Non-degenerate 1st & 2nd generation squarks

Andreas Weiler

w/ M. Papucci, J. Ruderman (LBL Berkely) G. Perez, R. Mahbubani (CERN)

1207.xxxx

What have we learned about the susy spectrum after 5 1/fb ?

- Ist & 2nd generation squarks need to be heavy > 1.2-1.5 TeV from jets+MET searches with 5/fb
- Gluino above ~ 900 GeV
- Impressive first limits on 3rd generation

4.7 fb⁻¹ Susy, post-Moriond

* TeV ? * colored objects

- Bottom-up natural spectrum!
- Stealth susy?
- Compressed susy? (ISR?)
- R-parity violation?

Natural Susy arXiv:1110.6926 M. Papucci, J. Ruderman, AW

decoupled SUSY

Any caveats beyond that?

We have already seen that a 1-2 vs. 3 splitting (natural susy) leads to weaker constraints:

- What if there is a splitting in 1-2 sector?
- Not covered even in most exhaustive scans: pMSSM assumes 1-2 degeneracy, all of the constrained MSSMs (CMSSM, ...) obviously assume 1-2 degeneracy

Degenerate squarks?

work in progress with Michele Papucci, Josh Ruderman (LBL Berkely) Gilad Perez, Rakhi Mahbubani (CERN)

Do the 1st & 2nd gen' squarks have to be degenerate?

Μ

8 dofBecause of flavor constraints? $(\tilde{u}, \tilde{d})_L, \tilde{u}_R, \tilde{d}_R, \tilde{d}_R, \tilde{d}_R, \tilde{c}, \tilde{s})_L, \tilde{c}_R, \tilde{s}_R$ Not really. $(\tilde{c}, \tilde{s})_L, \tilde{c}_R, \tilde{s}_R$ $(3, 2)_{1/6} (3, 1)_{2/3} (3, 1)_{-1/3}$

Assumed spectrum in ATLAS/CMS plots

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

mixing matrices

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

mixing matrices mass splitting

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta^q_{ij})_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K^q_M)_{i\alpha} (K^q_M)^*_{j\alpha} \Delta \tilde{m}^2_{q\alpha}$$

mixing matrices mass splitting

	(m=ITeV)		
q	ij	$(\delta^q_{ij})_{MM}$	$\langle \delta^q_{ij} \rangle$
d	12	0.03	0.002
d	13	0.2	0.07
d	23	0.6	0.2
u	12	0.1	0.008

Isidori et. al '10

Flavor Bounds (K, D, B, Bs mixing, ...) controlled by

$$(\delta^q_{ij})_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K^q_M)_{i\alpha} (K^q_M)^*_{j\alpha} \Delta \tilde{m}^2_{q\alpha}$$

mixing matrices mass splitting

$$(m=1\text{TeV})$$

$$\begin{array}{c|cccc} q & ij & (\delta^q_{ij})_{MM} & \langle \delta^q_{ij} \rangle \\ \hline d & 12 & 0.03 & 0.002 \\ \hline d & 13 & 0.2 & 0.07 \\ \hline d & 23 & 0.6 & 0.2 \\ \hline u & 12 & 0.1 & 0.008 \\ \end{array}$$

Isidori et. al '10

large mixing means splitting must be << 1

A picture of flavor

Yukawa matrices $Y_{\cup} \& Y_{D}$ encode flavor violation

 $(ar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ Vckm $Y_D Y_D^{\dagger}$

 $(\bar{u}_R^i u_R^j) \qquad \checkmark Y_U^\dagger Y_U$

 $(\overline{d}_R^i d_R^j)$

 $Y_D^{\dagger}Y_D$

A picture of flavor

Yukawa matrices $Y_{\cup} \& Y_{D}$ encode flavor violation

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ Vckm $Y_D Y_D^{\dagger}$

 $(\bar{u}_R^i u_R^j)$ $Y_U^{\dagger}Y_U$ NP? $(\overline{d}_R^i d_R^j)$ $Y_D^{\dagger}Y_D$

