are canonical since these equations of 
motion can be derived from a Hamiltonian H(φ,W,t): 

W
H

dt
d

∂
∂=φ φ∂

∂−= H
dt
dW

( ) ( )[ ] WpR
hVetWH

ss

rs
sss

2

4
1sincoscosˆ,, ηω
πφφφφφφ −−+−=
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Stationnary Bucket - Separatrix 

This is the case sinφs=0 (no acceleration) which means φs=0 or π . The 
equation of the separatrix for φs= π (above transition) becomes: 

Ω=Ω+ 22
2

cos2 ss φφ
2sin22
22

2
φφ

Ω= s



Replacing the phase derivative by the canonical variable W: 

φ
ωη

π
ω

π 
rs

ss

rs h
RpEW 22 −=Δ=

and introducing the expression 
for Ωs leads to the following 
equation for the separatrix: 

W =±2C
c

−eV̂ sE
2πhη

sinφ
2
= ±Wbk sin

φ
2with C=2πRs 

W

φ 
0  π 2π 

Wbk 
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Stationnary Bucket (2) 

Setting φ=π in the previous equation gives the height of the bucket: 

The area of the bucket is: 

bkA = 8Wbk = 16
C
c

−eV̂ sE
2πhη

∫= π φ2
02 dWAbk

Since: ∫ =π φφ2
0 42sin d

one gets: 

ηπ h
EVe

c
CW s

bk 2
ˆ

2 −=

8
AW bk

bk=

ΔEmax =
ω rs

2π
Wbk = βs 2 −eV̂RFEs

πηh

This results in the maximum energy acceptance: 
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Effect of a Mismatch 
Injected bunch: short length and large energy spread 
after 1/4 synchrotron period:  longer bunch with a smaller energy spread. 

W W 

φ φ 

For larger amplitudes, the angular phase space motion is slower  
(1/8 period shown below)    => can lead to filamentation and emittance growth 

stationary bucket  accelerating bucket  

W.Pirkl 
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Bunch Matching into a Stationnary Bucket  

A particle trajectory inside the separatrix is described by the equation: 

W

φ 0  π 2π 

Wbk 

Wb 

π 

φm 2π-φm 

( ) Is
s

s =+Ω− φφφ
φ

φ sincoscos2
22 φs= π Is =Ω+ φφ cos2

2
2

φφφ
mss coscos2

22
2

Ω=Ω+


( )φφφ coscos2 −Ω±= ms


W = ±Wbk
2cos mϕ
2
− 2cos

ϕ
2

The points where the trajectory 
crosses the axis are symmetric with 
respect to φs= π 

cos(φ) = 2cos2 φ
2
−1

φ̂
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Bunch Matching into a Stationnary Bucket (2) 

Setting φ = π in the previous formula allows to calculate the bunch height: 

2cos8
φmbk

b
AW =bW = bkW cos mφ

2
= bkW sin φ̂

2
or: 

b

ΔE
sE

"
#$

%
&'
=

RF

ΔE
sE

"
#$

%
&'
cos mφ

2
=

RF

ΔE
sE

"
#$

%
&'
sin φ̂
2

This formula shows that for a given bunch energy spread the proper 
matching of a shorter bunch (φm close to π,   small) 
will require a bigger RF acceptance, hence a higher voltage 

φ̂

W = bkA
16

φ̂ 2− 2
Δφ( )

2
16W

bkA φ̂

"

#$
%

&'
+

2
Δφ

φ̂

"

#$
%

&'
=1

bA =
π
16 bkA φ̂ 2

For small oscillation amplitudes the equation of the ellipse reduces to: 

Ellipse area is called longitudinal emittance 
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Effect of a Mismatch 
Injected bunch: short length and large energy spread 
after 1/4 synchrotron period:  longer bunch with a smaller energy spread. 

W W 

φ φ 

For larger amplitudes, the angular phase space motion is slower  
(1/8 period shown below)    => can lead to filamentation and emittance growth 

stationary bucket  accelerating bucket  

W.Pirkl 
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Capture of a Debunched Beam with Fast Turn-On 
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Capture of a Debunched Beam with Adiabatic Turn-On 


