《曰》 《圖》 《臣》 《臣》

Contextualizing the Higgs at the LHC

Aleksandr Azatov

Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN Sezione di Roma

Implications of LHC results for TeV-scale physics CERN July 13-17

Collaboration with Contino, Galloway, Del Re, Rahatlou, Grassi, Craig, Chang

- **1** Single Higgs effective theory
- 2 Fitting Higgs couplings
- 3 Three parameter fit, implications for SUSY
- 4 $\gamma\gamma$ analysis
- 5 Conclusion

イロト イヨト イヨト イヨト

Searching for new physics through higgs couplings

- Recently both CMS and ATLAS reported 5σ access for the new resonance at 125 GeV, which can be the Higgs boson of the Standard Model.
- Most of the BSM models predict a spin 0 field with couplings to the SM fields which are generically different than in the Standard Model: Composite Higgs, dilaton, 2HDM, SUSY
- Scalar particle with couplings different from the SM Higgs might be the first indication of the new physics
- New physics states are too heavy for the direct production at the collider but their indirect effects like modification of the Higgs couplings can be already probed.

イロト イヨト イヨト

Single scalar effective lagrangian

- Write down most general effective theory that describes EW symmetry breaking with additional scalar field.
- Longitudinal components of W, Z(Goldstone bosons) of $SU(2)_L \times SU(2)_R / SU(2)_V$ can be described by

 $\Sigma(x) = \exp\left(i\sigma^a\chi^a(x)/v\right)$

 We can classify operators of the effective Higgs lagrangian in number of derivatives

$$\mathcal{L} = -V(h) + \mathcal{L}^{(2)} + \mathcal{L}^{(4)} + \dots$$
$$\mathcal{L}^{(2)} = \frac{1}{2}(\partial_{\mu}h)^{2} + \frac{v^{2}}{4}\operatorname{Tr}\left(D_{\mu}\Sigma^{\dagger}D^{\mu}\Sigma\right)\left(1 + 2a\frac{h}{v} + b\frac{h^{2}}{v^{2}} + \dots\right)$$
$$\mathcal{L}^{(2)}_{unit.gauge} = \frac{1}{2}(\partial_{\mu}h)^{2} + \left(m_{W}^{2}W_{\mu}W^{\mu} + \frac{1}{2}m_{Z}^{2}Z_{\mu}Z^{\mu}\right)\left(1 + 2a\frac{h}{v} + b\frac{h^{2}}{v^{2}} + \dots\right)$$

If a = b = 1 exchange of the h cancels the growth of the scattering amplitudes of the NG bosons χ

Conclusion

Chiral lagrangian for light Higgs

- * ロ > * @ > * 注 > * 注 > の < @

Coupling to fermions

$$\mathcal{L}_{\textit{ferm}} = -\sum_{\psi=u,d,l} m_{\psi} ar{\psi}_i \psi_j \left(\delta_{ij} + c_{\psi_{ij}} rac{h}{v} + c_{2\psi_{ij}} rac{h^2}{v^2}
ight)$$

Generically higgs couplings can be non-diagonal, but $FCNC(\epsilon_K, B - \overline{B})$ constraints require all c^{ij} to be diagonal

Four Derivative interactions

$$\mathcal{L}^{(4)} = \frac{g^2}{16\pi^2} \left(c_{ww} W^+_{\mu\nu} W^-_{\mu\nu} + c_{ZZ} Z^2_{\mu\nu} + c_{Z\gamma} Z_{\mu\nu} \gamma_{\mu\nu} \right) h + \dots \\ + \frac{g^2}{16\pi^2} \left(\gamma^2_{\mu\nu} (c_{\gamma\gamma} \frac{h}{v} + \dots) + G^2_{\mu\nu} \left(c_{gg} \frac{h}{v} + c_{2gg} \frac{h^2}{v^2} \dots \right) \right)$$

- c_{ww} will effect final state distributions
- $c_{gg}, c_{\gamma\gamma}$ direct modification of the $h\gamma\gamma$ coupling without effecting Higgs coupling to the SM fields, (integrating out heavy fields which do not mix with SM)

<ロト <問ト < 注ト < 注

Choice of the operators

Coupings that are probed at LHC: hbb, hgg, hγγ, hττ, hWW(ZZ), so really we want to find constraints in this 5D parameter space of the couplings.

