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The pMSSM

e Scan over large SUSY parameter space,
searching for experimentally viable spectra

* The full MSSM has 105 new free parameters,
many of which are very strongly constrained
by flavor data

e Minimal flavor violation decreases scan
dimensionality without losing much generality

* Take sparticle mass matrices to be flavor
diagonal, with first two generations degenerate

e No new sources of CP violation



The pMSSM

* Together, these assumptions leave us with
the 19 free parameters of the

phenomenological MSSM
° Ml’ Mz’ Ms’ H, lan 'B ’ MA’ q1,3’ U1,3’ d1,3’ 1,3
e .
1,3 t,b, T

« Can also add gravitino, with mass m s

* Generate random points In this parameter
space, and test vs. experimental constraints

* |nvestigate properties of resulting models
(Cahill-Rowley, Hewett, Hoeche, Al, Rizzo, 1206.4321)



Parameter scan ranges

50 GeV < [M | < 4 TeV

100 GeV < MA, |, e <4 TeV

100 GeV <M, p[ <4 TeV 400GeV<q,u,d <4TeV

400 GeV < M3 <4 TeV

200GeV=sq,u,d <4 TeV

l1<tan <60
leV=m_ <1TeV(log prior)

A |<4TeV

Bottom-up approach: thermal gravitino production not
considered (low reheating temperature, additional
source of entropy in early universe) in gravitino LSP
model set



Model set generation

Generate spectra for 3 - 10° (7 - 10°) points in 19 (20)
dimensional pMSSM parameter space with SOFTSUSY,
compare with SuSpect, decay with
SDECAY/HDECAY/MadGraph/CalcHEP

Throw away models with tachyons, color/charge breaking
minima, unbounded scalar potentials

Require lightest neutralino (gravitino) to be LSP, and impose
upper bound on its thermal relic density (scaled NLSP relic
density)

Check against DM direct detection (cosmology), precision,
and flavor measurements

All charged sparticles > 100 GeV
Impose LHC stable particle, ¢ — 1T constraints as of 12/2011

2 - 10° models left in each set



Number of models / bin
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models survive at low end
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compressed spectra
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ATLAS MET searches
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full neutralino LSP set
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searches involving b-jets will constrain
light 3rd generation squarks



Number of models / bin
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A 125 GeV Higgs

Higgs-like particle
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A 125 GeV Higgs

e \We calculate
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h - yinthe pMSSM

1.6

1'4__ .o o Neutralino LSP

L I ] 1
0915 120 125 130 135

We consider 0.5 <R < 1.5 and Higgs mass (GeV)
123 GeV < m, < 127 GeV



A 125 GeV Higgs
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Neutralino LSP
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Higgs mass (GeV)
To get heavy Higgs, need large stop mixing X =A —p cot 3

Maximal mixing when X = V6 m



125 GeV nggs at the LHC

123 GeV <m < 127 GeV Neutrallno LSP
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Numbers of h - yyevents, h - ZZ events correlated!
Happens because all models are ~decoupled



125 GeV Higgs at the LHC

Neutralino LSP
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Other modes behave the same way because of decoupling



125 GeV Higgs at the LHC
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bb production is anti-correlated with other decay modes



Fine-tuning

 Measure sensitivity of electroweak symmetry
breaking scale to each pMSSM parameter p.

Barbieri and Giudice, Nucl.Phys. B306 (1988) 63

M, — i,

B /1 sin(26)
« A =0(logM?)/d(logp), 1 <i<19

myz

—miy, —mi, — 2/l

* Most sensitive to u and stop mass parameters,
but gluino mass enters at higher order

- Take maximum of all A to get fine-tuning A
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models with Higgs near 125 GeV
are more fine-tuned



Sources of fine-tuning

140000

Higgsino mass term is dominant
/ contribution to fine-tuning |
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Largest source of fine-tuning

Stop mass terms also important, but even with strong
coupling, loop-induced gluino contribution is less than wino FT



Number of models

Sources of fine-tuning

25000

A 125 GeV Higgs requires a
large value of the stop trilinear,
which makes a significant
contribution to fine-tuning
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Features of models with low FT

* Look at models with A < 100, Higgs near 125
GeV, and passing all existing constraints

* 13 (0) such models in neutralino (gravitino)

