ATLAS searches for 3rd generation squarks and direct gaugino/slepton productions

Xavier Portell (CERN)

On behalf of the ATLAS collaboration

"Natural" scenario

If SUSY has to solve the gauge-hierarchy problem, the 3rd generation particles are bound to be relatively light and the gluino not too far away

Production and challenges

Direct gaugino/slepton production

- Low cross sections: weak production
- Make use of leptonic final states to reduce backgrounds (in general, low branching ratios)

- contribution (need b-/t-quark in the initial state)
- Large backgrounds: need dedicated analyses per topology.

This talk cover R-parity conserving searches only

Large (increasing) activity

General strategy

Technique

Most analyses follow cut & count approach

Background strategy

- QCD multijet backgrounds: data-driven
 - O-lepton: smearing technique with jet resolution function
 - → >=1-lepton: matrix method ("loose"-->"tight" with efficiencies taken from dedicated regions)
- Major backgrounds: semi data-driven
 - Define a control region (CR) for each of the backgrounds to test MC performance
 - Control region kinematically close to signal region (take into account signal contamination)
 - Normalise MC yields to data
 - Transfer factor from CR to signal region (SR) subtracting other backgrounds in the region
 - Systematics reduced due to ratio SR/CR
- Minor backgrounds: MC-only estimation

Interpretation

Reduced spectra -> simple models (different combinations)

Some common variables:

- ✓ EtMiss
- ✓ HT: scalar sum of jets
- m_{eff}: scalar sum of EtMiss and jets

ATLAS searches for gluinomediated stop/sbottom production

Many different decays considered:

On-shell: $\tilde{q} \rightarrow b\tilde{b}$ / $\tilde{q} \rightarrow \tilde{t}t$

Off-shell: $\tilde{q} \rightarrow tb\tilde{\chi}_1^- / \tilde{q} \rightarrow t\bar{t}\tilde{\chi}_1^0 / \tilde{q} \rightarrow b\bar{b}\tilde{\chi}_1^0$

SR0-A1: \geq 1 b-tag, m_{eff}>500 GeV

SRO-B1: \geq 1 b-tag, m_{sff}>700 GeV

SRO-C1: \geq 1 b-tag, m_{eff}>900 GeV

SR0-A2: ≥2 b-tag, m_{eff}>500 GeV

SR0-B2: ≥ 2 b-tag, $m_{eff} > 700$ GeV

SR0-C2: \geq 2 b-tag, m_{aff}>900 GeV

Gluino-med. \tilde{t}/\tilde{b} : 0-/1-lepton

Two channels considered

O-lepton --> sbottom dominated decays

- ≥3 jets and dedicated QCD removal cuts
- 6 SRs defined (mass differences)

7

1-lepton --> stop dominated decays

- ≥4 jets with at least 1 b-tag
- m_{_}(lepton,EtMiss)>100 GeV
- 2 SRs defined (mass differences)

SR1-D: m_{eff} >700 GeV

SR1-E: EtMiss>200 GeV and m_{off}>700 GeV

Main backgrounds: ttbar and W+hf (heavy flavour)

ttbar estimated using 1lepton and low m_T (other cuts the same) and defining transfer factors

Multijets: smearing or matrix method

Theoretical uncertainties dominate

Gluino-med. \tilde{t}/\tilde{b} : 2-leptons

Targetting gluino-mediated stop production

Expected 4 tops in the final state --> same-sign (SS) leptons

Main backgrounds:

- ✓ "Fake" leptons from jets: estimated using matrix method
- ✓ Charge misidentification: use SS |m(II)-mZ| < 15 GeV</p>
- ✓ ttbar+X: from MC (dominant background and dominates the uncertainty)

(X=jets, W, Z, bbbar...)

	SR1	SR2
$t\bar{t}$ +X	0.37 ± 0.26	0.21 ± 0.16
Diboson	0.05 ± 0.02	0.02 ± 0.01
	0.34 ± 0.20	
Charge mis-ID		
Total SM	0.84 ± 0.33	0.27 ± 0.24
Observed	0	0

≥ 4 jets (pT>50 GeV)

2 SRs defined

SR1: EtMiss>150 GeV SR2: EtMiss>150 GeV and m_(lepton, EtMiss)>100 GeV

Gluino-med. 3 b-jets

Exploit presence of b-jets to reduce backgrounds (not many SM processes with 3 b-jets)

- ✓ Cuts to be above trigger threshold and reduce QCD multijets.
- √3 b-tags with different Operating Points (OP)
- ✓ Defined 5 SRs: EtMiss and m_{aff}

