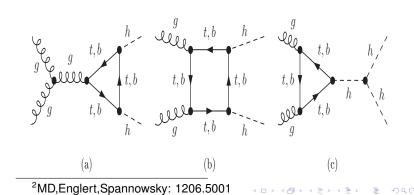
Higgs Self-Coupling Measurements at the LHC

Matthew Dolan

IPPP University of Durham

Double Higgs Production


Higgs Self Couplings

Matt Dola

- Can we measure the Higgs self-coupling at the LHC?¹
- Can we measure double Higgs production at the LHC?

Double Higgs Production

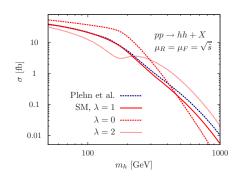
- Can we measure the Higgs self-coupling at the LHC?²
- Can we measure double Higgs production at the LHC?

Effective Lagrangian

Heavy top quark limit

$$\mathcal{L}_{ ext{eff}} = rac{1}{4} rac{lpha_{ extsf{s}}}{3\pi} G^{a}_{\mu
u} G^{a\,\mu
u} \log(1+h/v)$$

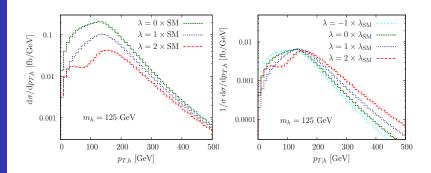
Expanding gives


$$\mathcal{L}\supset +rac{1}{4}rac{lpha_s}{3\pi v}G^a_{\mu
u}G^{a\,\mu
u}h-rac{1}{4}rac{lpha_s}{6\pi v^2}G^a_{\mu
u}G^{a\,\mu
u}h^2$$

- Interference effects important!
- Fails to reproduce full kinematics when $Q^2 \gtrsim m_t^2 \implies$ need to implement full matrix element.

Cross-sections

Higgs Self Couplings


Matt Dola

Comments

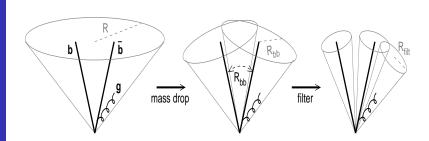
- Relatively large dependence on λ at $m_h \approx 125$
- Diagram (c) resonantly enhanced when $s \simeq 4m_t^2$
- Ameliorates s-channel suppression.

p_T distributions

- Naturally boosted $p_{T,h} \gtrsim 100 \text{ GeV}$
- Max sensitivity at $p_{T,h} \sim 100 \text{ GeV}$
- Triangles decouple at large s

Unboosted and Boosted searches

Higgs Self Couplings


Strategy

- Small cross-section: $\sigma^{NLO}(hh) = 28.4$ fb.
- So focus on largest branching ratios: *bb* (60%), *WW* (20%), $\tau\tau$ (6%).
- Unboosted *bbbb*, *bbWW*: Not possible due to 4b and $t\bar{t}$ backgrounds.

	$\xi = 1$	bbWW	ratio to $\xi = 1$
1 isolated lepton	3.76	254897	$1.5 \cdot 10^{-5}$
MET + jet cuts	0.85	66595.7	$1.2 \cdot 10^{-5}$
had-W recon	0.33	38153.3	$0.9 \cdot 10^{-5}$
kinematic Higgs recon	0.017	205.1	$8.3 \cdot 10^{-5}$

Substructure techniques: Quick BDRS

- Look for C/A fatjets with $R \approx 1.5$
- Undo clustering and look for subjets and mass-drop
- Reduce *R* to *R*_{filt} to filter away UE

Boosted Kinematics: (BDRS)²

Higgs Self Couplings

Comments

- Can gain sensitivity in main decay channels.
- But lose sensitivity to modifications of trilinear coupling.

	$\xi = 1$	bbbb [QCD]	ratio to $\xi = 1$
x-sec pre-cuts	28.42	21165	$1.3 \cdot 10^{-3}$
trigger+no lep	10.21	5581.2	$1.8 \cdot 10^{-3}$
fatjet cuts	8.23	4761.0	1.7 · 10 ⁻³
1 st Higgs rec+2b	1.02	235.22	4.2 · 10 ⁻³
2 nd Higgs rec+2b	0.094	9.72	$9.6 \cdot 10^{-3}$

Boosted regime: $bb\tau\tau$

Higgs Self Couplings

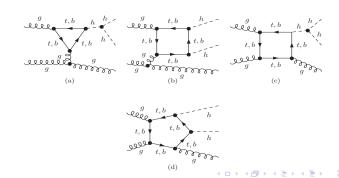
Consider $bb\tau\tau$

- $lue{}$ Two hadronic taus reconstructing m_h
- One fatjet with BDRS cuts.

