mH = 125 GeV and a light stop in the NMSSM

U. Ellwanger, LPT Orsay

The NMSSM

In terms of the superpotential:

$$W_{MSSM} = \mu H_u H_d + \dots \longrightarrow W_{NMSSM} = \lambda S H_u H_d + \frac{\kappa}{3} S^3 + \dots$$

The simplest supersymmetric extension of the Standard Model with scale invariant supersymmetric interactions (no " μ "-problem)

All nice features of the MSSM are preserved: Solution of the hierarchy problem, unification of gauge couplings, LSP as possible dark matter

Now:

- 3 neutral CP-even Higgs bosons, mixtures of H_u , H_d and S
- 2 neutral CP-odd Higgs bosons
- 5 neutralinos, mixtures of the bino, wino, and the fermionic components of H_u , H_d (higgsinos) and S (singlino)

Recall: MSSM:

Typically: one light SM-like state $h \sim H_{SM}$ with $M_h \lesssim 130$ GeV (BUT: $M_h \sim 125$ GeV only if $M_{susy} \gtrsim$ TeV, large A_{top} , large finetuning...) One heavy state H

NMSSM: Typically: one heavy state H, but possibly strong mixings among $h \sim H_{SM}$ and S

A state near 125 GeV can be the lighter or the heavier eigenstate in the $(H_{SM}-S)$ sector

 \rightarrow If the state near 125 GeV is the second lightest state H_2 , H_1 must and can easily comply with LEP constraints:

 $M_{H_1} <$ 114 GeV: reduced couplings to Z, or 114 $< M_{H_1} <$ 125 GeV

(J. F. Gunion, Y. Jiang and S. Kraml: H_1 and H_2 can be nearly degenerate)

It is known since 2011 that the pNMSSM (with parameters defined at the weak scale) can easily accommodate a 125 GeV Higgs boson and a $\gamma\gamma$ signal rate above the one of a SM Higgs boson

And if universal soft Susy breaking terms at the GUT scale are imposed? J. F. Gunion, Y. Jiang and S. Kraml (small λ , near the MSSM-limit, small h-S mixing): a 125 GeV Higgs boson is possible if universality is relaxed in the Higgs sector (like NUHM in the MSSM, here: "sNMSSM"), but not an enhanced $\gamma\gamma$ signal rate

U. E., C. Hugonie (1203.5048): In the sNMSSM for large λ , large h-S mixing can easily lead to a 125 GeV Higgs boson, a $\gamma\gamma$ signal rate above the one of a SM Higgs boson, for parameters complying with a good dark matter relic density

As before: the 125 GeV Higgs boson is H_2 !

Results of a scan over the parameter space of the sNMSSM:

$$\lambda$$
 , κ , $aneta$, $\mu_{ ext{eff}}$, A_{λ} , A_{κ} , A_{0} , $M_{1/2}$, m_{0}

Imposing 124 GeV $< M_{H_2} <$ 127 GeV and $\sigma_{obs}^{\gamma\gamma}(H_2)/\sigma_{SM}^{\gamma\gamma} >$ 1:

$$0.41 < \lambda < 0.69$$
, $0.21 < \kappa < 0.46$, $1.7 < \tan \beta < 6$

Constraints on H_1 and H_3 from LEP + LHC, constraints from B-physics, constraints from WMAP on the dark matter relic density, from XENON100 on the dark matter direct detection cross section are satisfied (But: the Susy contribution to $(g-2)_{\mu}$ is small since $\tan \beta$ is small) Using MicrOmegas inside NMSSMTools

Study $R=\frac{\text{production cross section}\times BR}{\text{production cross section}\times BR_{SM}}$ in various channels

Reduced signal cross sections R_2 for H_2 with $M_{H_2} \sim$ 125 GeV:

Would an enhanced $R_2^{\gamma\gamma}$ be compatible with a reduced $R_2^{VV}(gg)$?

$$(V = W, Z)$$

Yes, if $R_2^{\gamma\gamma}\lesssim 1.5$

Would an enhanced $R_2^{\gamma\gamma}$ imply a reduced $R_2^{b\bar{b}}(VH)$ (associate production $W/Z+H_2$ with $H_2\to b\bar{b}$, as at the Tevatron)?

Not necessarily! $R_2^{\gamma\gamma}\sim 1.5$ implies just $R_2^{b\bar{b}}(VH)\lesssim 0.95$

Stop₁, squark and gluino masses:

The green points satisfy CMSSM-like constraints in the $m_0, M_{1/2}$ plane from CMS which, however, do not have to hold in the NMSSM

The red points would be forbidden in the CMSSM

The Stop₁ can be very light due to the low values of $\tan \beta$ (\rightarrow large h_t , which affects the RGEs for the soft susy breaking stop masses)

In the cMSSM/NUHM with $M_h \sim 125$ GeV, the finetuning is of $\mathcal{O}(10^3)$ (D. M. Ghilencea, H. M. Lee and M. Park, arXiv:1203.0569) Fine-tuning as a function of $m_{\tilde{t}_1}$ (left panel) and $M_{\tilde{g}}$ (right panel) in the sNMSSM:

 \to At least an order of magnitude better than in the cMSSM, below 50 if $M_{qluino} \lesssim 1.3$ TeV, $M_{stop_1} \lesssim 700$ GeV

Present constraints on light stops:

From
$$\tilde{g} \to t + \tilde{t}_1 \to t + b + \chi_1^+ \to t + b + W + \chi_1^0 \to 2b + 2W + \chi_1^0$$
:

$$ightarrow M_{gluino} \gtrsim$$
 850 GeV

From stop pair production:

Here: $M_{\chi_1^0} \sim 60-80~{\rm GeV} \longrightarrow 170 \lesssim M_{stop1} \lesssim 230~{\rm GeV}$ or $500 \lesssim M_{stop1}$

Conclusions

- The sNMSSM can naturally accommodate a Higgs boson in the 124 127 GeV mass range, explain excesses in the $\gamma\gamma$ channel and, due to the extended Higgs sector, potential excesses at other values of the Higgs mass.
- Requiring a visible signal rate in the $b\bar{b}$ channel of 0.95 times the SM value still allows for a signal rate in the $\gamma\gamma$ channel about 1.5 as large as the one of a SM-like Higgs boson
- The fine-tuning with respect to parameters at the GUT scale remains modest, an order of magnitude below the one required in the MSSM, provided $170 \gtrsim M_{stop1} \gtrsim 230$ GeV and $M_{gluino} \gtrsim 850$ GeV which is consistent with present constraints!