Common criteria: lepton veto, $p_T^{h} > 130 \text{ GeV}$,	
≥ 3 b-jets, $E_{\rm T}^{\rm miss}/{\rm m_{\rm eff}} > 0.2$, $\Delta\phi_{\rm min} > 0.4$	

		,	1 /	. ,	
	SR	N_J	$E_{ m T}^{ m miss}$	$m_{ m eff}$	b-tag OP
S	R4-L	≥ 4j	>160 GeV	>500 GeV	60%
SI	R4-M	$\geq 4j$	>160 GeV	>700 GeV	60%
S	R4-T	$\geq 4j$	>160 GeV	>900 GeV	70%
S	R6-L	≥ 6j	>160 GeV	>700 GeV	70%
S	R6-T	≥ 6j	>200 GeV	>900 GeV	75%

Background strategy

MC-driven Transfer Factor (TF): from 2 to >=3 b-tags

CRs: same cuts as in SRs but EtMiss>160 GeV, meff>500 GeV and exactly 2 b-tags

Validations:

- 1) Procedure repeated requiring 1-lepton (m₋<100 GeV)
- 2) Use a data-driven method (~matrix method with b-tags)

CR	<i>tī</i> +jets	others	SM	data
CR4-60	329 ± 92	66 ± 26	395 ± 115	402
CR4-70	489 ± 125	102 ± 37	590 ± 160	515
CR6-70	38 ± 11	7 ± 3	45 ± 13	46
CR6-75	40 ± 12	10 ± 4	50 ± 15	52

Gluino-med. 3 b-jets: results

SR	<i>tī</i> +jets	others	SM	data
SK	(MC)			
SR4-L	33.3 ± 7.9	11.1 ± 4.9	44.4 ± 10.0	45
JK4-L	(32.6 ± 15.4)			
SR4-M	16.4 ± 4.1	6.6 ± 2.9	23.0 ± 5.4	14
31X4-1VI	(16.1 ± 8.4)			
SR4-T	9.7 ± 2.1	3.8 ± 1.6	13.3 ± 2.6	10
31(4-1	(11.4 ± 5.4)			
SR6-L	10.3 ± 3.3	2.4 ± 1.4	12.7 ± 3.6	12
SK0-L	(10.0 ± 6.2)			
SR6-T	8.3 ± 2.4	1.6 ± 1.1	9.9 ± 2.6	8
310-1	(7.9 ± 5.3)			

Gluino-mediated limits

ATLAS searches for direct stop/sbottom production

SM Total

Z+hf Others

top, W+hf

Direct sbottom production search

Exploiting the "boost-corrected contransverse mass" m_{CT} variable:

$$m_{CT}^2 = [E_T(b_1) + E_T(b_2)]^2 - [\vec{p_T}(b_1) - \vec{p_T}(b_2)]$$

G. Polesello et al, JHEP 03, 030 (2010)

Expect endpoint at:

1-lepton, 2-jet

The higher the LSP, the lower the endpoint (ttbar: ~135 GeV)

- Require exactly two jets with p₋>50 GeV (leading: $p_{\tau} > 130 \text{ GeV}$)
- EtMiss >130, EtMiss/meff and min. $\Delta\phi$ (jet, EtMiss)
- No leptons
- $m_{CT} > 100/150/200$ GeV

Dominant backgrounds:

Low m_{cr}: ttbar

High m_{CT} : Z/W+hf and ttbar

Control Z+hf in 2-lepton region (Z mass peak)

Direct sbottom: results

Good agreement between data and expectations in all the signal regions

m_{CT} (GeV)	top, Wbb	Zbb	Others	Total SM	Data
0	67 ± 10	23 ± 8	3.6 ± 1.5	94 ± 16	96
100	36 ± 10	23 ± 9	3.1 ± 1.6	62 ± 13	56
150	12 ± 5	12 ± 6	2.7 ± 0.9	27 ± 8	28
200	3.2± 1.6	3.9 ± 3.2	1.0 ± 0.9	8.1± 3.5	10

Stop phenomenology

Rich phenomenology:

- Mass difference: stop and LSP
- ✔ Presence of other sparticles (e.g. charginos, neutralino2, sleptons...) in between.

Stop decay preference (general):

- top+LSP if kinematically allowed (and gauginos not around)
- chargino+b if chargino is present
- virtual W If chargino is not present
 - charm+LSP *as a last option, via loop*

Other options (not represented) are also possible if sparticles available: chi02, sleptons...

