Report from the LHC Higgs Cross Section Low Mass group

Michael Duehrssen for the LHCHXSLM working group CERN, 15.07.2012

Mandate of the group

- Issues concerning σ^*BR , in particular issues connected to the decays $H \rightarrow \gamma\gamma$, $\tau\tau$, bb, WW and ZZ
- Higgs property measurements:
 - Higgs mass, width
 - σ*BR
 - J^PC
 - <u>couplings</u> (HVV, <u>Yukawa</u>, trilinear, quartic)

 As the Higgs results were already shown, the focus of this talk is on the strategy

Mass and width

- "Peak" observed for $m_{_{\rm H}} \sim 125\text{--}127 \text{ GeV}$
- Expected width for a SM Higgs: $\Gamma_{SM} (m_{H}) \sim 4 \text{ MeV}$
- Expected experimental resolution ~1 GeV
- Are theory uncertainties important?
 - Theory uncertainty on the mass should be roughly of order $\Gamma_{_{SM}}(m_{_{H}})$
 - Nothing in the pattern of observed channels indicates that the real width could be several orders of magnitude larger (if its a Higgs)
 → theory uncertainties most likely negligible
- Direct measurement/limit on the width nevertheless important !

Michael Duehrssen

<mark>σ*BR</mark>

- Currently σ*BR related results are made public by the experiments in the form of best-fit μ for the different channels
- However the evaluation of the sharing of contributions from different initial states is driven by the SM
- Different categories have different sensitivities/efficiencies to the various SM Higgs production modes, but in almost no case they are pure in one production channel
 - $\to \mu$ actually determined for an analysis selection If we want to remove some of the SM dependence in understanding the different μ
 - \rightarrow coupling measurements

Measuring the Higgs couplings

Topic of long discussion within the group

Rough outline of current strategy:

- 1) Search for deviations from the SM Higgs hypothesis
 - Start from the most precise SM σ^*BR calculations
 - Apply production and decay mode scale factors that correspond at LO to a Higgs gauge or Yukawa coupling
 - As the data is not sufficiently powerful yet, run various benchmarks with different scale factor combinations that test possible BSM Higgs effects
- 2) Analyze data using a BSM effective Lagrangian
 - Once any deviation from the SM is found in 1), the baseline σ^*BR calculations are no longer valid
 - Postulate consistent BSM Lagrangian and fit BSM couplings to the data

Search for deviations from the SM Higgs hypothesis

- Attach some scale factor to each LO Higgs coupling
- Can motivate these LO scale factors also by higher dim. operators
- Accessible at LHC through initial or final state for a SM Higgs W, Z, t, b, τ , g (gluon), γ , eventually also μ

Search for deviations from the SM Higgs hypothesis

- Start from the best calculate SM σ^*BR (with (N)NLO and (N)NLL)
- Dress with scale factors $C_w, C_z, C_\gamma, C_g, C_\tau, C_t, C_b, C_{inv/undet}$
- Total width: $C_{H}(C_{X})=1/\Gamma_{H} * (C_{W}*\Gamma W + C_{Z}*\Gamma Z + ... + C_{inv/undet}$
- Some "complicated" functions for VBF+loops (only LO):
 C_{VEF} (C_x)=f_{VEF} (C_w,C_z)

 $C_{\gamma}(C_{\chi})=f_{\gamma}(C_{W},C_{t},C_{\gamma}^{new}) \rightarrow \text{can fit just } C_{\gamma} \text{ or fit loop contributions}$ $C_{g}(C_{\chi})=f_{g}(C_{t},C_{b},C_{g}^{new}) \rightarrow \text{can fit just } C_{g} \text{ or fit loop contributions}$ $\bullet \text{ General examples:}$