[ _|g
o _|g

generation squarks
e Gluino Is not real

Nt higgsinos, usually lig

Nt 3rd generation squar

fine-tuning

_SP model set; 33 (5) for A < 120

Nt WInos

KS, heavy 1st/2nd

y constrained at this level of



Sample spectrum
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Many possible cascades for light stops and sbottoms



Sample spectrum
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Sample spectrum
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Features of models W|th Iow FT
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Low FT models will be probed by upcoming XENON results



Outlook

* The pMSSM allows us to investigate
complete, realistic supersymmetric spectra at
the LHC and beyond

« 125 GeV Higgs production cross sections vary
depending on final state, and are sensitive to
nbb coupling

 Light stops in viable low FT models are
generically hard to see due to higgsino
cascades; to be probed eventually by direct
detection, but good to see new search
strategies being developed for LHC



Backup



Gravitino LSP cosmology

 No assumptions about early universe gravitino
cosmology, e.g. reheating temperature or
entropy production

e NLSP freezes out later

 Assume NLSP reaches its thermal relic
density, and consider out-of-equilibrium
decays to gravitino

* Gravitino LSP has very weak couplings, so no
dark matter detection constraints

 However, for a gravitino LSP, the NLSP can be
very long-lived



Gravitino LSP cosmology

 NLSP lifetimes between
10-2 and 105 S can aﬁeCt Constraints on neutralino NLSPs
BBN If decay products o, _n
are hadronic

] T T

Model Set
— BBN i
—— Diffuse Photon

* For lifetimes from 10° s
to 10* s, BBN is affected
even for electromagnetic

=
o
=]

energy injection ' o |
» Diffuse photon
ConStraintS become 1010'3 16'1 1|01 1|03 1|05 1|0"' 102 10 10 10 10V

. NLSP lifetime (s)
applicable for longer

lifetimes



Gravitino LSP cosmology
 Charged NLSPs living

IOnger than 103 S can Constraints on colored NLSPs
form bound states, Q_ _ht

modifying the rates of  *“r17 T T —
nuclear reactions and .| — gl found st o
affecting BBN

* Colored NLSPs form ) |
bound states even W |
earlier; any such NLSPs *} \ K/
living longer than ~200 s w! L . .
ruin BBN NLSP lifetime (s)

=
S

=
S
=}



Gravitino LSP cosmology

e Sneutrino NLSPs have

Sma” branChlng ratlos Constraints on sneutrino NLSPs
for decays that produce o _n
visible SM particles

* Neutrinos resulting from
sneutrino NLSP decays |

can also scatter off i ' \
leptons, giving |
leptons/mesons that NEE T

attect BBN 1°'io-sia-lGral\;iltm;enslt; 10 10° 100 108 10° 107

. . NLSP lifeti
« Diffuse photon/neutrino reime )

flux for longer lifetimes



Non-MET searches

1'[]5 3
1'[]4 3
1{]3 3

1{]2 3

Number of models / bin

1'[]1 3

10° - |-

| |
0.0 0.2 0.4 0.6 0.8 1.0
B, — py, x 10°

gravitino LSP (2.6% excluded)
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h - yyinthe pMSSM
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Gravitino LSP models tend to have lighter 1995 mass (GeV)

Higgses, but 125 GeV still quite viable



125 GeV Higgs at the LHC
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Can also look at vector boson fusion production WW - h - yy



125 GeV Higgs at the LHC
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BR for h — bb is anticorrelated with expected vy production



125 GeV Higgs at the LHC

I All models
o om, =125+2 GeV

104+ .
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10° |
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SUSY corrections to bb width reduce other branching ratios!



h — bb decoupling

M =T (1+23¢°"/g
+20897"/ g)

* |n certain limits, the
SUSY corrections
decouple very slowly,
and can remain large
for heavy sparticles

 These corrections
push up bb width,
decreasing all other
BR accordingly

Haber et al., hep-ph/0007006



pPMSSM/SM

r(h — bb)

h — bb decoupllng

123 GeV <m < 127 GeV Neutrallno LSP

e Near-maximal sbottom |
-2, . mixing with large tan B leads
' ' _ to slow decoupling of SUSY
correctlons to h — bb width |
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(A, —ptan B) /m(b,)



125 GeV nggs at the LHC
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gg width is affected by less than ~25% for
models with Higgs near 125 GeV



Sources of fine-tuning

Neutralino LSP
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Can also examine relative contributions of each parameter to FT



Sources of fine-tuning
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More sample spectra
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