Interpreting The Higgs Eric Kuflik

Tel Aviv University

Based on 1207.1718 and 1202.3144 with D. Carmi, A. Falkowski, T. Volansky, J. Zupan

Quick Introduction

Higgs is discovered

Naturalness and Higgs Rates

- If new physics exists, Higgs interactions are likely to be modified
- New particles introduced in models that resolve the fine tuning also enter in the gluon fusion and diphoton rates

• Higgs rates may be the best (only?) route to new physics!

Higgs Effective Theory

- Study more general Higgs Lagrangian
- Define effective Lagrangian at $\mu \sim m_h {\sim} 125~{\rm GeV}.$ Relevant couplings:

$$L = c_{V} \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{2m_{W}^{2}}{v} Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \,\bar{b}b - c_{\tau} \frac{m_{b}}{v} h \,\bar{\tau}\tau$$
$$+ c_{g} \frac{\alpha_{s}}{12 \pi v} h \, G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h \, A_{\mu\nu} A_{\mu\nu} + c_{\chi} h \bar{\chi}\chi$$

- Few theoretical assumptions:
 - Higgs only couples to SM fields and an invisible particle.
 - Custodial symmetry fixes $c_W = c_Z = c_V$, so as to satisfy the experimental bounds on the T-parameter.
 - For simplicity also assume $c_b = c_{ au}$
 - Higgs is a positive-parity scalar
- SM gives: $c_V = c_b \simeq c_g \simeq 1$ $c_\gamma \simeq 2/9$ $c_\chi = 0$.
- All couplings can be modified in BSM models

Higgs Widths

All Higgs rates are a function of *c_i*

Where $\hat{c}_{\gamma} \approx c_{\gamma} - c_V$ takes into the W-contribution. • These are approximate, but more precise relations are used.

Rates

• Assuming gluon fusion dominates the inclusive productions cross section $(R = \mu, \text{ the signal strength})$:

$$R_{VV^*} \equiv \frac{\sigma_{pp \to h} Br_{h \to VV^*}}{\sigma_{pp \to h}^{SM} Br_{h \to VV^*}^{SM}} \simeq \left| \frac{c_g c_V}{c_{tot}} \right|^2$$

$$R_{\gamma\gamma} \equiv \frac{\sigma_{pp \to h} Br_{h \to \gamma\gamma}}{\sigma_{pp \to h}^{SM} Br_{h \to \gamma\gamma}^{SM}} \simeq \left| \frac{c_g \hat{c}_{\gamma}}{\hat{c}_{\gamma,SM} c_{tot}} \right|^2$$

$$R_{bb} \equiv \frac{\sigma_{pp \to Vh} Br_{h \to \bar{b}b}}{\sigma_{pp \to Vh}^{SM} Br_{h \to \bar{b}b}^{SM}} \simeq \left| \frac{c_b c_V}{c_{tot}} \right|^2$$

$$R_{\gamma\gamma jj} \equiv \frac{\sigma_{pp \to hjj} Br_{h \to \gamma\gamma}}{\sigma_{pp \to hjj}^{SM} Br_{h \to \gamma\gamma}^{SM}} \simeq \left(r_g |c_g|^2 + r_V |c_V|^2 \right) \left| \frac{\hat{c}_{\gamma}}{\hat{c}_{\gamma,SM} c_{tot}} \right|^2$$

These are approximate, but more precise relations are used. (All cross-sections included.)

EFT Goals

$$L = c_{V} \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{2m_{W}^{2}}{v} Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \, \bar{b}b - c_{\tau} \frac{m_{b}}{v} h \, \bar{\tau}\tau$$
$$+ c_{g} \frac{\alpha_{s}}{12 \pi v} h \, G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h \, A_{\mu\nu} A_{\mu\nu} + c_{\chi} h \bar{\chi}\chi$$

- * Determine the region of the $c'_i s$ favored by the LHC & Tevatron data.
- Is the data consistent with the SM Higgs?
- * Is data favoring another scenario?
- Are the preferred regions consistent with natural theories?