 $\sigma(gg \rightarrow H \rightarrow \gamma\gamma, m_{H}) = \sigma_{SM} (gg \rightarrow H \rightarrow \gamma\gamma, m_{H})$ * C_a * C_v / C_H * **C**_v / **C**_H * C $\sigma(VBF H \rightarrow \gamma\gamma, m_{H}) = \sigma_{SM}(VBF H \rightarrow \gamma\gamma, m_{H})$ $\sigma(gg \rightarrow H \rightarrow ZZ, m_{H}) = \sigma_{SM} (gg \rightarrow H \rightarrow ZZ, m_{H})$ * **C**_a * C₇ / C₁ $\sigma(\text{VBF H} \rightarrow \tau\tau , \textbf{m}_{H}) = \sigma_{SM} (\text{VBF H} \rightarrow \tau\tau , \textbf{m}_{H})$ * **C**₂ / **C**₁ * C_{VBF} $\sigma(W/Z H \rightarrow bb, m_{H}) = \sigma_{SM} (W/Z H \rightarrow bb, m_{H})$ * **C**_{w/z} * C_h / C_l $\sigma(XX \rightarrow H \rightarrow YY, m_{H}) = \sigma_{SM}(XX \rightarrow H \rightarrow YY, m_{H})$ * C, / C, * C_v

Confronting with current LHC reality

- Even with perfect measurements, not all C_x could be measured independently: some ambiguity with the total width always remains without assumptions
- Currently data is by far not strong enough to give meaningful results for more than 2-3 independent C_x

Need to chose several benchmarks that combine C_x parameters and then test different aspects of where deviations from the SM could appear

Michael Duehrssen

LHC2TSP

Possible benchmark: C_v, C_F

- Assumptions:
 - No new physics contributions to gg ${\rightarrow}$ H or H ${\rightarrow}\gamma\gamma$ loops
 - No new physics decay modes (e.g. H→invisible or undetectable)
 - Parameters:

 $\mathbf{C}_{v} = \mathbf{C}_{w} = \mathbf{C}_{z} ; \mathbf{C}_{\gamma}(\mathbf{C}_{x}), \mathbf{C}_{g}(\mathbf{C}_{F}) ; \mathbf{C}_{F} = \mathbf{C}_{\tau} = \mathbf{C}_{t} = \mathbf{C}_{b} = \mathbf{C}_{c} ; \mathbf{C}_{inv} = \mathbf{0}$

 Given the current data, best determined, but uncertainties still large

Michael Duehrssen

Possible benchmark: C_v, C_{up}, C_{dow}

- Allow up- and down-type Yukawa couplings to be different
- Assumptions:
 - No new physics contributions to gg \rightarrow H or H $\rightarrow\gamma\gamma$ loops
 - No new physics decay modes (e.g. H→invisible or undetectable)
 - Parameters:

$$C_{v} = C_{w} = C_{z} ; C_{\gamma}(C_{x}), C_{g}(C_{x}) ;$$

$$C_{down} = C_{\tau} = C_{b} ; C_{up} = C_{t} = C_{c} ; C_{inv} = 0$$

• gg \rightarrow H dominated by C_t , total width dominated by C_b . Current data might just be sufficient, but where previously the C_F from gg \rightarrow H and C_F from $\Gamma_H \sim \Gamma_b$ in the dominator canceled, now the ratio C_{up} / C_{down} remains in all the strong gluon fusion channels

Possible benchmark: C_v, C_F, C_v

- Assumptions:
 - No new physics contributions to the gg \rightarrow H loop
 - No new physics decay modes (e.g. H→invisible or undetectable)
 - Parameters:

$$\mathbf{C}_{v} = \mathbf{C}_{w} = \mathbf{C}_{z} ; \mathbf{C}_{\gamma} , \mathbf{C}_{g}(\mathbf{C}_{F}) ; \mathbf{C}_{F} = \mathbf{C}_{\tau} = \mathbf{C}_{t} = \mathbf{C}_{b} = \mathbf{C}_{c} ; \mathbf{C}_{inv} = \mathbf{0}$$

• Allows an extra degree of freedom for the $H \rightarrow \gamma \gamma$ channel, which currently shows the largest deviations from the SM

Possible benchmark: C_a, C_y

- Somehow orthogonal to previous benchmarks
- Assumptions:
 - No new physics decay modes (e.g. no H→invisible or H→undetectable)
 - Higgs couplings to known SM particles as in the SM

Parameters:

 $C_{\gamma}, C_{g}; C_{w} = C_{z} = C_{\tau} = C_{b} = C_{t} = C_{c} = 1; C_{inv} = 0$

- Allow for new physics contributions to $gg \rightarrow H$ or $H \rightarrow \gamma \gamma$ loops fit $C_{\gamma}(C_{\chi}, C_{\gamma}^{new}), C_{g}(C_{\chi}, C_{g}^{new})$ or just C_{γ}, C_{g}
- $gg \rightarrow H \rightarrow WW/ZZ$ only sensitive to gluon loop, $gg \rightarrow H \rightarrow \gamma\gamma$ sensitive to both loops \rightarrow current data should be sufficient

Benchmark "without" assumptions?