Choice of the operators

- Coupings that are probed at LHC: hbb, hgg, hγγ, hττ, hWW(ZZ), so really we want to find constraints in this 5D parameter space of the couplings.
- For simplicity reasons let us assume that we have only two independent parameters

$$egin{aligned} \mathcal{L}_W &= -\left(m_W^2 W_\mu W^\mu + rac{1}{2} m_Z^2 Z_\mu Z^\mu
ight) \left(1+2 a rac{h}{v}
ight) \ \mathcal{L}_\psi &= -rac{v}{\sqrt{2}} \lambda_i ar{\psi}_i \psi_i (1+c rac{h}{v}) \end{aligned}$$

- a- modification of the Higgs coupling to W, Z, SU(2) custodial requires it to be the same
- c- modification of the Higgs coupling to fermions Standard Model corresponds to the *a* = 1, *c* = 1

《曰》 《圖》 《臣》 《臣》

Single Higgs effective theory	Fitting Higgs couplings		
Why a,c?			

- FCNC constraints prefer flavor universal rescaling of the fermion couplings c_i = c, however nothing requires c_τ = c_b = c_t, but good starting point
- Example models: Holographic composite Higgs models based on the SO(5)/SO(4), MCHM5,MCHM4 (Agashe,Contine,Pomarol), 2HDM where only one Higgs couples to fermions.
- Modification of the Hgg, Hγγ couplings comes ONLY from the modification of the top and W couplings.

Couplings after Moriond '12

68, 95, 99% contours in (a, c) plane after Moriond'12

1

Conclusion

Resonance at 125 GeV

PAS-HIG-12-020, ATLAS-CONF-2012-093

(日) (同) (三) (三)

Conclusion

Theorists fitting couplings of the resonance at 125GeV, 2D fits

talks by E.Kuflik, C. Grojean today

Aleksandr Azatov

1

Constructing likelihoods

(CMS note PAS-HIG-12-020)

Symmetrizing errors we can reconstruct likelihood assuming gaussian distribution

Signal rescaling/cut efficiencies

We need to know modification of the number of signal events for every channel *i*. For this we need : production cross section for each production mode σ_p, the efficiencies ζ^p_i of the kinematic cuts, and the Higgs decay branching fraction:

$$(n_{s}^{i})^{New Physics} = (n_{s}^{i})^{SM} \frac{\sum_{p} \sigma_{p} \times \zeta_{i}^{p}}{\sum_{p} \sigma_{p}^{SM} \times \zeta_{i}^{p}} \times \frac{BR_{i}}{BR_{i}^{SM}}$$

 Dominant production modes at LHC for 125 GeV Higgs are ggH, VBF, VH

• $\gamma\gamma$ official CMS efficiencies from PAS-HIG-12-015

(日) (同) (三) (三)

Fitting CMS and ATLAS

Figure: CMS fit for 125 GeV Higgs, Grey, Green, Yellow -68, 95, 99% areas

Figure: ATLAS fit for 126.5 GeV Higgs, Grey, Green, Yellow -68, 95, 99% areas

Checking our prediction with official fit

Figure: Grey, Green, Yellow -68, 95, 99% areas

• We can compare our prediction with official CMS combination. We change priors to be $a \in [0, 3], c \in [0, 3]$

.