Minimal flavor violation

Chivukula Georgi; Buras et. al; D'Ambrosio et. al

New particles/interactions, but flavor structure ~VCKM

 $(\bar{Q}_L^i Q_L^j)$

 $Y_U Y_U^\dagger$

 Y_D

 $|\mathrm{MFV}| pprox \mathcal{O}(|\mathrm{SM}|)$

 $(\bar{u}_R^i u_R^j) \qquad Y_U^\dagger Y_U$

+ LR, RL

Minimal flavor violation

Chivukula Georgi; Buras et. al; D'Ambrosio et. al

New particles/interactions, but flavor structure ~Vckm MF' $(\bar{u}_R^i u_R^j)$ Q_L^j $Y_U^{\dagger}Y_U$ (\bar{Q}_L^i) $Y_U Y_U^\dagger$ $(\bar{d}_R^i d_R^j)$ $Y_D Y$ $Y_D^{\dagger} Y_D$

Minimal Flavor Violation

- Vertical: Squark masses same for all three generations but split between \tilde{Q}_L , \tilde{u}_R , \tilde{d}_R
- Can introduce a split between 1-2 and 3, $\Delta M^2 \propto Y Y^\dagger \sim (0,0,1)$

& still have MFV

Fully degenerate

Flavor dynamics: alignment Dynamics (e.g. U(1)horiz.) generates hierarchies in masses & mixings. Consequence: partial alignment with SM

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ VCKM $Y_D Y_D^{\dagger}$

 $(\overline{d}_R^i \overline{d}_R^j)$

 $Y_D^{\dagger}Y_D$

Flavor dynamics: alignment Dynamics (e.g. U(1)horiz.) generates hierarchies in masses & mixings. Consequence: partial alignment with SM

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ $Y_D Y_D^{\dagger}$

 $(\bar{u}_R^i u_R^j) \qquad \begin{array}{c} Y_U^{\dagger} Y_U \\ & \mathsf{NP} \end{array}$

 $(\bar{d}_R^i d_R^j)$

Left-handed (Q_L): either aligned with up or downs Right-handed (u_R , d_R): can be fully aligned

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ V CKM $Y_D Y_D^{\dagger}$

 $Y_U^{\dagger}Y_U$ NP $(ar{u}_R^i u_R^j)$ $(ar{d}_R^i d_R^j)$ $Y_D^{\dagger}Y_D$

Left-handed (Q_L): either aligned with up or downs \rightarrow limited splitting Right-handed (u_R , d_R): can be fully aligned \rightarrow any splitting

 $(\bar{Q}_L^i Q_L^j)$ $Y_U Y_U^\dagger$ $Y_D Y_D^{\dagger}$

 $(ar{u}_R^i u_R^j)$ $Y_U^{\dagger}Y_U$

 $(\overline{d}_{R}^{i}d_{R}^{j})$

 $Y_D^{\dagger}Y_D$

+ LR, RL

 $(\delta^q_{ij})_{MM} = \frac{1}{\tilde{m}^2_q} \sum_{\alpha} (K^q_M)_{i\alpha} (K^q_M)^*_{j\alpha} \Delta \tilde{m}^2_{q\alpha}$

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

mixing / misalignment between SM Yukawas and squark mass matrices

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

Seiberg & Nir

mixing / misalignment between SMYukawas and squark mass matrices

If by symmetry: $K_{ij} \sim diagonal$, O(1) mass splittings ok.

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

Seiberg & Nir

Gedalia et. al

mixing / misalignment between SM Yukawas and squark mass matrices

If by symmetry: $K_{ij} \sim diagonal, O(1)$ mass splittings ok.

$$(\delta_{ij}^q)_{MM} = \frac{1}{\tilde{m}_q^2} \sum_{\alpha} (K_M^q)_{i\alpha} (K_M^q)_{j\alpha}^* \Delta \tilde{m}_{q\alpha}^2$$

mixing / misalignment between SM Yukawas and squark mass matrices

If by symmetry: $K_{ij} \sim diagonal$, O(1) mass splittings ok.

Gedalia et. al u_L aligned \rightarrow d_L aligned squark splitting 0.30 Example: 0.25 $m_{\tilde{g}}=1.5 \text{TeV}$ 0.20 $m_{gluino} = 1.3 \text{ TeV}$ $m_{\tilde{g}} = 1 \text{TeV}$ ²₂ ³₂ ³₂ ³ $m_{QI} = 550 \, \text{GeV}$ 0.10 Δm_D *m*₀₂ = **950** GeV 0.05 0.00 2 3 4 5 $Log_{\lambda}\alpha$

+ right handed squarks split by arbitrary amount

Flavor vs. squark masses: summary

- Generic I-2 splitting has to be small, but:
- Can split vertically: split Q_L^i vs u_R^i vs d_L^i
- Can split horizontally, if squark mixing aligned

Does it matter if we relax the degeneracy assumption?