- Combine previous (C_v, C_F) and (C_g, C_γ) benchmarks
- No assumption on the total width :
 - Need to incorporate the total width scale factor $\mathbf{C}_{_{\mathrm{H}}}$ somehow into the parameters
 - Fitted parameters R_{xy} are ratios of the previous C_x/C_y
- Example

 $\mathbf{R}_{vg} = \mathbf{C}_{v}^{T}/\mathbf{C}_{g}; \ \mathbf{R}_{\gamma v} = \mathbf{C}_{\gamma}^{T}/\mathbf{C}_{v}; \ \mathbf{R}_{Fv} = \mathbf{C}_{F}^{T}/\mathbf{C}_{v}; \ \mu = \mathbf{C}_{g}^{T}\cdot\mathbf{C}_{v}^{T}/\mathbf{C}_{H} = \sigma(gg \rightarrow H \rightarrow VV)$

- $\sigma(gg \rightarrow H \rightarrow \gamma\gamma, m_{H}) = \sigma_{SM} (gg \rightarrow H \rightarrow \gamma\gamma, m_{H}) * \mu * R_{\gamma V}$
- $\sigma(VBF H \rightarrow \gamma\gamma, m_{H}) = R_{Vg} * \sigma_{SM} (VBF H \rightarrow \gamma\gamma, m_{H}) * \mu * R_{\gamma V}$
- $\sigma(gg \rightarrow H \rightarrow WW/ZZ, m_{H}) = \sigma_{SM} (gg \rightarrow H \rightarrow WW/ZZ, m_{H})^{*} \mu$
- $\sigma(VBF H \rightarrow \tau\tau, m_{H}) = R_{Vg} * \sigma_{SM} (VBF H \rightarrow \tau\tau, m_{H}) * \mu * R_{fV}$
- $\sigma(W/Z H \rightarrow bb, m_H) = R_{Vg} * \sigma_{SM} (W/Z H \rightarrow bb, m_H) * \mu * R_{fV}$
- Given current data, one can expect μ and $R_{\gamma\gamma}$ to be somehow well "measured", while R_{ν_g} and $R_{f\nu}$ are only determined by the weak channels \rightarrow for the near future?

Michael Duehrssen

LHC2TSP

What else when looking for deviations from a SM Higgs ?

- We know that some SM effects are not (completely) taken into account yet :
 - NWA/ZWA approximation
 - Strict treatment of interference effects with SM backgrounds
 - Interference effects in the signal, when $C_x!=1$?
 - NLO QCD effects in the gg \rightarrow H loop when C_x !=1
 - Complete correlation of theory uncertainties given the different analysis selections
- Soon measurements will be sufficiently sensitive that these issues matter → better take them into account

What else when looking for deviations from a SM Higgs ?

- Of course with more data, more complicated fits can be done with less/different assumptions that might probe a direction not visible in one of the "simple" benchmarks
 - \rightarrow example $C_w!=C_z, C_b!=C_\tau, \dots$

 \rightarrow will be tried for sure once it is possible

- As usual, two options for results:
 - Results stay compatible with SM
 - \rightarrow theory and experiments "race" for precision
 - Results show a deviation from the SM somewhere
 - $\rightarrow\,$ this means all underlying σ^*BR computations are no longer strictly valid and also signal kinematics might be affected
 - \rightarrow Start fresh and question all previous Higgs "measurements"

Effective BSM Lagrangian

- Multiplying the plain SM couplings just with constants C_x gives no valid theory
 - \rightarrow C_x != 1 might be an experimental result, but not a well defined quantity in the SM
- Need a theory that intrinsically contains the effect caused by the measured $C_x \rightarrow$ consistent BSM theories
- Need to redo all σ^*BR calculations with these theories and fit the free BSM parameters to the data \rightarrow a valid BSM attempt should explain the data
 - \rightarrow reiterate with more data and rule out more models
- Many BSM models are possible and were already shown during this workshop and far more will arrive
 - Anomalous couplings
 - Several Higgs
 - Additional particles appearing somewhere
 - Something playing to look like a Higgs
- Proposals will be discussed in the next LM meeting !