Some theoretical models offer different phenomenology: GMSB...

General strategy for 4.7 fb⁻¹

The large number of topologies require a dedicated strategy to cover the maximum number of

possibilities in a coherent way.

Challenge: large SM background and soft objects

2-lepton + jets (very light stop) (4.7 fb⁻¹) ATLAS-CONF-2012-059

http://cdsweb.cern.ch/record/1453787

b-jets + 1-2 lep. (light stop) (4.7 fb⁻¹) ATLAS-CONF-2012-070

http://cdsweb.cern.ch/record/1460267

Challenge: signatures mimic ttbar decay

Challenge: low cross sections

2-leptons + jets (heavy stop) (4.7 fb⁻¹) ATLAS-CONF-2012-071

http://cdsweb.cern.ch/record/1460268

O-lepton + jets (heavy stop) (4.7 fb⁻¹) ATLAS-CONF-2012-074

http://cdsweb.cern.ch/record/1460271

1-lepton + jets (heavy stop) (4.7 fb⁻¹) ATLAS-CONF-2012-073 http://cdsweb.cern.ch/record/1460270

Very light stop: 2-leptons

Explore very light stop masses.

- Use dileptons: e (p_{τ} >17 GeV) and μ (p_{τ} >12 GeV)
- Use m_{||}
- \bullet >=1 jets: p_{T} >25 GeV
- $_{\text{o}}$ Upper cut on the lepton p $_{_{\rm T}}$ (<30 GeV) and m $_{_{\rm II}}\!>\!20$ GeV
- EtMiss>20 GeV and EtMiss significance > 7.5 GeV^{1/2}

Main backgrounds: ttbar and Z+jets

Minor backgrounds:

- ✓ single top, diboson, W+jets and Z to emu (from taus): Estimated directly from MC
- Multijet: template fitting method (~negligible)

- Top CR: same cuts but require at least one b-tagged jet
- Z CR: require ee and μμ within Z mass window (81<m_{||}<101 GeV)

Very light stop: results

Results

	ee	eμ	$\mu\mu$	all
$t\bar{t}$	$44 \pm 4 \pm 5$	$139 \pm 7 \pm 22$	$111 \pm 8 \pm 10$	$293 \pm 12 \pm 34$
Z/γ^* +jets	$5 \pm 1 \pm 2$	$23 \pm 2 \pm 8$	$48 \pm 16 \pm 27$	$76 \pm 16 \pm 27$
Single top	$3 \pm 0.5 \pm 1$	$12 \pm 1 \pm 2$	$12 \pm 1 \pm 2$	$28 \pm 2 \pm 5$
W+jets	$3 \pm 3 \pm 3$	$5 \pm 2 \pm 1$	$6 \pm 2 \pm 1$	$13 \pm 3 \pm 3$
Diboson	$4 \pm 0.4 \pm 0.5$	$9 \pm 0.7 \pm 2$	$10 \pm 0.7 \pm 1$	$22 \pm 1 \pm 3$
multijet	$2.9^{+3.2}_{-2.9} \pm 2.2$	$2.0 \pm 1.4 \pm 0.3$	$3.0 \pm 2.8 \pm 0.3$	$8.0 \pm 3.7 \pm 2.3$
Total	$61 \pm 6 \pm 6$	$189 \pm 8 \pm 21$	$190 \pm 19 \pm 31$	$440 \pm 21 \pm 43$
Data	48	188	195	431
$\sigma_{\rm vis}$ (exp. limit) [fb]	4.9	11.1	16.2	22.0
$\sigma_{\rm vis}$ (obs. limit) [fb]	3.3	10.9	16.9	21.0

Reaching the low p_T regime for the lepton (neutralino closer to chargino)

Lepton p_T is similar to the top and the cross section is lower

http://cdsweb.cern.ch/record/1460267

Light stop: 1-/2-lepton channels

Explore stop masses below and around the top mass Assume:

$$\tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm} \rightarrow b \tilde{\chi}_1^0 W^{\pm^{(*)}} \rightarrow b \tilde{\chi}_1^0 l \nu$$
100% 100% ~26% (no hadr taus)

 \longrightarrow Determines the b-jet p₊

 \longrightarrow Determines the lepton p_{T}

-lepton

• Only 1-lepton: e (p₊>25 GeV) and μ (p₊>20 GeV)

