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The pMSSM
● Scan over large SUSY parameter space, 

searching for experimentally viable spectra
● The full MSSM has 105 new free parameters, 

many of which are very strongly constrained 
by flavor data

● Minimal flavor violation decreases scan 
dimensionality without losing much generality

● Take sparticle mass matrices to be flavor 
diagonal, with first two generations degenerate

● No new sources of CP violation



   

The pMSSM
● Together, these assumptions leave us with 

the 19 free parameters of the 
phenomenological MSSM
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● Can also add gravitino, with mass m
3/2

● Generate random points in this parameter 
space, and test vs. experimental constraints

● Investigate properties of resulting models   
(Cahill-Rowley, Hewett, Hoeche, AI, Rizzo, 1206.4321)



   

Parameter scan ranges
● 50 GeV ≤ |M

1
| ≤ 4 TeV

● 100 GeV ≤ |M
2
, μ| ≤ 4 TeV

● 400 GeV ≤ M
3
 ≤ 4 TeV

● 1 ≤ tan β ≤ 60

● 1 eV ≤ m
3/2

 ≤ 1 TeV (log prior)

● 100 GeV ≤ M
A
, l, e ≤ 4 TeV

● 400 GeV ≤ q
1
, u

1
, d

1
 ≤ 4 TeV

● 200 GeV ≤ q
3
, u

3
, d

3
 ≤ 4 TeV

● |A
t,b,τ

| ≤ 4 TeV

Bottom-up approach: thermal gravitino production not 
considered (low reheating temperature, additional 
source of entropy in early universe) in gravitino LSP 
model set



   

Model set generation
● Generate spectra for 3 ∙ 106 (7 ∙ 105) points in 19 (20) 

dimensional pMSSM parameter space with SOFTSUSY, 
compare with SuSpect, decay with 
SDECAY/HDECAY/MadGraph/CalcHEP

● Throw away models with tachyons, color/charge breaking 
minima, unbounded scalar potentials

● Require lightest neutralino (gravitino) to be LSP, and impose 
upper bound on its thermal relic density (scaled NLSP relic 
density)

● Check against DM direct detection (cosmology), precision, 
and flavor measurements

● All charged sparticles > 100 GeV

● Impose LHC stable particle, φ → ττ constraints as of 12/2011

● 2 ∙ 105 models left in each set



   

ATLAS MET searches

models survive at low end 
because they have either light 

stops/sbottoms or 
compressed spectra
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Lightest colored sparticle (GeV)

full neutralino LSP set
7 TeV 1/fb

7 TeV 4.7/fb
8 TeV 5/fb

8 TeV 20/fb



   

ATLAS MET searches

searches involving b-jets will constrain 
light 3rd generation squarks

full neutralino LSP set
7 TeV 1/fb

7 TeV 4.7/fb
8 TeV 5/fb
8 TeV 20/fb

N
um

be
r 

of
 m

od
el

s 
/ 

bi
n

Lightest stop (GeV)



   

ATLAS MET searches

still room for light uncolored sparticles
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Lightest 1st/2nd generation charged slepton (GeV)

full neutralino LSP set
7 TeV 1/fb

7 TeV 4.7/fb
8 TeV 5/fb

8 TeV 20/fb



   

A 125 GeV Higgs

● Higgs-like particle 
seen near 125 GeV 
by both ATLAS and 
CMS

● Greatest significance 
obtained from 
diphoton channel

● Can we easily obtain 
such a Higgs in the 
pMSSM?



   

A 125 GeV Higgs

● We calculate 
σ(gg→h→γγ)

pMSSM/SM
 

in the narrow width 
approximation and 
call the ratio R

γγ

● Can do same for any 
other mode h → XX 
to obtain R

XX



   

h → γγ in the pMSSM

Higgs mass (GeV)

R
γγ

We consider 0.5 < R
γγ
 < 1.5 and

123 GeV < m
h
 < 127 GeV

Neutralino LSP

4.5%
14.8%



   

A 125 GeV Higgs

Higgs mass (GeV)

X
t /

 M
S

To get heavy Higgs, need large stop mixing X
t
 = A

t
 – µ cot β

Maximal mixing when X
t
 = √6 m

t

Neutralino LSP



   

125 GeV Higgs at the LHC
R

Z
Z

R
γγ

Numbers of h → γγ events, h → ZZ events correlated!
Happens because all models are ~decoupled

Neutralino LSP123 GeV < m
h
 < 127 GeV



   

125 GeV Higgs at the LHC
R

Z
Z

R
γγ

Other modes behave the same way because of decoupling

Neutralino LSP

123 GeV < m
h
 < 127 GeV

R
γγ

R
γγ

R
WW

R
ττ

R
Zγ



   

125 GeV Higgs at the LHC
R

bb

R
γγ

bb production is anti-correlated with other decay modes

Neutralino LSP123 GeV < m
h
 < 127 GeV



   

Fine-tuning

● Measure sensitivity of electroweak symmetry 
breaking scale to each pMSSM parameter p

i 
Barbieri and Giudice, Nucl.Phys. B306 (1988) 63

● A
i
 = ∂(log M

Z

2) / ∂(log p
i
), 1 ≤ i ≤ 19

● Most sensitive to  and stop mass parameters, 
but gluino mass enters at higher order

● Take maximum of all A
i
 to get fine-tuning 



   

Fine-tuning

Neutralino LSP
     with m

h
 = 125 ± 2 GeV

Gravitino LSP
     with m

h
 = 125 ± 2 GeV

models with Higgs near 125 GeV 
are more fine-tuned

∆
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Sources of fine-tuning

Stop mass terms also important, but even with strong 
coupling, loop-induced gluino contribution is less than wino FT
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Largest source of fine-tuning