Michael Duehrssen

LHC2TSP

Spin / CP (J^PC)

- Need to do shape analysis for signal events
- So far we have a significant amount of events to observe the total signal in some channels, but statistics is not sufficient yet for signal shape analysis
- Signal strength is not necessarily predicted
 - → removes currently strongest data constrain from the measurement
- BUT: More data will turn this into a hot topic, especially once the fermion initial/final states get accessible
- Several MC generators are available, but experiments can't simply take the analysis used for the Higgs searches and recast
 → dedicated analysis needed for each initial and final state !
- not trivial to combine between channels, as different channels might see different projections of CP
- Spin/CP will move into focus in the next LHCHXSWG LM meetings
 → more details this afternoon in "WG1: Higgs properties "

Summary of properties

- Mass ? \rightarrow almost there
- Couplings ? \rightarrow in work
 - Search for deviations from SM expectation based on SM Higgs calculations and LO scale factors
 - Several benchmarks how theory aspects can already be probed with current data
 - If a deviation from the SM is found
 - → need to reanalyze data with consistent BSM Lagrangian
 - Document results in the next week(s)
- Spin/CP? \rightarrow more details this afternoon

Information sheet

- Light Mass group wiki: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/HiggsLightMass
- Email list of the Light Mass group: lhc-higgs-lm@cern.ch
- LHC Higgs XS Indico: https://indico.cern.ch/categoryDisplay.py?categId=2792
- Next Light Mass meeting: 27 July
- We are looking forward to your contributions!

Backup

$$\begin{aligned} \frac{\Gamma(b\bar{b})}{\Gamma_{SM}(b\bar{b})} &= C_b^2 &= C_F^2 \\ \frac{\Gamma(\tau\tau)}{\Gamma_{SM}(\tau\tau)} &= C_\tau^2 &= C_F^2 \\ \frac{\Gamma(WW)}{\Gamma_{SM}(WW)} &= C_W^2 &= C_V^2 \\ \frac{\Gamma(ZZ)}{\Gamma_{SM}(ZZ)} &= C_Z^2 &= C_V^2 \\ \frac{\Gamma(\gamma\gamma)}{\Gamma_{SM}(\gamma\gamma)} &= \frac{|C_tA_t + C_bA_b + C_WA_W|^2}{|A_t + A_b + A_W|^2} &= \frac{|C_F(A_t + A_b) + C_VA_W|^2}{|A_t + A_b + A_W|^2} \\ \frac{\Gamma(Z\gamma)}{\Gamma_{SM}(Z\gamma)} &= \frac{|C_tB_t + C_bB_b + C_WB_W|^2}{|B_t + B_b + B_W|^2} &= \frac{|C_F(B_t + B_b) + C_VB_W|^2}{|B_t + B_b + B_W|^2} \end{aligned}$$

$$\begin{aligned} \frac{\sigma(ggH)}{\sigma_{SM}(ggH)} &= \frac{|C_t A_t + C_b A_b|^2}{|A_t + A_b|^2} &= C_F^2 \\ \frac{\sigma(VBF)}{\sigma_{SM}(VBF)} &= \frac{C_W^2 + C_Z^2 R_{VBF}}{1 + R_{VBF}} &= C_V^2 \\ \frac{\sigma(WH)}{\sigma_{SM}(WH)} &= C_W^2 &= C_V^2 \\ \frac{\sigma(ZH)}{\sigma_{SM}(ZH)} &= C_Z^2 &= C_V^2 \\ \frac{\sigma(t\bar{t}H)}{\sigma_{SM}(t\bar{t}H)} &= C_t^2 &= C_F^2 \end{aligned}$$