EW SUSY production in ATLAS

Implications of LHC results for TeV-scale physics

CERN 13-17 July, 2012

Børge Kile Gjelsten University of Oslo

on behalf of the ATLAS collaboration

Outline

- Intro:
 - current limits, weak vs strong production, neutralino/chargino sector slepton sector EW search channels
- Analyses:
 - cuts, backgrounds, methods, results
- Interpretations
 - Direct sleptons, simplified models, pMSSM

ATLAS, datataking 2011

Workshop: Implications of the LHC, July 13-17, 2012

SUSY limits, strong vs weak prod

- Current limits on squarks and gluinos are already rather strong, ATLAS ex.:
 - **0-lepton exclude** $m_{\tilde{g}}, m_{\tilde{q}} \lesssim 1400 \text{ GeV for } m_{\tilde{\chi}_1^0} = 0$

[ATLAS-CONF-2012-033]

• 1-lepton exclude $m_{\tilde{g}} \lesssim 900 \text{ GeV for } m_{\tilde{\chi}_1^0} \lesssim 300 \text{ GeV}$ (with $m_{\tilde{\chi}_1^{\pm}} = (m_{\tilde{\chi}_1^0} + m_{\tilde{g}})/2$)

[ATLAS-CONF-2012-041]

(though still many regions with softer limits, e.g. more compressed scenarios+ softer limits on third generation)

 LEP limits
 m_{˜χ1}⁰ ≳ ¹/₂m_Z (roughly)
 m_{˜χ1}[±] > 103.5 GeV
 m_{˜e_R}, m_{µ̃_R}, m_{˜τ_R} ≳ 100, 95, 90 GeV
 (in fairly general model setups)

[at least as strong limits on left-handed slep]

Workshop: Implications of the LHC, July 13-17, 2012

- With gluinos and squarks heavy, EW production processes may be more relevant
 - direct neutralinos/charginos
 - direct sleptons

Neutralinos, charginos

Neutralino/Chargino Sector:

- In a minimal setup (MSSM) six neutralinos/charginos,
 - N₁,N₂,N₃,N₄ / C₁,C₂

are governed by 4 parameters,

- $M_1, M_2, \mu, tan\beta$
- N_i are in general mixtures of bino (M₁), wino (M₂) and higgsino (μ)
 C_j are mixtures of wino and higgsino
- The mixture affects their masses and decay preferences

$$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_1 & 0 & -c_\beta s_W m_Z & s_\beta s_W m_Z \\ 0 & M_2 & c_\beta c_W m_Z & -s_\beta c_W m_Z \\ -c_\beta s_W m_Z & c_\beta c_W m_Z & 0 & -\mu \\ s_\beta s_W m_Z & -s_\beta c_W m_Z & -\mu & 0 \end{pmatrix}$$
$$s_\beta = \sin\beta, \ c_\beta = \cos\beta, \ s_W = \sin\theta_W, \ \text{and} \ c_W = \cos\theta_W$$

Some production diagrams

Workshop: Implications of the LHC, July 13-17, 2012

Sleptons

Slepton sector

- In minimal setup (MSSM) we have six charged sleptons :

controlled by one parameter each (plus one additional mixing parameter for stau)

• and neutral sneutrinos :

• $\tilde{\nu}_e, \tilde{\nu}_\mu, \tilde{\nu}_\tau$

whose masses are connected to (and close to) the mass of their left-handed charged partner

Full slepton sector adds 7 parameters to handle

(i) Direct slepton production

• Sleptons can be directly pair-produced: $\tilde{e}_L^+ \tilde{e}_L^-, \ \tilde{e}_R^+ \tilde{e}_R^-, \ \tilde{e}_L^\pm \tilde{\nu}_e, \ \tilde{\nu}_e \tilde{\nu}_e, \ \tilde{\tau}_1^+ \tilde{\tau}_1^+, \ \tilde{\tau}_2^+ \tilde{\tau}_2^-, \ \tilde{\tau}_1^\pm \tilde{\tau}_2^\mp, \ \dots$

- Final states will have 0,1,2 (charged) leptons
- Cross-section is small, but we have sensitivity

(ii) Intermediate sleptons:

Sleptons are very relevant for the decay preferences of neutralinos and charginos