Higgsino mass term is dominant 
contribution to fine-tuning

Neutralino LSP



   

Neutralino LSP
m

h
 = 125 ± 2 GeV

Sources of fine-tuning

A 125 GeV Higgs requires a 
large value of the stop trilinear, 

which makes a significant 
contribution to fine-tuning
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Largest source of fine-tuning



   

Features of models with low FT

● Look at models with ∆ < 100, Higgs near 125 
GeV, and passing all existing constraints

● 13 (0) such models in neutralino (gravitino) 
LSP model set; 33 (5) for ∆ < 120

● Light higgsinos, usually light winos
● Light 3rd generation squarks, heavy 1st/2nd 

generation squarks
● Gluino is not really constrained at this level of 

fine-tuning



   

Sample spectrum

Many possible cascades for light stops and sbottoms



   

Sample spectrum



   

Sample spectrum



   

Features of models with low FT

m
LSP

 (GeV)

R
 ×

 σ
S

I (
pb

)

Low FT models will be probed by upcoming XENON results

Cross section scaled to relic density

XENON100
XENON1T



   

Outlook

● The pMSSM allows us to investigate 
complete, realistic supersymmetric spectra at 
the LHC and beyond

● 125 GeV Higgs production cross sections vary 
depending on final state, and are sensitive to 
hbb coupling

● Light stops in viable low FT models are 
generically hard to see due to higgsino 
cascades; to be probed eventually by direct 
detection, but good to see new search 
strategies being developed for LHC



   

Backup



   

Gravitino LSP cosmology
● No assumptions about early universe gravitino 

cosmology, e.g. reheating temperature or 
entropy production

● NLSP freezes out later
● Assume NLSP reaches its thermal relic 

density, and consider out-of-equilibrium 
decays to gravitino

● Gravitino LSP has very weak couplings, so no 
dark matter detection constraints

● However, for a gravitino LSP, the NLSP can be 
very long-lived



   

Gravitino LSP cosmology
● NLSP lifetimes between 

10-2 and 105 s can affect 
BBN if decay products 
are hadronic

● For lifetimes from 105 s 
to 1012 s, BBN is affected 
even for electromagnetic 
energy injection

● Diffuse photon 
constraints become 
applicable for longer 
lifetimes 

Ω
NLSP

h2

NLSP lifetime (s)

Constraints on neutralino NLSPs



   

Gravitino LSP cosmology
● Charged NLSPs living 

longer than 103 s can 
form bound states, 
modifying the rates of 
nuclear reactions and 
affecting BBN

● Colored NLSPs form 
bound states even 
earlier; any such NLSPs 
living longer than ~200 s 
ruin BBN

Ω
NLSP

h2

NLSP lifetime (s)

Constraints on colored NLSPs



   

Gravitino LSP cosmology
● Sneutrino NLSPs have 

small branching ratios 
for decays that produce 
visible SM particles

● Neutrinos resulting from 
sneutrino NLSP decays 
can also scatter off 
leptons, giving 
leptons/mesons that 
affect BBN

● Diffuse photon/neutrino 
flux for longer lifetimes

Ω
NLSP

h2

NLSP lifetime (s)

Constraints on sneutrino NLSPs



   

Non-MET searches

gravitino LSP (2.6% excluded)
neutralino LSP (2.2% excluded)
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B
s
 → µµ, × 10-8

limit from LHCb
(1203.4493)

Standard Model



   

h → γγ in the pMSSM

Higgs mass (GeV)

R
γγ

Gravitino LSP models tend to have lighter 
Higgses, but 125 GeV still quite viable

Gravitino LSP

0.5%
8.3%



   

125 GeV Higgs at the LHC
R

γγ
V

B
F

R
γγ

Can also look at vector boson fusion production WW → h → γγ

Neutralino LSP123 GeV < m
h
 < 127 GeV



   

125 GeV Higgs at the LHC
B

R
(h

 →
 b

b)
pM

S
S

M
/S

M

R
γγ

BR for h → bb is anticorrelated with expected γγ production

Neutralino LSP123 GeV < m
h
 < 127 GeV



   

125 GeV Higgs at the LHC
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Γ(h → bb)
pMSSM/SM

SUSY corrections to bb width reduce other branching ratios!

Neutralino LSP 



   

h → bb decoupling
● Γ = Γ

0
(1 + 2 δgQCD / g 

+ 2 δgSQCD / g)

● In certain limits, the 
SUSY corrections 
decouple very slowly, 
and can remain large 
for heavy sparticles

● These corrections 
push up bb width, 
decreasing all other 
BR accordingly

Haber et al., hep-ph/0007006



   

h → bb decoupling
Γ(

h 
→

 b
b)

pM
S

S
M

/S
M

(A
b
 – µ tan β) / m(b

2
)

Neutralino LSP 123 GeV < m
h
 < 127 GeV

Near-maximal sbottom 
mixing with large tan β leads 
to slow decoupling of SUSY 
corrections to h → bb width



   

125 GeV Higgs at the LHC
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Γ(h → gg)
pMSSM/SM

Neutralino LSP 

gg width is affected by less than ~25% for 
models with Higgs near 125 GeV



   

Sources of fine-tuning

Can also examine relative contributions of each parameter to FT
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A
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Neutralino LSP



   

Sources of fine-tuning

µ contributes over half of the fine-tuning in 56% (50%) of the 
neutralino LSP model set before (after) making the Higgs mass cut 

m
h
 = 125 ± 2 GeV
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Neutralino LSP
m

h
 = 125 ± 2 GeV



   

More sample spectra
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