- Top mass objects: >=4 jets (2 b-tagged) and EtMiss
- m_{_}(lepton, EtMiss)>30 GeV
- Exploit hadronic top mass (upper cut)

iebrous

- Exactly 2 OS leptons: ee, μμ, eμ
- Top mass objects: >=2 jets (1 b-tagged) and EtMiss
- Exploit m(IIjj) distribution (upper cut)

Main backgrounds: top and boson+heavy flavour Controlled in dedicated signal-suppressed regions

Final discriminating variable:

$$\sqrt{s}_{min}^{(sub)} = \left[\left(\sqrt{m_{sub}^2 + p_{T,sub}^2} + \sqrt{m_{miss}^2 + E_{T,miss}^2} \right)^2 - \left(p_{T,sub} + p_{T,miss} \right)^2 \right]^{1/2}$$
P. Konar et al, JHEP 1106:041,2011

It is the global minimum mass compatible with the hard-scattering (built from Mandelstam variables)

Expect peak below the 2*m_{top} when:

$$\sim$$
 m_{stop}top

$$\sim$$
 m_{stop}-m_{LSP}top

Light stop: results

Results ——	1	Number of events				
Process	1LSR	2LSR1	2LSR2			
Тор	$24 \pm 3 \pm 5$	$89 \pm 6 \pm 10$	$36 \pm 2 \pm 5$			
W+jets	$6\pm1\pm2$	n/a	n/a			
Z+jets	$0.5 \pm 0.3 \pm 0.3$	$11 \pm 4 \pm 3$	$3 \pm 1 \pm 1$			
Fake leptons	$7\pm1\pm2$	$12 \pm 5 \pm 11$	$6\pm4\pm4$			
Others	$0.3 \pm 0.1 \pm 0.1$	$2.7 \pm 0.9 \pm 0.7$	$0.9 \pm 0.2 \pm 0.5$			
Total SM	38±3±7	$115 \pm 8 \pm 15$	$46 \pm 4 \pm 7$			
Data	50	123	47			

The sensitivity of the two analyses is combined

ATLAS Preliminary

80

75

70

55

Heavy stop: 0-lepton

Explore stop masses above top with 0-lepton Assume:

$$\tilde{t}\bar{\tilde{t}} \to \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} t \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \bar{t}$$

Exploiting the fact that exist two hadronic top decays with significant EtMiss

- $_{\bullet}$ >= 6 jets (p $_{_{\top}}$ >130 GeV and 30 GeV) (>=1 b-tag)
- Several topological cuts applied (EtMiss angles, tracking vs calorimeter information, m....)
- Reduce taus with tracking information and m₊

2 SRs defined:

A: EtMiss>150 GeV

B: EtMiss>260 GeV

Minimum AR technique

Determines the p₊ spectrum of the final state

Backgrounds:

Dominated by ttbar (esp. taus)

Controlled with lepton:

- √ 60<m_⊤(I,EtMiss)<120 GeV
 </p>
- ✓ >=5 jets
- Assume lepton is a jet

Heavy stop: 0-lepton results

ttbar is the only significant background

No significant excess found. Systematic uncertainties are challenging. Dominated by theoretical uncertainties in ttbar (large jet multiplicity)

Heavy stop: 1-lepton

Explore stop masses above top with 1-lepton Assume:

$$\tilde{t}\bar{\tilde{t}} \to \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} t \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \bar{t}$$

- One lepton (veto a second)
- $_{\bullet}$ >= 4 jets p_T>(80/60/40/25) GeV (>=1 b-tag)
- Δφ(2 leading jets, EtMiss)>0.8
- Require 130<m_{iii}<205 GeV</p>

Determines the p_T spectrum of the final state. Lepton provides extra handles.

Increase thresholds

		iiici casc	5 1111 (511)	Olas	
	. —		U		-
Requirement	SR A	SR B	SR C	SR D	SR E
$E_{\rm T}^{\rm miss}$ [GeV] >	150	150	150	225	275
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}}~[{\rm GeV^{1/2}}]>$	7	9	11	11	11
$m_{\rm T}$ [GeV] >	120	120	120	130	140

Backgrounds

ttbar
W+jets
Multijets, Z, ttbar+X (minor)

Perform simultaneous fit in three regions to normalise:

- ✓ Top 2-I: with relaxed jet and m_⊤ criteria
- ▼ Top 1-I: with 60<m₊<90 GeV
 </p>
- ✓ W: anti-b-tag