Similar Approaches

- A. Azatov, R. Contino and J. Galloway, JHEP 1204, 127 (2012) [arXiv:1202.3415 [hepph]], arXiv:1206.3171 [hep-ph].
- P. Giardino, K. Kannike, M. Raidal and A. Strumia, JHEP 1206, 117 (2012) [arXiv:1203.4254 [hepph]], arXiv: 1207.1347
- J. R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, arXiv:1202.3697 [hepph]. , arXiv:1205.6790 [hep-ph], arXiv:1207.1717
- J. R. Espinosa, C. Grojean and M. Muehlleitner, arXiv:1202.1286 [hep-ph].
- J. Ellis and T. You, arXiv:1204.0464 [hep-ph], arXiv:1207.1693

Data

• Focus on the 5 most sensitive channels for $m_h = 125$ GeV.

 $h \rightarrow \gamma \gamma$, $hjj \rightarrow \gamma \gamma jj$, $h \rightarrow ZZ^* \rightarrow 4l$, $h \rightarrow WW^* \rightarrow 4l$, $Vh \rightarrow V \overline{b}b$

Could be much better.

- Much can be improved with the full Likelihood functions
 - No correlations
 - Gaussian assumption is not always good.
 - Fixed Higgs mass
 - I have to digitize plots.
- Consider it warm-up exercise in preparation for better statistics.

- Study the best-fit regions where only two of the above parameters can be freely varied, while the remaining ones are fixed to the SM values
- Representative of many BSM models
- $m *~Show\,1\sigma$ bands for each of the 5 channels
- * Combined region gives the 95% CL preferred region ($\Delta \chi^2 < 5.99$)
- * Test against the Standard Model hypothesis, $\chi^2_{SM} \chi^2_{min}$
- Very useful representation for theorists

New Charged and Colored Particles

 Only dimension-5 couplings may vary:

$$c_g \frac{\alpha_s}{12 \pi v} h G^a_{\mu\nu} G^a_{\mu\nu} + c_{\gamma} \frac{\alpha}{\pi v} h A_{\mu\nu} A_{\mu\nu}$$

- Representative of models with additional charged and colored particles.
- Good fit can be obtained and improvements made over SM $(\chi^2_{SM} \chi^2_{min}) = 6.1$
- SM point at 95% CL border
- Top Partner Models give excellent fits.
 - Models where only particles with the same charge and color as the top contribute (only 1 dof)

•
$$\delta c_{\gamma} = \frac{2}{9} \delta c_g$$
 (red line)

Combined: Region of $\chi^2 - \chi^2_{SM} \le 5.99$

Invisible Higgs

 Dimension-5 couplings may vary according to top partner relationship:

$$c_g \frac{\alpha_s}{12 \pi v} h G^a_{\mu\nu} G^a_{\mu\nu} + \frac{2c_g}{9} \frac{\alpha}{\pi v} h A_{\mu\nu} A_{\mu\nu}$$

Plus additional invisible mode

 $c_{\chi} h \bar{\chi} \chi$

- Large invisible rate allowed if c_{γ} (the di-photon rate) is enhanced.
- Fit is only improved because of the inclusion of a top-partner
- If just invisible mode (1 dof), fits are not improved over the SM (Red region)

$$\left(\chi_{SM}^2 - \chi_{min}^2\right) = 0 \qquad \text{Br}_{\text{inv}} < 0.27$$

For more on invisible Higgs: J. R. Espinosa, M. Muhlleitner, C. Grojean and M. Trott, arXiv:1205.6790, arXiv:1207.1717 For Collider constraints see: A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, arXiv:1205.3169 [hep-ph].