イロト イヨト イヨト

Going further, three parameter fit (AA,S.Chang,N.Craig,J.Galloway)

So far all our fits were presented assuming condition c_b = c_t
 In one of the most popular BSM scenarios, supersymmetry

$$an eta = rac{v_{u}}{v_{d}}$$

 $a = \sin(eta - lpha), \ c_{t} = rac{\cos lpha}{\sin eta}, \ c_{b} = c_{ au} = -rac{\sin lpha}{\cos eta}$

In the fits we will assume SUSY inspired condition

$$a \neq c_t \neq c_b = c_\tau$$

Fit with $c_b \neq c_t$

Figure: Black dotted -95% contour for 0 < a < 0.5,red dotted -95% contour for 0.5 < a < 1, red solid -68% contour for 0.5 < a < 1

To simplify analysis we will assume $a \in [0, 1]$ (*Rychkov, Falkowski, Urbano*)

2HDM implications

Only small part of the c_u, c_d plane is covered by type II 2HDM

3

・ロト ・聞 ト ・ ヨト ・ ヨトー

(c_u, c_d) fits for 2HDM

 (c_d, c_u) fit

- Only half of the c_b, c_t plane is available
- We have a slight "preference" towards $c_b < 1$ region

С

イロト イヨト イヨト イヨト

(c_u, c_d) fits for 2HDM

(c_d, c_u) fit

イロト イヨト イヨト イヨト

- Only half of the c_b, c_t plane is available
- We have a slight "preference" towards c_b < 1 region

С

Conditions for *b* phobic higgs

$$\begin{split} \Delta V &= \lambda_1 \left| H_u^0 \right|^4 + \lambda_2 \left| H_d^0 \right|^4 - 2\lambda_3 \left| H_u^0 \right|^2 \left| H_d^0 \right|^2 \\ &+ \left[\lambda_4 \left| H_u^0 \right|^2 H_u^0 H_d^0 + \lambda_5 \left| H_d^0 \right|^2 H_u^0 H_d^0 + \lambda_6 (H_u^0 H_d^0)^2 + \text{c.c.} \right]. \\ & \text{``Down-Suppressed `` conditions} \end{split}$$

$$\begin{array}{rl} & \text{If } \tan\beta\gtrsim 5\\ \lambda_3 & \lesssim & -\lambda_1+\frac{\lambda_4}{2}\tan\beta\\ \lambda_3 & \gtrsim & -\frac{B\mu}{v^2}\tan\beta+\lambda_1-\lambda_4\tan\beta \end{array}$$

$$\lambda_{3}\cos 2\beta > \lambda_{1}\sin^{2}\beta - \lambda_{2}\cos^{2}\beta + \lambda_{4}\frac{\sin^{3}\beta}{2\cos\beta} + \lambda_{5}\frac{\cos^{3}\beta}{2\sin\beta}$$
$$\lambda_{3}\cos 2\beta < -\frac{2B\mu}{v^{2}\tan 2\beta} + \lambda_{2}\cos^{2}\beta - \lambda_{1}\sin^{2}\beta - \lambda_{5}\frac{\cos^{2}\beta}{4\alpha\beta} + \lambda_{4}\sin^{2}\beta\tan\beta$$

MSSM and b phobic Higgs

$$\lambda_3 \lesssim -\lambda_1 + rac{\lambda_4}{2} an eta$$

 $\lambda_3 \gtrsim -rac{B\mu}{v^2} an eta + \lambda_1 - \lambda_4 an eta$

MSSM tree level

 $\lambda_{1,2,3} = \frac{1}{8}(g^2 + g'^2), \quad \lambda_{4,5,6} = 0, \text{ we are always up suppressed region}$ 1 -loop

$$\begin{split} \delta\lambda_{1} &= \frac{3y_{t}^{4}}{16\pi^{2}} \left(\bar{A}_{t}^{2} - \bar{A_{t}}^{4} / 12\right), \ \delta\lambda_{3} &= \frac{3y_{t}^{4}\bar{\mu}^{2}}{64\pi^{2}} \left(\bar{A}_{t}^{2} - 2\right) \\ \delta\lambda_{4} &= \frac{y_{t}^{4}\bar{\mu}}{32\pi^{2}} \left(\bar{A}_{t}^{3} - 5\bar{A}_{t}\right) \end{split}$$