Dominating systematics: theory uncertainties on ttbar modelling

Heavy stop: 1-lepton results

Regions	SR A	SR B	SR C	SR D	SR E
$t\bar{t}$	36 ± 5	27 ± 4	11 ± 2	4.9 ± 1.3	1.3 ± 0.6
$t\bar{t} + V$, single top	2.9 ± 0.7	2.5 ± 0.6	1.6 ± 0.3	0.9 ± 0.3	0.4 ± 0.1
V+jets, VV	2.5 ± 1.3	1.7 ± 0.8	0.4 ± 0.1	0.3 ± 0.1	0.1 ± 0.1
Multijet	$0.4^{+0.4}_{-0.4}$	$0.3^{+0.3}_{-0.3}$	$0.3^{+0.3}_{-0.3}$	$0.3^{+0.3}_{-0.3}$	$0.0^{+0.3}_{-0.0}$
Total background	42 ± 6	31 ± 4	13 ± 2	6.4 ± 1.4	1.8 ± 0.7
Signal benchmark 1 (2)	25.6 (8.8)	23.0 (8.1)	17.5 (6.9)	13.5 (6.2)	7.1 (4.5)
Observed events	38	25	15	8	5
p ₀ -values	0.5	0.5	0.32	0.24	0.015

Diagonal: getting closer to ttbar topologies

Medium stop: 2-leptons

Explore stop masses above top with 2-leptons Assume:

$$\tilde{t}\bar{\tilde{t}} \to \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} t \tilde{\chi}_{\mathbf{1}}^{\mathbf{0}} \bar{t}$$

Determines how soft is the final state

Exploiting the m_{T_2} variable:

- ✓ Signal: kinematic edge around the stop-LSP mass difference
- ✓ Background (esp. top): sharp edge around W mass)

A. Barr et al, J. Phys. G29 (2003) 2343-2363

- Exactly two leptons with m(II)>20 GeV
- Two jets with p_{τ} >(50,25) GeV

- >=1 b-jet
- \bullet m_{||}<71 and >111 GeV
- m_{T2} >120 GeV
- m_{T2} >120 GeV

Backgrounds

Z+jets: use Z mass peak

QCD multijets: matrix method

Diboson and ttbar+X: MC-only

Systematics dominated by theory uncertainties. Larger in the DF case because top relative contribution is larger.

Medium stop: 2-leptons results

- Results		
	SF	DF
Z/γ^* + jets	1.2 ± 0.5	-
$(Z/\gamma^*+jets scale factor)$	(1.27)	-
tt	0.23 ± 0.23	0.4 ± 0.3
(tt scale factor)	(1.21)	(1.10)
$t\bar{t}W + t\bar{t}Z$	0.11 ± 0.07	0.19 ± 0.12
WW	$0.01^{+0.02}_{-0.01}$	0.19 ± 0.18
WZ + ZZ	0.05 ± 0.05	0.03 ± 0.03
Wt	$0.00^{+0.17}_{-0.00}$	$0.10^{+0.18}_{-0.10}$
Fake leptons	$0.00^{+0.14}_{-0.00}$	$0.00^{+0.08}_{-0.00}$
Total SM	1.6 ± 0.6	0.9 ± 0.6
Signal, $m(\tilde{t}_1) = 300 \text{ GeV}, m(\tilde{\chi}_1^0) = 50 \text{ GeV}$	2.15	3.73
Signal, $m(T) = 450 \text{ GeV}$, $m(A_0) = 100 \text{ GeV}$	3.10	5.78
Observed	1	2
95% CL limit on $\sigma_{\rm vis}^{\rm obs}$ [fb]	0.86	1.08
95% CL limit on $\sigma_{\rm vis}^{\rm exp}$ [fb]	0.89	0.79

Events / 5 GeV different flavor 10³ WW+ZZ+WZ Fake leptons $t\bar{t}W+t\bar{t}Z+Wt$ $m(t,\tilde{\chi})=(300,50)$ GeV m(T,A)=(450,100) GeV 10^{2} **ATLAS** Preliminary 10 Data/MC m_{T2} [GeV] $\widetilde{t},\widetilde{t}$, production, $\widetilde{t}_i \rightarrow \widetilde{\chi}^0 t$

The SF and DF categories are combined to maximise the sensitivity

Note: signature is identical to T (spin ½ partner of the top quark). Interpretation also in this theory. Better limits in these scenarios due to 6 times larger cross sections due to spin effects (see backup).

Data 2011 SM Background Z+iets

Stop searches: summary

The different dedicated strategies developed help covering most of the stop mass range for which there is reasonable sensitivity.

The absence of significant excesses is translated into observed 95% CL exclusion limits.