Neutralino/Chargino decays

• Many possible decays (mini-cascades): Without sleptons: With sleptons we also get:

$$\begin{split} \tilde{\chi}_i^0 &\to \tilde{\chi}_j^0 Z^{(*)}/h \\ \tilde{\chi}_1^{\pm} &\to \tilde{\chi}_2^{\pm} Z^{(*)}/h \\ \tilde{\chi}_i^0 &\to \tilde{\chi}_j^{\pm} W^{(*)} \\ \tilde{\chi}_i^{\pm} &\to \tilde{\chi}_j^0 W^{(*)} \end{split}$$

$$\begin{split} \tilde{\chi}_i^0 &\to \tilde{\ell}^{(*)} \ell, \, \tilde{\nu}^{(*)} \nu \\ \tilde{\chi}_i^{\pm} &\to \tilde{\ell}_L^{(*)} \nu, \, \tilde{\nu}^{(*)} \ell \\ \tilde{\ell} &\to \tilde{\chi}_1^0 \ell, \, \tilde{\nu} \to \tilde{\chi}_1^0 \nu \end{split}$$

- The full decay picture depends strongly on the composition of N_i and C_j (given by $M_1, M_2, \mu, \tan\beta$) as well as the whereabouts of the (many) sleptons.
- This is to be folded with O(30) subprocesses whose cross-sections also depend on $M_{1},M_{2},\mu,tan\beta$
- Not easy to make very general claims (theoretically and exclusion-wise)

- Final states include 0-4(+) leptons
 - 0 leptons: hard (impossible?)
 - 1 leptons: hard
 - ≥2 leptons: ok

(In extended scenarios, e.g. RPV-MSSM or NMSSM can have many more leptons)

- ATLAS 7 TeV search channels:
 - 2L (OS, SS, 0/2 jets)
 - 3L (N2C1,..)
 - 4L (N2N2,N2N3,..)

ANALYSES

2-lepton (4.7 fb⁻¹): OS+0jets+mT2, OS+2jets, OS+0jets, SS+0jets ATLAS-CONF-2012-076 (http://cdsweb.cern.ch/record/1460273)

3-lepton (4.7 fb⁻¹): Z-veto, Z-veto (w/harder cuts), Z-requirement *ATLAS-CONF-2012-076 (http://cdsweb.cern.ch/record/1460273)*

≥4-lepton (2.1 fb⁻¹): inclusive, Z-veto ATLAS-CONF-2012-001 (https://cdsweb.cern.ch/record/1418920)

Note: In the following "lepton" refers to e and μ . There is no ATLAS analysis on 2011 data with taus targetting EW produced SUSY

2-lepton signal regions

Four signal regions (SRs) motivated by direct slepton and various neutralino/chargino processes (the canonical ones shown)

3-lepton signal regions

Three signal regions (SRs), all targeting N₂C₁ production (or higher):

All require exactly 3 leptons and missing transverse energy

SR2

- at least one OSSF
- MET > 75 GeV
- Z-requirement
- mT > 90 GeV

SR1a

- at least on OSSF
- MET > 75 GeV
- Z-veto
- 0 b-jets

SR1b: SR1a plus

- mT > 90 GeV
- harder lepton pt
- (for larger mass splittings)

Backgrounds

2-lepton

- Irreducible (two prompt leptons):
 - Top, Z+jets, ZW, ZZ: MC normalised to data in dedicated CRs
 - WW: MC / datadriven (SR-dep.)
- Reducible:
 - W+jets, multijets with one or two fake leptons: Matrix Method
 - Charge-flip ($e\gamma^*, \gamma^* \rightarrow e^+e^-$) [in SS channel]: *measured in Z-peak*

3-lepton

- Irreducible (three prompt leptons):
 - WZ: MC normalised to data in dedicated CR
 - ZZ, ttbar+W/Z: MC
- Reducible:
 - top, WW, W/Z+jets/gamma with one or two fake leptons: *Matrix Method*