Another Parameterization

- Parameterizes top-partner with Higgs mixing $c_g \frac{\alpha_s}{12 \pi v} h G^a_{\mu\nu} G^a_{\mu\nu} + \frac{2c_g}{9} \frac{\alpha}{\pi v} h A_{\mu\nu} A_{\mu\nu}$ $c_b = c_v = c_\tau \sim \cos \theta$
- Fits much improved over the SM $(\chi^2_{SM} \chi^2_{min}) = 6.5$
 - SM outside 95% CL Region
- Examples include Little Higgs models (only 1 dof)

 $c_V = c_b = \sqrt{1 - \xi/2}$ Twin Higgs: $\delta c_g = \sqrt{1 - \xi/2}$ Simplest Higgs: $\delta c_g = (1 - \xi)/\sqrt{1 - \xi/2}$

No improvement over SM, for Twins Higgs or Simplest Higgs models. $\chi^2_{SM} \le \chi^2$

The Top Partner

- Models where only particles with the same charge and color as the top contribute (only 1 dof)
- Well motivated by the hierarchy problem.
- Preserves the relationship: $c_{\gamma} = \frac{2}{2}c_g$
- Model can have many parameters, but only 1 combination affects the fits.
- Schematically:
 Interference top is 20% of the W contribution
 - $\Gamma_{gg} \sim |top|^2 \qquad \qquad \Gamma_{\gamma\gamma} \sim |-\overline{W} + top|^2$

 $\Gamma_{gg} \sim |top \pm top'|^2 \quad \Gamma_{\gamma\gamma} \sim |-W + top \pm top'|^2$

• Top Partner contribution significantly improves the fits when its contribution is almost twice the SM top contribution but opposite in sign.

$$\Gamma_{gg} \sim |top \pm top'|^{2} \qquad \Gamma_{\gamma\gamma} \sim |-W + top \pm top'|^{2}$$

$$\Gamma_{gg} \sim |top - 1.8 top|^{2} \qquad \Gamma_{\gamma\gamma} \sim |-W + top - 1.8 top|^{2}$$

Gluon fusion remains roughly constant –

 $h \rightarrow ZZ, WW, bb$ are unchanged

$h \rightarrow \gamma \gamma$ increases

- Dropping the top partner assumption $\delta c_{\gamma} = 2/9 \ \delta c_g$ does not improve the fits.
- No improvement over SM if $\delta c_g > 0$
- Generally the sign is related to naturalness:
- I. Low, R. Rattazzi and A. Vichi,.

Fermion Top Partner

• Consider simplified model with a single fermion top partner.

$$L = -c_f \frac{m_f}{v} h \bar{f} f$$

$$\delta c_g = 9/2\delta c_\gamma = c_f A_f (m_h^2/4m_f^2) \qquad A_f \sim 1$$

 Quadratic divergence cancelled for

$$c_f m_f = -2 \, m_t^2 / [m_f + \sqrt{(2m_t^2 + m_f^2)}]$$

 Can cancel the quadratic divergence and improve the fits if

95 GeV < $m_f < 115$ GeV

 Cannot get its mass entirely from EWSB (chiral top partners disfavored)

Scalar Top Partner

• Consider simplified model with a single scalar top partner.

$$L = -c_s \frac{2 m_s}{v} h S^* S$$

$$\delta c_g = 9/2\delta c_\gamma = \frac{c_s}{4} A_s (m_h^2/4m_f^2) \qquad A_s \sim 1$$

• Quadratic divergence cancelled for

 $c_s = 2m_t^2/m_s^2$

 Cannot simultaneously improve the fits and cancel the quadratic divergence, since

$$\delta c_g = 9/2\delta c_\gamma \ge 0$$

Two Scalars - SUSY

Stop sector of the MSSM (neglecting sub-leading D-terms)

 $L = |\tilde{t}_L|^2 (m_L^2 + y_t^2 |h|^2) + |\tilde{t}_R|^2 (m_R^2 + y_t^2 |h|^2) + y_t X_t h t_L t_R + h.c.$

- Quadratic divergence cancelled.
- Consider decoupling limit, $m_A \gg m_h$.
 - Non-decoupling limit only makes the fits worse.
- Stops mix $m_t X_t = \frac{1}{2} \left(m_{\tilde{t}_2}^2 m_{\tilde{t}_1}^2 \right) \sin^2 2\theta_t$
- Mixing allows for negative δc_g

$$\delta c_g = 9/2 \ \delta c_{\gamma} = \frac{1}{4} \left(\frac{m_t^2}{m_{\tilde{t}_1}^2} + \frac{m_t^2}{m_{\tilde{t}_2}^2} - \frac{m_t^2}{m_{\tilde{t}_1}^2} \frac{|X_t|^2}{m_{\tilde{t}_2}^2} \right)$$

• The two states must have large separation

$$X_t/m_{\tilde{t}_2} < (m_{\tilde{t}_2}^2 - m_{\tilde{t}_1}^2)/(2m_t m_{\tilde{t}_2})$$

 Can you get the right Higgs mass from the combination of very large mixing, large mass separation, but one light stop?