ATLAS searches for direct gaugino/slepton production

Benchmark for direct gaugino: 3-lepton

Benchmark for slepton: 2-lepton

But 2-lepton is also important for direct gaugino searches

Direct gaugino/slepton: 2-leptons

Explore scenarios with sleptons (BR to leptons enhanced) Many different possibilities:

Targeted Process	Signal Region				
Two Lepton Final States					
$\tilde{l}^{\pm}\tilde{l}^{\mp} \rightarrow (l^{\pm}\tilde{\chi}_{1}^{0}) + (l^{\mp}\tilde{\chi}_{1}^{0})$	$SR-m_{T2}$				
$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} \rightarrow (l^{\pm} \nu \tilde{\chi}_1^0) + (l^{\mp} \nu \tilde{\chi}_1^0)$	$SR-m_{T2}$, $SR-OSjveto$				
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{i} \to (l^{\pm}l^{\mp}\tilde{\chi}_{1}^{0}) + (q\bar{q}'\tilde{\chi}_{1}^{0})$	SR-2jets				
Three Lepton Final States					
$\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{\pm} \to (l^{\pm}l^{\mp}\tilde{\chi}_{1}^{0}) + (l^{\pm}\nu\tilde{\chi}_{1}^{0})$	SR-OSjveto, SR-SSjveto				

- SR-m_{T2}

 ✓ 2 OS leptons
- ✓ Z-veto
- ✓ No jets
- ✓ EtMiss^{Rel}>40 GeV
- $_{\sim}$ m_{$_{T_2}$}>90 GeV

SR-OSjveto

- ✓ 2 OS leptons
- ✓ Z-veto
- ✓ No jets
- ✓ EtMiss^{Rel}>100 GeV

SR-SSjveto

- ✓ 2 SS leptons
- ✓ No jets
- ✓ EtMiss^{Rel}>100 GeV

SR-2-jets

- ✓ 2 OSSF leptons
- ✓ Z-veto
- ✓ >=2 jets (no b-jet)
- ✓ EtMiss^{Rel}>50 GeV
- ✓ m_{cT}-veto

2-leptons background validation

Different techniques used depending on the background:

- Top background and Z+X (X=jets,W,Z) is normalised to data in the CRs. Used transfer factor.
- WW from MC
- Reducible background (W+jets and multijets): matrix method

Every SR has an associated CR. Just showing 2 examples

2-lepton: results

Direct gaugino: 3-leptons

Explore scenarios with sleptons (BR to leptons enhanced)

slepton in the middle between the gauginos. *Including* sneutrinos (50% BR)

- Exactly 3 leptons (at least one OSSF pair)
- EtMiss>75 GeV

Many different trigger combinations used to maximise sensitivity

SR1a

- ✓ Z-depleted (no OSSF with mass within 10 GeV of Z)
- ✓ 0 b-jets
- ✓ lepton p_>10 GeV

Low mass splittings

SR1b

- ✓ Z-depleted (no OSSF with mass within 10 GeV of Z)
- ✓ 0 b-jets
- ✓ lepton p_¬>30 GeV
- $_{\sim}$ m_{$_{\rm T}$}>90 GeV

Large mass splittings

SR2

- ✓ Z-enriched (OSSF within 10 GeV of Z)
- ✓ lepton p_¬>10 GeV

On-shell Z decays

Two main types of backgrounds:

Reducible: a jet is **misidentified** as a lepton (top, WW or W/Z with jets/photons)

Matrix Method (leading lepton to be real) Efficiencies and rejections in dedicated regions

Irreducible: all three leptons are real (WZ, ZZ and ttbar+W/Z)

Estimated with MC if minor. For WZ, semi datadrigen approach (fit in a CR)

20% purity of W

CR (WZ): 3-leptons (at least one OSSF compatible with Z), EtMiss<50 GeV, no b-jet and m_{τ} >40 GeV

3-leptons background validation

3-lepton: results

Close to the diagonal soft objects (plus sleptons in the middle...)

Interpretation in pMSSM scenario:

M1 and M2: common gaugino masses μ: Higgs mass parameter tanβ: ratio of Higgs vevs

Interpretation guide:

- \checkmark σ: increases with M2 and μ
- Mixing: increases at low M1; decreases at low M2 and large μ
- ✓ tanβ: almost no impact

Summary and conclusions

- With large datasets, searches for 3rd generation SUSY particles are becoming more popular given their role in the "natural SUSY spectrum".
- Larger datasets also opens the door to scrutinize the SUSY electroweak sector.
- ATLAS has defined a comprehensive strategy to cover different scenarios and limits extending previous constraints have been released:

Don't get disappointed too fast: the different searches are currently on-going... The Higgs has already been found and now is the turn of SUSY!