Some SR plots

2-lepton

3-lepton

Data points consistent with Standard Model estimates

Workshop: Implications of the LHC, July 13-17, 2012

Results

2-lepton

3-lepton

SR-m _{T2}							Selection	SP1a	SP 1b	SP2	
	e ⁺ e ⁻	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all	SF		Sciection Chief	SKIa	SKIU	0.46:0.05	
Z+X	$3.2 \pm 1.1 \pm 1.7$	$0.3 \pm 0.1 \pm 0.2$	$3.6 \pm 1.3 \pm 1.7$	$7.1 \pm 1.7 \pm 2.1$	$6.8 \pm 1.7 \pm 2.1$		SUSY ref. point	8.0±0.8	6.5±0.6	0.46 ± 0.05	
WW	$2.3 \pm 0.3 \pm 0.4$	$4.8 \pm 0.4 \pm 0.7$	$3.5 \pm 0.3 \pm 0.5$	$10.6 \pm 0.6 \pm 1.5$	$5.8\pm0.4\pm0.9$		tīZ	0.06 ± 0.05	0.025 ± 0.023	0.6 ± 0.5	
tī, single top	$2.6 \pm 1.2 \pm 1.3$	$6.2 \pm 1.6 \pm 2.9$	$4.1 \pm 1.3 \pm 1.6$	$12.9 \pm 2.4 \pm 4.6$	$6.8 \pm 1.8 \pm 2.3$		tĪW	0.36 ± 0.29	0.10 ± 0.08	0.09 ± 0.08	
Fake leptons	$1.0 \pm 0.6 \pm 0.6$	$1.1 \pm 0.6 \pm 0.8$	$-0.02 \pm 0.01 \pm 0.05$	$2.2 \pm 0.9 \pm 1.4$	$1.0 \pm 0.6 \pm 0.6$		tŦWW	0.010 ± 0.008	0.0023 ± 0.0019	0.004 ± 0.004	
Total	$9.2 \pm 1.8 \pm 2.5$	$12.4 \pm 1.7 \pm 3.1$	$11.2 \pm 1.9 \pm 3.0$	$32.8 \pm 3.2 \pm 6.3$	$20.4 \pm 2.6 \pm 3.9$		77	0.67 ± 0.21	0.09 ± 0.08	0.34 ± 0.17	
Data	7	9	8	24	15			125122	1.1.0.28	0.2+2.2	
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	1.6 (1.9)	1.7 (2.2)	1.7 (2.1)	2.6 (3.8)	2.0 (2.7)			15.5±5.2	1.1±0.28	9.5 ± 2.2	
SR-OSjveto							Reducible Bkg.	10±5	0.35 ± 0.34	$0.5^{+1.0}_{-0.5}$	
	e+e-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	a	11		Total Bkg.	25 ± 6	1.6 ± 0.5	10.9 ± 2.4	
Z+X	$4.5 \pm 1.2 \pm 1.2$	$3.0 \pm 0.9 \pm 0.5$	$4.7 \pm 1.1 \pm 1.2$	12.2 ± 1	.8 ± 1.8		Data	24	0	11	
WW	$8.8 \pm 1.8 \pm 4.4$	$20.9 \pm 2.6 \pm 6.2$	$13.3 \pm 1.9 \pm 3.5$	43.0 ± 3.0	.7 ± 12.2		Visible σ (exp)	< 3.0 fb	< 0.8 fb	< 2.0 fb	
tī, single top	$21.1 \pm 2.3 \pm 4.2$	$47.7 \pm 3.4 \pm 20.5$	$27.5 \pm 2.5 \pm 9.0$	$96.2 \pm 4.8 \pm 29.5$			Visible σ (obs)	< 3.0 fb	< 0.7 fb	< 2.0 fb	
Fake leptons	$2.9 \pm 1.2 \pm 1.2$	$6.9 \pm 1.8 \pm 2.6$	$0.4 \pm 0.6 \pm 0.3$	10.3 ± 2	2.2 ± 4.1			< 5.010	C 0.7 10	2.010	
Total	$37.2 \pm 3.3 \pm 6.4$	$78.5 \pm 4.7 \pm 20.9$	$45.9 \pm 3.4 \pm 9.4$	161.7 ± 6	5.7 ± 30.8		"SUSV ref	point"			
Data	33	66	40	13	39		5051 101.	point	125 125 250 7	(5 CoV)	
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	3.5 (4.0)	8.1 (9.6)	4.3 (5.1)	11.4 ((14.1)		$(m_{\tilde{\chi}})$	${}_{1}^{\pm}, {}_{\tilde{\chi}_{2}^{0}}^{\pm}, {}_{\ell_{L}}^{m_{\ell_{L}}}, {}_{\tilde{\chi}_{1}^{0}}^{m_{\tilde{\chi}_{1}^{0}}}$	425, 425, 250, 7	JUEV)	
SR-2jets											
	e ⁺ e ⁻	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	S	F						
Z+X	$3.8 \pm 1.3 \pm 2.7$		$5.8 \pm 1.6 \pm 3.9$	9.6 ± 2.0	$.0 \pm 5.1$						
WW	$6.4 \pm 0.5 \pm 4.3$	—	$8.4 \pm 0.6 \pm 5.7$	14.8 ± 0	0.7 ± 9.9						
tī, single top	$14.8 \pm 1.9 \pm 9.2$	—	$22.1 \pm 2.1 \pm 20.7$	36.9 ± 2.0	$.9 \pm 29.6$			ess in 2/3	-lepton cha	innels	
Fake leptons	$2.5 \pm 1.2 \pm 1.5$		$1.7 \pm 1.3 \pm 0.8$	4.2 ± 1.	.8 ± 2.3				•		
Total	$27.5 \pm 2.6 \pm 10.6$	—	$37.9 \pm 3.0 \pm 21.0$	$65.5 \pm 4.$	$.0 \pm 31.8$						
Data	39		39	7	8			imits on	the cross-	section	
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	7.1 (5.1)	—	9.7 (9.6)	15.6 ((13.9)		opport				
SR-SSjveto							of new physics is set in the various				
	e^+e^-	$e^{\pm}\mu^{\pm}$	$\mu^+\mu^-$	a	11		SRs (us	ing Cls r	nethod)		
Charge flip	$0.49 \pm 0.03 \pm 0.17$	$0.34 \pm 0.02 \pm 0.11$		0.83 ± 0.0	04 ± 0.18				nothod)		
Dibosons	$0.62 \pm 0.13 \pm 0.18$	$1.93 \pm 0.23 \pm 0.36$	$0.94 \pm 0.16 \pm 0.26$	3.50 ± 0.2	31 ± 0.54						
Fake leptons	$3.2 \pm 0.9 \pm 1.7$	$2.9 \pm 0.9 \pm 1.9$	$0.6 \pm 0.6 \pm 0.3$	6.6 ± 1.	.4 ± 3.8		Interne	tation	voludo por	omotor	
Total	$4.3 \pm 0.9 \pm 1.7$	$5.1 \pm 1.0 \pm 1.9$	$1.5 \pm 0.6 \pm 0.4$	$11.0 \pm 1.5 \pm 3.9$			interpretation: exclude parameter				
Data	1	5	3	9)		regions	in various	SUSY mo	dels	
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	0.8 (1.2)	1.5 (1.5)	1.3 (0.8)	2.0 ((2.3)		regiono				

