Recent exotic results from CMS

Keti Kaadze (CERN) on behalf of the CMS collaboration

Implications of LHC results for TeV-scale physics

Introduction

- Very exciting news on new boson with ~125 GeV mass!
 - Whether it is the Higgs boson or a Higgs boson, or something entirely different – we cannot say yet...
- Even if it is SM Higgs, there must be New Physics beyond the SM
 - Mass of a Higgs candidate is a bit too low from comfortable 130-170 GeV range of the stability chimney.
 - Other puzzles: no dark matter candidate, neutrino masses, matterantimatter asymmetry, number of generations, *etc.*
- Keep digging: study new boson + search for new physics!

John Ellis

Keti Kaadze, CERN

Strategy for BSM searches

- Unlike Higgs/SUSY searches no well defined guide on the parameter space/signatures
 - Look for an interesting features in data
 - Resonant structure
 - Anomalous couplings
 - Look at all possible signatures for disagreement with expectations
 - Utilize the very efficient identification of physics objects
 - Probe interesting new BSM models

BSM searches at CMS

- New resonances
 - Z', W', dijet resonances
- Extra dimensions
 - Black holes, ADD/RS Gravitons
- New symmetries/interactions
 - Leptoquarks, heavy neutrinos
- Fourth generations
 - Heavy bottom/top like quarks
- The latest public results from CMS can be found at https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO

Covering only new results after Moriond 2012

New heavy gauge bosons

Keti Kaadze, CERN

- The SM gauge group SU(3)_CxSU(2)_LxU(1)_Y can be extended to solve some of the puzzles not explained by the SM
 - Additional U(1) group gives raise to new heavy neutral boson Z'
 - Additional SU(2) group gives raise to new heavy charge boson W'
- Various models predicting such new resonances
 - Sequential standard model couplings to W and Z similar as in the SM
 - Superstring-inspired E₆ model
 - Left-right symmetric model SU(2)_LxSU(2)_R
 - More complicated models, such as technicolor or ED, predict a chain of new bosons

14 July 2012

R

Z'→ee/µµ

Events / 20 Ge/

10²

10

EXO-12-015

tt + other prompt leptons

Keti Kaadze, CERN

DATA

fake eµ pairs

 $\sqrt{s} = 8 \text{ TeV}$ $\int L dt = 3.7 \text{ fb}^{-1}$

CMS Preliminary

- Signature with two energetic, isolated leptons
 - Electrons and muons
- Backgrounds
 - Drell-Yan, top, diboson, multijets
 - Estimated from data

 $M(Z'_{\psi}) > 1.1 \text{ TeV}$

- There are models in which Z' preferentially couple to the 3rd generation fermions
 M(Z'SSM) > 1.4 TeV
 - Signature with eµ, eτ, µτ, ττ
 - Backgrounds from Drell-Yan Z->ττ, W+jets, Diboson, mujltijet -- estimated from data when possible

14 July 2012

Z'→ttbar

- New physics at high M_{tt} scale would explain the observed FB asymmetry in ttbar events focusing on $M_{tt} > 1$ TeV **EXO-11-006**
 - Z' with 1% and 10% widths and RS KK gluon wide resonance
 - Signature with fully hadronic decays of ttbar events two or three jets

 $W' \rightarrow 1_V$

- New gauge boson decaying to a lepton and a neutrino
 - Signature of isolated, energetic lepton and large missing E_T
 - Backgrounds from W+jets, top, diboson, Drell-Yan
 - Data are found in agreement with the SM background prediction

$$M_T = \sqrt{2p_T^l E_T^{miss} (1 - \cos \Delta \varphi_{l,v})}$$

11

Keti Kaadze, CERN

Hadronic resonances

- Many extensions of the SM predict new massive objects that couple to quarks and gluons
 dijets
 - String resonances which decay to qg
 - Excited quarks decaying to qg, qW, qZ
 - Diquarks predicted by GUT decaying to quark-anti-quark
 - New gauge bosons predicted by new symmetries decaying to quark-anti-quark
 - Randall-Sundrum Graviton decaying to quark-anti-quark or gg
 - Color octet scalar decaying to gg or bb
 - Axigluon or coloron decaying to qq

Dijet resonances

COMPARE AND A MARKED AND A MARK

EXO-12-016

Keti Kaadze, CERN

- Search for resonance in smoothly falling mass spectrum
- Background is estimated by fitting data

14 July 2012

15

Dijet resonances with btag

EXO-11-008

 $=\frac{BR(X \to b\,b)}{BR(X \to jj)}$

- Search for resonance in b-enriched sample
 - Signature with 0, 1, 2-tag

- Multijet background is reduced by factor 50
- Set model-independent limit as a function of the signal branching ratio fraction