(Carena, Espinosa, Quiros, Wagner)

The power of exclusive analysis, $\gamma\gamma$

(AA, DelRe, Contino, Galloway, Grassi, Rahatlou)

- Expected exclusion curves (background only) for m_h = 120 GeV based on the simulation with 4, 8 and 10 categories
- 4 categories- cuts based on R₉ and photon pseudorapidity,
- 8 categories- same cuts + photon are differentiated based on P_t(γγ) cut on P_t(γγ) helps to differentiate between VBF and gluon fusion we are more sensitive in the fermiophobic region
- 10 categories 2 additional categories based on the VBF and HSTRA cuts

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Injecting SM signal

Figure: 95% and 68% exclusion contours for the simulation based on $m_h = 120$ GeV, $20 f b^{-1}$, injecting SM signal, only $h \rightarrow \gamma \gamma$

- Simulation for the $m_h = 120$ GeV higgs with exclusive $\gamma\gamma$ channels, with 10 categories defined by kinematic cuts in order to differentiate between , VBF, HSTRA, GGH production mechanisms.
- Probability is always peaked along the constant R value

$$\begin{aligned} R^{i}(\gamma\gamma) &\propto \sigma^{i} \times Br(h \to \gamma\gamma) \\ \sigma^{i} &\propto \alpha^{i}c^{2} + \beta^{i}a^{2} \\ Br(h \to \gamma\gamma) &\propto \frac{|8.3a - 1.78c|^{2}}{0.84c^{2} + 0.16a^{2}} \Rightarrow \\ \left|\frac{a_{1}}{c_{1}}\right| &= \left|\frac{a_{2}}{c_{2}}\right|, \\ |8.3a_{1} - 1.78c_{1}| &= |8.3a_{2} - 1.78c_{2}| \end{aligned}$$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Conclusion

Breakdown by channels

Combining $\gamma\gamma WW$ and ZZ analisys

Can we rule out one solution my measuring precisely a ? For example by adding WW or ZZ channels ?

 unfortunately even 40fb⁻¹ are not enough to rule out negative c solution at 68% level.

《曰》 《圖》 《臣》 《臣》

$\gamma\gamma$ signal at 125 GeV analysis

Exp	pected signal	and esti	imated	l backį	ground	ł					
Б.	opt classes	SM Higgs boson expected s									
Event classes		Total	ggH	VBF	VH	ttH	Di-jet loosi Di-jet tigh		•		CMS preliminary (\$ = 7 TeV, L = 5.1 fb ⁻¹ (\$ = 8 TeV, L = 5.3 fb ⁻¹
ï	Untagged 0	3.2	61%	17%	19%	3%	Lintagood 2	->			Combined
Ð	Untagged 1	16.3	88%	6%	6%	1%	Unagged .	- e			a/a _{SM} = 1.56±0.43
ŝ	Untagged 2	21.5	91%	4%	4%	-	Untagged a	- ' ∞			
Гe	Untagged 3	32.8	91%	4%	4%	-	Untagged	'L	-	•	
5	Dijet tag	2.9	27%	73%	1%	-	Untagged (L		•	
_	Untagged 0	6.1	68%	12%	16%	4%	Di-je				——
4	Untagged 1	21.0	88%	6%	6%	1%	Untagged 3	>		•	
3.f	Untagged 2	30.2	92%	4%	3%	-	Untagged 3	e, e		-	
\geq	Untagged 3	40.0	92%	4%	4%	-	Untagged				
Te	Dijet tight	2.6	23%	77%	-	-	Untagged (-		<u> </u>	_
u c	Dijet loose	3.0-	53%	45%	2%	-		4 -2	0	2 4	6 8 10
пC	PAS 12	015							5		Best Fit o/osM
							,				

• for the CMS $\gamma\gamma$ analysis all the efficiencies and SM signal rates are public, to simulate observed signal we can inject SM signal modified by best fit values .