Workshop: Implications of the LHC, July 13-17, 2012

Results #2

Workshop: Implications of the LHC, July 13-17, 2012

≥4-lepton analysis

SR1: MET > 50 GeV SR2: add Z-veto

Background estimation

- Irreducible:
 - ZZ, ttbar+Z: MC (validated in CR)
- Reducible:
 - $Z \rightarrow ||\gamma^* \rightarrow ||||$:

Conversion ratio measured in CR

	Background	Observed	95% CL
$E_{\rm T}^{\rm miss} > 50 {\rm ~GeV}$	1.7±0.9	4	3.5 fb
$E_{\rm T}^{\rm miss}$ > 50 GeV, Z-veto	0.7±0.8	0	1.5 fb

No significant excess observed Can set limit on new physics

Not (yet) interpreted in the context of EW SUSY production

Workshop: Implications of the LHC, July 13-17, 2012

INTERPRETATIONS

Workshop: Implications of the LHC, July 13-17, 2012

Interpretation: Direct Sleptons

Model setup:

- degenerate 1st and 2nd slepton generations
- bino-LSP
- (all the rest heavy)

Limits:

- Extend the LEP exclusion
- Need considerable mass gap down to the LSP

Interpretation: Simplified Model

Simplified model setup:

- N₂,C₁ pure wino & degenerate; N₁ pure bino
- Left-handed 1. and 2. generation sleptons inserted midway between C_1/N_2 and N_1
- BR($N_2 \rightarrow$ charged slepton) = 50%
- BR(C₁ \rightarrow charged slepton) = 50%

Note: C_1C_1 and N_2C_1 samples are analysed separately; there is no combination **Note:** Charged slepton and sneutrino are set degenerate

3L analysis very strong:

• exclude wino $C_1=N_2$ between 80 and 500 GeV for bino $N_1 < 225$ GeV provided $C_1-N_1 > 75$ GeV (approx.)