Backups

Gluino-mediated: 0-/1-lepton

$_{ m SR}$	Top	W/Z	multi-jet/	Total	Data
			di-boson		
SR0-A1	705 ± 110	248 ± 150	53 ± 21	1000 ± 180	1112
	(725)				
SR0-B1	119 ± 26	67 ± 42	7.3 ± 4.7	190 ± 50	197
	(122)				
SR0-C1	22 ± 8	16 ± 11	1.5 ± 1	39 ± 14	34
	(22)				
SR0-A2	272 ± 52	23 ± 15	21 ± 12	316 ± 54	299
	(212)				
SR0-B2	47 ± 10	4.5 ± 3	2.8 ± 1.7	54 ± 11	43
	(37)				
SR0-C2	8.5 ± 3	0.8 ± 1	0.5 ± 0.4	9.8 ± 3.2	8
	(6.6)				

SR	SM background	Data
SR1-D(e)	$39 \pm 12 \ (39)$	43
SR1-D (μ)	$38 \pm 14 \ (37)$	38
SR1-E (e)	$8.1 \pm 3.4 \ (7.9)$	11
SR1-E (μ)	$6.3 \pm 4.2 \; (6.1)$	6

Direct stop in GMSB

First search for direct stop @ LHC

$$ilde{t}_1 o b ilde{\chi}_1^\pm o b ilde{\chi}_1^0 W^{\pm^{(*)}} o b ilde{\chi}_1^0 l
u$$
 The LSP is the gravitino

- NLSP higgsino-like: decays via Z or Higgs and chargino decay products very soft (mass degeneracy)
- Use decay products from Z or Higgs
- 2 jets (>=1 b-tag), 2 opposite-sign same flavour (OSSF) leptons within 86 and 96 GeV and large EtMiss
- Two signal regions: EtMiss>50 and 80 GeV

Events / 30 GeV	10 ³	ATLAS L dt = 2.		s = 7 Te	V	Data 201 SM Total top Z+hf fake-lept Others T 250GeV		eV
	0	50	100	150	200	250	300 <i>E</i> _T ^{miss} [G	350 ieV]

E ^{miss} >	$50 { m GeV}$	$80 { m GeV}$
top Z+hf fake lepton Others	64.3 ± 7.7 24 ± 16 2.4 ± 0.9 1.2 ± 1.2	34.8 ± 5.0 4.2 ± 3.2 1.1 ± 0.6 0.6 ± 0.6
Data (2.05 fb ⁻¹) Total SM	86 92±19	43 40.7 ± 6.0

sqrt(s)_{min} variable (light stop)

Main discriminating variable: sqrt(s)_{min} (sub)

- Minimum mass compatible with subsystem
 - http://arxiv.org/abs/1006.0653v1
- Subsystem defined from $t\bar{t}$ decay products
 - M = 0 due to neutrinos
 - $\sqrt{s}_{min}^{(sub)}$ expected to peak at $\sim m(t\bar{t}) = 2m(t)$

Expect to exclude below the top and above the top if mass of neutralino is high (peak shifted to the left due to M = 0)

$$\sqrt{s_{min}^{(sub)}}(\cancel{M}) = \left\{ \left(\sqrt{M_{(sub)}^2 + P_{T(sub)}^2} + \sqrt{\cancel{M}^2 + \cancel{P_T}^2} \right)^2 - \left(\overrightarrow{P}_{T(sub)} + \overrightarrow{\cancel{P_T}} \right)^2 \right\}^{\frac{1}{2}}$$

Light stop: extra information

Medium stop: 2-leptons

Extra interpretation on T (spin ½ partner of the top channel)