Naive answer: not so much.

Back of the envelope estimate

Cross-sections roughly scale like ~1/m^6.

Example: 8 light squarks \rightarrow 2 light squarks Shift limit only by $\sim 4^{1/6}-1\approx 25\%$

→ too naive!

Dedicated study needed

- Production cross-section can be flavor dependent if gluino is not fully decoupled through p.d.f's (u vs. d, sea vs. valence)
- Experimental efficiencies for light squarks efficiencies have thresholds and current limits are on the thresholds

Efficiencies

Searches might become inefficient

How can we extract limits on nondegenerate 1st and 2nd gen' squarks from experimental searches?

Simplified Models to the rescue!

 ATLAS and CMS provide efficiencies for simplified models (few for 5 fb⁻¹)

Comments on simplified models

- Works well for squark pair production T2 only (also compared to our MC mockup)
- Need also squark gluino associate for complete picture (only provided by ATLAS)
- Doesn't cover more complicated kinematics: e.g. $pp\to d\tilde{s}$ with $m_{\tilde{d}}\neq m_{\tilde{s}}$

Need MC mockups → used ATOM & PGS

MFV example

Pre-ICHEP Vertical non-degeneracy $\tilde{D}_{1,2}$ v. \tilde{g} 3000 $L = 1.04 \text{ fb}^-$ Contours of $m_{\tilde{N}_1} = 0 \text{ GeV}$ 2500 0.5 0.3 2000 $\sigma/\sigma_{ m limit}$ يق 1500 ق ق 1500 ق 0.01 Exclusion (at 95CL) if this is = 1000 Excluded 500 400 600 800 1000 1200 $m_{\tilde{D}_{1,2}}$ [GeV] For $m_{gluino} > 1.2$ TeV, limit can even disapear ($m_{LSP} = 0 \text{ GeV}$)

Pre-ICHEP

What is driving the strong ATLAS/CMS limit?

Squark - Squark production:

Independent of squark flavor (and gluino mass)

Simple d.o.f rescaling

Majorana nature of gluino allows u u initial state!

 $\frac{1}{m_{\tilde{g}}} \tilde{q} \tilde{q} u_R u_R \quad \text{dim5 op.}$ $\rightarrow \quad \sigma \sim 1/m_{\tilde{g}}^2$

slow decoupling

What is driving the strong ATLAS/CMS limit?

Squark - Squark production:

Independent of squark flavor (and gluino mass)

Simple d.o.f rescaling

Majorana nature of gluino allows u u initial state!

$$\frac{1}{m_{\tilde{g}}} \tilde{q} \tilde{q} u_R u_R \quad \text{dim5 op.}$$

$$\rightarrow \quad \sigma \sim 1/m_{\tilde{g}}^2$$
slow decoupling

Aligned LH squarks

Squarks

õ

ΛL

ŨR

de

ŝĸ

2 d.o.f

No limit on LH 2nd gen' squark^{*} ATLAS * Pre-ICHEP

Post-ICHEP

'I have this great scenario'

Post-ICHEP

'I have this great scenario'

Disclaimer

- Only used digitally accessible simplified results (e.g. ROOT or HEPDATA)
- More sensitive 5 fb⁻¹ analyses might be available (and will be included later)

Post-ICHEP limit on valence squark

Experimental limit improved

Limited efficiency maps available for 5 fb⁻¹ searches. Currently simulate and validate using Monte-Carlo mockups to check limits (ATOM & pgs)

 Associated prod' of squarks of different mass important in various cases (b/c of efficiency behavior) → need to simulate also for 1/fb, cannot use Prospino NLO out-of-the-box for xsecs

Validation - comparison of efficiencies (13 signal bins)

Summary

- Squarks spectra can be vertically and horizontally split.
- Limits for 1st gen' squarks (sea squarks) strongly dependent on gluino mass.
- Valence squarks can still be ~ 400 GeV.
- Message to experimentalists: keep an eye on lighter squarks with smaller x-secs, keep softer signal bins around.