Near future:

Interpretation without intermediate sleptons

Workshop: Implications of the LHC, July 13-17, 2012

Interpretation: pMSSM slices

Motivation:

- Want a general physics model
- Want results as generic as possible [not easy]

pMSSM model setup:

- Scan in μ and M_2 at fixed M_1 values
- $tan\beta = 6$
- right-handed sleptons at (N₁+N₂)/2 (all three flavours)
- mA = 500 GeV, max stop mixing, remaining sparticles at 2 TeV
- [gives Higgs at 119 GeV]

Sleptons:

- In general difficult to be very general
- Left-handed sleptons left out:
 - no sneutrino (take BR and can become LSP)
 - no Ci decay to selectron/smuon
 - Z,W,h take large share when on-shell
- Exclusion would go higher if staus left out

Variation:

- Results fairly stable w.r.t. slepton mass
- Only small changes with $tan\beta = 10$

Interpretation pMSSM slices #2

Workshop: Implications of the LHC, July 13-17, 2012

SUMMARY

- ATLAS has searched for directly produced neutralinos/charginos and sleptons with 4.7 fb⁻¹ of 2011 data
- No excess observed
- Limits have been set in
 - I_L-N₁ plane (pMSSM, direct sleptons)
 - C₁-N₁ plane (simplified models with gaugino content)
 - μ-M₂ plane (pMSSM, tanβ=6, M₁=100,140,250 GeV, right-handed sleptons all flavours midway between N₁ and N₂)
- 2012: more data, more channels, more interpretations

Workshop: Implications of the LHC, July 13-17, 2012

Some limit plots for gluinos and squarks

EW SUSY production in ATLAS, Børge Kile Gjelsten, Oslo U.

23 / 33

Workshop: Implications of the LHC, July 13-17, 2012

Cross-section of direct slepton prod.

crossSection [pb] of eLeL(circle) and eReR(triangle) as function of slepton mass parameter

LEP limits on chargino mass

Workshop: Implications of the LHC, July 13-17, 2012

LEP limits on slepton masses

Workshop: Implications of the LHC, July 13-17, 2012

Some definitions

- METrel: $E_{\mathrm{T}}^{\mathrm{miss, rel.}} = \begin{cases} E_{\mathrm{T}}^{\mathrm{miss}} & \text{if } \Delta \phi_{\ell,j} \ge \pi/2 \\ E_{\mathrm{T}}^{\mathrm{miss}} \times \sin \Delta \phi_{\ell,j} & \text{if } \Delta \phi_{\ell,j} < \pi/2 \end{cases}$
- **mCT:** $m_{\text{CT}}^2(v_1, v_2) = [E_{\text{T}}(v_1) + E_{\text{T}}(v_2)]^2 [p_{\text{T}}(v_1) p_{\text{T}}(v_2)]^2$
- mT2: stransverse mass, relates to endpoint in processes with missing particles in the decay, J.Phys. G29 (2003) 2343-2363, Phys.Lett. B463 (1999) 99-103
- Notation: $(N_1, N_2, N_3, N_4) = (\tilde{\chi}_1^0, \tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_4^0), \quad (C_1, C_2) = (\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^{\pm})$

pMSSM BR of N_2 and C_1 , M_1 =100 GeV

Workshop: Implications of the LHC, July 13-17, 2012

pMSSM BR of N_2 and C_1 , M_1 =140 GeV

Workshop: Implications of the LHC, July 13-17, 2012

pMSSM BR of N_2 and C_1 , M_1 =250 GeV

Workshop: Implications of the LHC, July 13-17, 2012

pMSSM neutralino comp. M₁=100 GeV

Workshop: Implications of the LHC, July 13-17, 2012

pMSSM neutralino comp. M₁=140 GeV

Workshop: Implications of the LHC, July 13-17, 2012

pMSSM neutralino comp. M₁=250 GeV

Workshop: Implications of the LHC, July 13-17, 2012