(日) (同) (三) (三)

,

$\gamma\gamma$ signal at 125 GeV analysis

Exp	pected signal	and esti	imated	l backį			
Event classes			A Higg	s bosc	on expo	ected	s
Event classes		Total	aaH	VBF	VH	нH	Di-jet loose CMS preliminary (% = 7 TeV, L = 5.1 fb ⁻¹
-	Unterned	2.2	6511	170/	109/	20/	Di-jet tight
· ·	Untagged 0	3.2	61%	17.70	19%	370	Untagged 3 m _u = 125.0 GeV
<u> </u>	Untagged 1	16.3	88%	6%	6%	1%	a/a ₃₄₀ = 1.56±0.43
ini	Untagged 2	21.5	91%	4%	4%	-	- CO
es	Untagged 3	32.8	91%	4%	4%	-	Untagged 1
5	Dijet tag	2.9	27%	73%	1%	-	Untagged 0
-	Untagged 0	6.1	68%	12%	16%	4%	Di-jet
4	Untagged 1	21.0	88%	6%	6%	1%	Untagged 3 >
33	Untagged 2	30.2	92%	4%	3%	-	Untagged 2 Untagged 2
2	Untagged 3	40.0	92%	4%	4%	-	Untagged 1
Te	Dijet tight	2.6	23%	77%	-	-	Untagged 0
luic	Dijet loose	3.0-	53%	45%	2%	-	-4 -2 0 2 4 6 8 10
TIC	1 PAS 12	012					Best Fit σ/σ _{SM}
							,

- for the CMS $\gamma\gamma$ analysis all the efficiencies and SM signal rates are public, to simulate observed signal we can inject SM signal modified by best fit values .
- **7** TeV $\sigma_{ggh} : \sigma_{VBF} : \sigma_{VH} = 1 : 0.08 : 0.058$
- 8 TeV σ_{ggh} : σ_{VBF} : σ_{VH} = 1 : 0.08 : 0.056
- efficiencies of different production mechanism for untagged subchannels are different

Conclusion

Channel breakdown in $\gamma\gamma$ search 68% contours

7 TeV search

Figure: Red -dijet tagged, Blue-untagged, Black-combination

 the largest excess was reported in the categories, which have the largest contamination by VBF events ("Fermiophobic Higgs" see talk by Gabrielli)

8 TeV search

Figure: Red -dijet tagged, Blue-untagged, Black-combination

Channel breakdown in $\gamma\gamma$ search

7+8 TeV search

Figure: Red -dijet tagged, Blue-untagged, Black-combination ■ 7+8 TeV

Figure: Grey, Green, Yellow -68, 95, 99% areas

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Outlook

- We presented updated fits for the Higgs couplings, 2d and 3d fits.
 - 3d fit still prefers region with suppressed bottom yukawa coupling
- SM Higgs looks good so far.
- We presented analysis of the CMS $\gamma\gamma$ channel
 - preference of the "fermiophobic" Higgs is gone
- Still need to do:
 - Exclusions for the various mass ranges, careful treatment of all the available channels, including all the efficiencies...

(日) (同) (三) (三)

Conclusion

7 and 8 TeV best fits from CMS $\gamma\gamma$

Various 2d fits

Grey, Green, Yellow -68, 95, 99% areas

Constraints on MCHM4

Higgs is a Pseudo-Nambu-Goldstone boson of SO(5)/SO(4) symmetry breaking, as a result of the nonlinear structure of the Higgs boson $m_W^2 = \frac{g^2 r^2}{4} \Rightarrow$, $m_W^2 = \frac{g^2 r^2}{4} \sin^2(\langle h \rangle / f)$, $\xi = \sin^2(\frac{\langle h \rangle}{f})$

Figure: Official CMS exclusion

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