Extra dimension

- Attractive extension of the SM
 - Explains hierarchy and several other problems
- Can be searched in both resonant and non-resonnant states

Graviton

EXO-11-102

- Search for $G \rightarrow ZZ \rightarrow 212j$
 - High branching fraction and high purity
 - Likelihood discriminant built from 5 helicity angles
 - Backgrounds estimated from sidebands in M₇₇

m_{zz} [GeV]

19

- resulting in signature with 21+1 jet
 - V is identified from highest pT jet $60 < M_J < 100 \text{ GeV}$
 - M_J efficiency is determined in ttbar control sample
 - Limits set on RS1 G and W'

 $M(G) > 933 \text{ GeV for } k/M_{pl} = 0.05$

$W_{T} = 2058 GeV$ $M_{T} = 2058 GeV$ $M_{T} = 87.0 GeV$ $M_{T} = 87.0 GeV$ $M_{T} = 87.0 GeV$ $M_{T} = 79.4 GeV$ $p_{T} = 1005.0 GeV$

Keti Kaadze, CERN

Black holes

EXO-12-009

- Signature of high multiplicity of high pT objects
- Background from multijet process is estimated from the fit
 - For each multiplicity bin separately at ST = 1.8-2.2 TeV

Black holes

- Model independent limit vs ST and multiplicity
- Setting limit on specific BH models

EXO-12-009

n=2, M_{BH} > ~4.8 -- 5.8 TeV n=6, M_{BH} > ~5.2 - 6.1 TeV

Keti Kaadze, CERN

Heavy neutrino & W_R

EXO-12-017

W

Keti Kaadze, CERN

- Predicted from left-right symmetric model
 - Signature of $\mu\mu jj$ and eejj, with high p_T isolated leptons
 - Backgrounds from Drell-Yan, top, multijet estimated from data

Heavy neutrino & W_R

EXO-12-017

Keti Kaadze, CERN

- Combining 2011-2012 data for dimuon channel
 - Assuming small W_R - W_L and N_l - N_l mixing

 $M(W_R) > 2800 \text{ GeV for } M(N_\mu) = 1/2M(W_R)$

Leptoquarks

- CONSCIENCE CONTRACTOR
- Predicted by composite models, GUT, Technicolor
 - Two energetic leptons and two jets
 - Lepton, missing transverse energy and two jets
 - Backgrounds from DY+jets, ttbar, W+jets
 - Using M(lj), MET, ST to reject
 - Remaining background estimated from data

14 July 2012

25

Keti Kaadze, CERN

EXO-11-028

26

CERN

3rd generation LQ

CCMS contact Mon Solution

- LQ decaying to tau and b quark
 - Signature with etbb and µtbb
 - Major backgrounds from ttbar and V+jets
 - Rejected by M(τ,b)
 - Using ST distribution to extract limits

EXO-12-002

Keti Kaadze, CERN

14 July 2012

3rd generation LQ

Keti Kaadze, CERN

- Limits set on both scalar and vector LQ
 - The difference in kinematics of vector and scalar LQ decay products have effect of a few percents on the selection efficiency

14 July 2012

- Signature with single, same-sign double, or triple leptons, jets, missing ET
- Discriminator against backgrounds ST

Assuming A=1, $\Delta m = 25$ GeV

quarks > 640 GeV

mass of up-type 4th gen

Keti Kaadze, CERN

14 July 2012

30

Keti Kaadze, CERN

MBH, rotating, MD=3TeV, nED = 2, BlackMax MBH, non-rot, MD=3TeV, nED = 2, BlackMax MBH, rotating, loss, MD=3TeV, nED = 2, BlackMax MBH, boil. remn., MD=3TeV, nED = 2, Charybdis MBH, stable remn., MD=3TeV, nED = 2, Charybdis MBH, Quantum BH, MD=3TeV, nED = 2

- A lot of results made public since Moriond 2012
 - Unfortunately no BSM discoveries (yet)
 - Note that a lot of updates with full statistics will follow shortly

R

Where we go from here

- These first results from CMS (LHC) is an "ouverture"
 - Excellent performance of detector, trigger, computing, object identification
- Is new physics too rare and too heavy for 7/8 TeV?
 - Higher statistics and higher center of mass energy is the way to go
- We should also think outside the box
 - Adequate coverage of "unusual" topologies is crucial
 - Important to have close collaboration with phenomenologists and theorists to test new models/ideas
- My hope that the discovery of a new boson is the first drop in the end of a long dry season!

Keti Kaadze, CERN

Keti Kaadze, CERN

BACKUP