Models of Enhanced Diphoton Rates

Data shows increased $h \rightarrow \gamma \gamma$

Hint for new charged particles?

See also M. Carena, I. Low, C. Wagner 1206.1082

New W' Partner

- Consider simplified model with a W'
- $L = +c_{\rho} \frac{2m_{\rho}^2}{v} h \rho_{\mu}^* \rho_{\mu}$ $\delta c_g = 0 \qquad \delta c_{\gamma} = -\frac{7}{8} c_{\rho} A_{\rho} (m_h^2/4m_{\rho}^2) \qquad A_{\rho} \sim 1$ W' 200180 Two best fit regions for W' 160 • Much improved fit over SM $\chi^2_{SM} - \chi^2_{min} = 4.3$ 100 80

60

-3

 $^{-2}$

-1

0

Cp

1

2

Doublet-Singlet Model

 Higgs doublet mixes with a singlet, which couples to additional charged vector-like particles.

$$L = -\frac{1}{2}m_{\phi}^{2}\phi^{2} - \kappa\phi|H|^{2} - \sum_{i}M_{i}\left(1 + \frac{\lambda_{i}}{\nu}\phi\right)\overline{\psi}\psi$$

 Higgs is a combination Doublet and Singlet

 $h = H \cos \alpha + \phi \sin \alpha$

- Sign contribution to c_{γ} can be negative since the mass is not coming from EWSB.
- Better than just coupling the Higgs directly to leptons

$$c_{\gamma} = c_{\gamma,SM} \cos \alpha + \delta c_{\gamma} \sin \alpha$$
$$\delta c_{\gamma} = \sum_{i} \lambda_{i} \frac{1}{6} N_{i} Q_{i}^{2} A_{f}(\tau_{i})$$

A Social Higgs – Bertolini & McCullough

 Predicts an additional resonances in the other channels, in particular the diphoton channel.

Type II Two Higgs Doublet Model

 2 Higgs fields, one Up and one Down type Higgs

$$h = \cos \alpha \, Re \, (H_u^0) - \sin \alpha \, Re \, (H_d^0)$$

 $\tan\beta = v_u/v_d$

- For tan β ≥ 1 the model always does worse than SM.
 Best fit corresponds to decoupling limit
- For $\tan \beta \le 1$ there can be significant improvements when π

 $\tan \beta \simeq 0 \quad \alpha \simeq \frac{\pi}{2}$

 Couplings are reduced, but the W and top quark can be made to constructively interfere sick limit – landau poles

Cynical View

- Higgs is half full of BSM? or
- Higgs is half full of SM?

New physics should cancel the quadratic divergence, so the new particles must be light

We observe SM-like rates, so the new particles must be heavy

Summary

 Measuring Higgs coupling may soon give us strong hints favoring or disfavoring particular models beyond the Standard Model

$$L = c_{V} \frac{2m_{W}^{2}}{v} W_{\mu}^{+} W_{\mu}^{-} + c_{V} \frac{2m_{W}^{2}}{v} Z_{\mu} Z_{\mu} - c_{b} \frac{m_{b}}{v} h \, \bar{b}b - c_{\tau} \frac{m_{b}}{v} h \, \bar{\tau}\tau$$
$$+ c_{g} \frac{\alpha_{s}}{12 \pi v} h \, G_{\mu\nu}^{a} G_{\mu\nu}^{a} + c_{\gamma} \frac{\alpha}{\pi v} h \, A_{\mu\nu} A_{\mu\nu} + c_{\chi} h \bar{\chi}\chi$$

 Effective theory approach provides a robust framework to study this problem