2-lepton direct gaugino/slepton

$SR-m_{T2}$							
	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	all	SF		
Z+X	$3.2 \pm 1.1 \pm 1.7$	$0.3 \pm 0.1 \pm 0.2$	$3.6 \pm 1.3 \pm 1.7$	$7.1 \pm 1.7 \pm 2.1$	$6.8 \pm 1.7 \pm 2.1$		
WW	$2.3 \pm 0.3 \pm 0.4$	$4.8 \pm 0.4 \pm 0.7$	$3.5 \pm 0.3 \pm 0.5$	$10.6 \pm 0.6 \pm 1.5$	$5.8 \pm 0.4 \pm 0.9$		
$t\bar{t}$, single top	$2.6 \pm 1.2 \pm 1.3$	$6.2 \pm 1.6 \pm 2.9$	$4.1 \pm 1.3 \pm 1.6$	$12.9 \pm 2.4 \pm 4.6$	$6.8 \pm 1.8 \pm 2.3$		
Fake leptons	$1.0 \pm 0.6 \pm 0.6$	$1.1 \pm 0.6 \pm 0.8$	$-0.02 \pm 0.01 \pm 0.05$	$2.2 \pm 0.9 \pm 1.4$	$1.0 \pm 0.6 \pm 0.6$		
Total	$9.2 \pm 1.8 \pm 2.5$	$12.4 \pm 1.7 \pm 3.1$	$11.2 \pm 1.9 \pm 3.0$	$32.8 \pm 3.2 \pm 6.3$	$20.4 \pm 2.6 \pm 3.9$		
Data	7	9	8	24	15		
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	1.6 (1.9)	1.7 (2.2)	1.7 (2.1)	2.6 (3.8)	2.0 (2.7)		
			OSjveto				
	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$		11		
Z+X	$4.5 \pm 1.2 \pm 1.2$	$3.0 \pm 0.9 \pm 0.5$	$4.7 \pm 1.1 \pm 1.2$		$.8 \pm 1.8$		
WW	$8.8 \pm 1.8 \pm 4.4$	$20.9 \pm 2.6 \pm 6.2$	$13.3 \pm 1.9 \pm 3.5$		$.7 \pm 12.2$		
$t\bar{t}$, single top	$21.1 \pm 2.3 \pm 4.2$	$47.7 \pm 3.4 \pm 20.5$	$27.5 \pm 2.5 \pm 9.0$		$.8 \pm 29.5$		
Fake leptons	$2.9 \pm 1.2 \pm 1.2$	$6.9 \pm 1.8 \pm 2.6$	$0.4 \pm 0.6 \pm 0.3$	$10.3 \pm 2.2 \pm 4.1$			
Total	$37.2 \pm 3.3 \pm 6.4$	$78.5 \pm 4.7 \pm 20.9$	$45.9 \pm 3.4 \pm 9.4$	$161.7 \pm 6.7 \pm 30.8$			
Data	33	66	40	139			
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	3.5 (4.0)	8.1 (9.6)	4.3 (5.1)	11.4 (14.1)			
			-2jets				
	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^+\mu^-$	SF			
Z+X	$3.8 \pm 1.3 \pm 2.7$	_	$5.8 \pm 1.6 \pm 3.9$	9.6 ± 2			
WW	$6.4 \pm 0.5 \pm 4.3$	_	$8.4 \pm 0.6 \pm 5.7$	$14.8 \pm 0.7 \pm 9.9$			
$t\bar{t}$, single top	$14.8 \pm 1.9 \pm 9.2$	_	$22.1 \pm 2.1 \pm 20.7$	$36.9 \pm 2.9 \pm 29.6$			
Fake leptons	$2.5 \pm 1.2 \pm 1.5$	_	$1.7 \pm 1.3 \pm 0.8$	$4.2 \pm 1.8 \pm 2.3$			
Total	$27.5 \pm 2.6 \pm 10.6$	_	$37.9 \pm 3.0 \pm 21.0$	$65.5 \pm 4.0 \pm 31.8$			
Data	39	_	39	78			
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	7.1 (5.1)	_	9.7 (9.6)	15.6 (13.9)			
SR-SSjveto SR-SSjveto							
	e^+e^-	$e^{\pm}\mu^{\pm}$	$\mu^+\mu^-$	all			
Charge flip	$0.49 \pm 0.03 \pm 0.17$	$0.34 \pm 0.02 \pm 0.11$		$0.83 \pm 0.04 \pm 0.18$			
Dibosons	$0.62 \pm 0.13 \pm 0.18$			$3.50 \pm 0.31 \pm 0.54$			
Fake leptons	$3.2 \pm 0.9 \pm 1.7$	$2.9 \pm 0.9 \pm 1.9$	$0.6 \pm 0.6 \pm 0.3$		$.4 \pm 3.8$		
Total	$4.3 \pm 0.9 \pm 1.7$	$5.1 \pm 1.0 \pm 1.9$	$1.5 \pm 0.6 \pm 0.4$	$11.0 \pm 1.5 \pm 3.9$			
Data	1	5	3	9			
$\sigma_{\rm vis}^{\rm obs(exp)}$ (fb)	0.8 (1.2)	1.5 (1.5)	1.3 (0.8)	2.0 (2.3)			

b-tagging in ATLAS