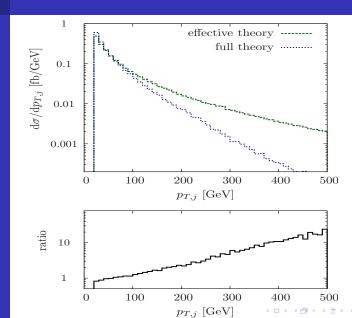
	$\xi = 1$	b̄bW⁺W−	ratio to $\xi = 1$
x-section pre-cuts	28.34	873000	$3.2 \cdot 10^{-5}$
Higgs from τ s	1.94	1507.99	$1.9 \cdot 10^{-3}$
fatjet cuts	1.09	223.21	$4.8 \cdot 10^{-3}$
Higgs-rec $(m_{b\bar{b}})$	0.26	9.50	$2.3 \cdot 10^{-2}$
double b-tag	0.095	0.15	0.49

Boosted regime: $bb\tau\tau$

Higgs Self Couplings

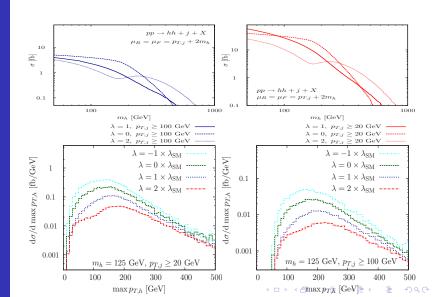

Consider $bb\tau\tau$

- Expect 95 signal events with 1000fb⁻¹ in SM.
- Expect 148 events for $\xi = 0$; 53 events for $\xi = 2$.


	$\xi = 1$	b̄bW⁺W−	ratio to $\xi = 1$
x-section pre-cuts	28.34	873000	$3.2 \cdot 10^{-5}$
Higgs from τ s	1.94	1507.99	$1.9 \cdot 10^{-3}$
fatjet cuts	1.09	223.21	$4.8 \cdot 10^{-3}$
Higgs-rec $(m_{b\bar{b}})$	0.26	9.50	$2.3 \cdot 10^{-2}$
double <i>b</i> -tag	0.095	0.15	0.49

Higgs production with a hard hadronic jet

- Want to decorrelate $p_{T,h}$ with suppression of triangle diagram
- Motivates studying $pp \rightarrow hh + j$


Effective theory vs full theory for *hhj*.

$\sigma(pp \rightarrow hh + j)$

Higgs Self Couplings

Matt Dola

Comments on $pp \rightarrow hh + j$

- Large dependence on λ : $\Delta \sigma/\sigma_{SM} \simeq 100\%$ for $\lambda \in [0, 2\lambda_{SM}]$
- Compare $\Delta \sigma / \sigma_{SM} \simeq 45\%$ for $pp \rightarrow hh$.

- Sensitivity to λ comes from configs with two Higgs bosons close to each other and central.
- Hadronic decay products likely to overlap → to reconstruct hh system rely on substructure techniques.
- Cost in cross-section: $\sigma(pp \to hh + j) \simeq \text{few fb}^{-1}$

Analysis details

Higgs Self Couplings

Matt Dola

- Two τ -jets with 100 < $m_{\tau\tau}$ < 150 + 1-fatjet
- Apply Higgs-tagger and require 115 $< m_{h-jet} <$ 135, $p_{T,h} >$ 150 GeV.
- m_{hh} > 400 GeV for rejecting $t\bar{t}$ background.

Higgs-tagger

■ Modify BDRS similar to 0910.5472³

³Plehn,Salam,Spannowsky

Modified tagger

- Hadronically more active final state
- Undo clustering, if $m_{j_1} > 0.8 m_j$ discard m_{j_2} , else keep both.
- If m_{j_i} < 30 GeV, add to list of substructures, else further decompose.

- Do filtering
- Keep three hardest filtered subjets.
- Call two hardest filtered subjets with mass closest to 125 GeV a Higgs candidate and b-tag

Results for $b\bar{b}\tau\tau j$ and $b\bar{b}b\bar{b}j$

- S/B improves relative to $bb\tau\tau$
- But cross-section very small.
- $b\bar{b}b\bar{b}j$: S/B still $\sim 10^{-3}$

	$\xi = 1$	$bar{b} au^+ au^-j$ [ELW]	ratio to $\xi = 1$
x-sec precuts	3.24	1.67	$1.9 \cdot 10^{-2}$
2 aus	0.22	0.94	$4.8 \cdot 10^{-3}$
$m_{ au au}pprox m_h$ + fatjets	0.16	0.150	$5.1 \cdot 10^{-2}$
kin. Higgs rec.	0.04	0.018	0.26
2b + hh inv.		'	
mass + $p_{T,j}$ cuts	0.006	0.0022	1.54

Summary

- Trilinear coupling an important measurement of EWSB (and possibly signal of new physics).
- bbbb, bbWW, bbbbj not promising.
- Prospects interesting in boosted $bb\tau\tau$ final state
- In $pp \rightarrow hh + j$: boosted $bb\tau\tau j$ final state.