

European Organization for Nuclear Research

MECHANICAL STABILIZATION AND POSITIONING OF CLIC (MAIN BEAM) QUADRUPOLES WITH SUB-NANOMETRE RESOLUTION

K. Artoos, C. Collette^{**}, M. Esposito, P. Fernandez Carmona,

M. Guinchard, S. Janssens*, R. Leuxe, R. Morón Ballester

The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD

- Introduction/reminder
- CDR chapter anno October 2010
- New Years resolutions for 2011
 - Commercial break
- New Years resolutions for 2012

Initial requirements

3

3992 CLIC Main Beam Quadrupoles: Four types :

 \sim 100 to 400 kg, 500 to 2000 mm

Stability (magnetic axis):

$$\sigma_x(f) = \sqrt{\int_f^\infty \Phi_x(\nu) d\nu}$$

Type 4: 2m, 400 kg Type

Type 1: 0.5 m, 100 kg

Other requirements

Stiffness-Robustness

- Applied forces
- Compatibility alignment
- Uncertainty
- -Transportability

Strategy STIFF support

Available space

Integration in two beam module

620 mm beam height

Accelerator environment

- High radiation
- Stray magnetic field

Additional study

« Nano-positioning» feasibility study

Modify position quadrupole in between pulses (~ 5 ms) Range ± 5 µm, increments 10 to 50 nm, precision ± 1 nm

• In addition/ alternative dipole correctors

• Use to increase time to next realignment with cams

Characterisation ground vibration

K.Artoos, CLIC Beam Physics meeting 18.01.2012

6

- Improves the isolation
- Make the payload more sensitive to external forces Fa

C. Collette

8

Introduction/Reminder:

Practical application

Very Soft (1 Hz)	Soft (20 Hz)		Stiff (200 Hz)	
Pneumatic actuatorHydraulic actuator	 Electromagnetic in parallel with a spring Piezo actuator in series with soft element (rubber) 		• Piezoelectr series with st (flexible join	ic actuator in iff element t)
k∼0.01 N/µm	k∼1 N/µm		Piezo k∼100	-500 N/µm
	COMPARISON			
 + Broadband isolation - Stiffness too low - Noisy 	 + Passive iso + Stable - Low dynam - Low compa alignment an 	lation at high freq. ic stiffness tibility with nd AE	+ Extremely + Fully comp + Comply w - Noise trans - Strong coup	robust to forces oatible with AE ith requirements mission oling (stability)

- Inclined stiff piezo actuator pairs with flexural hinges (vertical + lateral motion) (four linked bars system)
- X-y flexural guide to block roll + longitudinal d.o.f.+ increased lateral stiffness.
- (Seismometers)/ inertial reference masses for sensors

CDR Chapter Anno October 2010 (OBSOLETE)

10

Previous performances on stabilization of accelerator components

TMC table: Stiffness: 7 N/µm (value catalogue)

Previous performances on stabilization of accelerator components

Five R&D themes in 2011:

1. Performance increase

- 2. Compatibility with environment
- 3. Cost optimization
- 4.
- Overall system analysis

Pre-industrialization 5.

- \rightarrow Reach requirements from higher background vibrations + include direct forces
- \rightarrow Increase resolution (Final focus)
- \rightarrow Radiation, magnetic field, Operation, Temperature
- \rightarrow Standardize and optimize components, decrease number of components, simplify mounting procedures,...
- \rightarrow Interaction with the beam-based orbit and IP feedback to optimise luminosity Integration with other CLIC components
- \rightarrow Adapt to changing requirements
- \rightarrow Ability to build for large quantities

Performed work:

- Feedback + Feed Forward
- Study other sensors
- Change to analogue Hardware
 + Hybrid
- LOCAL controller
- Modal analysis , small improvements on test benches Type 1
- Optimisation of electronics

Gain limited by Stability

Sources of instability:

- Type of filters
- Sensor/Actuator
- 🗆 Delay

14

- Mechanical « spurious » resonances
- Clipping

P. Fernandez-Carmona

From Digital to Analogue + Lower latency Low enough noise + Low cost + Small volume + Less sensitive to single events + Low power consumption -Limited flexibility, no external communication

Hybrid circuit

Stabilization on Type 1 magnet

18

Water cooling 4 l/min
With magnetic field on
With hybrid circuit

Figure	Value
R.m.s @ 1Hz magnet	0.5 nm (during the day)
R.m.s @ 1Hz ground	6.3 nm
R.m.s. attenuation ratio	~13
R.m.s @ 1Hz objective	1.5 nm

• 0.3 nm on Membrane, 0.5 nm on Tripod, 0.5 nm on Type 1 (day)

Temperature stable within 0.5 degrees

Integrated luminosity simulations

22

Commercial Seismometer

Custom Inertial

Reference mass

No stabilization	68% luminosity loss			
Seismometer FB maximum gain (V1)	13%			
Seismometer FB medium gain (V1mod)	6% (reduced peaks @ 0.1			
	and 75 Hz)			
Seis. FB max. gain +FF (FBFFV1mod)	7%			
Inertial ref. mass 1 Hz (V3mod)	11%			
Inertial ref. mass 1 Hz + HP filter (V3)	3%			

Courtesy J. Snuverink, J. Pfingstner et al.

Integrated luminosity simulations

23

Commercial Seismometer **Custom Inertial Reference** mass

No stabilization	68% luminosity loss
Inertial ref. mass 1Hz (V3mod)	11%
Inertial ref. mass 1Hz + HP filter (V3)	3%
Inertial ref. mass 7 Hz (V3 mod 1)	Orbit fb optimised V3: 0.7%

 \rightarrow ref. mass 7 Hz easier to make mechanically! Question: peak at 1 Hz problem?

Other question: Use of measurement files to calculate luminosity? Or inverse: calculate r.m.s from used GM model?

Positioning in 2 d.o.f.

- X-y guide « blocks » roll + longitudinal
- Increases lateral stiffness by factor 500
- Introduces a stiff support for nano metrology

M. Esposito, R. Leuxe

Required resolution (or precision ?) Size of steps and time available Evaluate both steering and "alignment". Draw back of moving the BPM by some nm to some microns, understand the mechanism and from this the requirements Should we uncouple the BPM from the nano positioning ? **Mechanics**

27

Experimental modal analysis MBQ MBQ Type 4 in free-free condition

Mode	Freq.	Damping
	(Hz)	(%)
	Measured	Measured
1&2	264	1.26
3 & 4	628	3.32
5	656	1.94
6&7	1090	3.54

M. Guinchard, R. Morón Ballester

FE Modal analysis MBQ Type 4 with supports

28

FE analysis magnet on equivalent "dummy" supports with adaptable stiffness

Magnet suspension modes:

Longitudinal: 124 Hz Yaw: 134 Hz Lateral: 164 Hz Pitch: 257 Hz

Conclusions Modal analysis:

Marco Esposito

- •Magnet assembled with bolts is sufficiently stiff
- The coil does not participate to the magnet stiffness
- Complete FE model now available that corresponds well to measurements
- There are **no internal modes of the magnet pole tips in the frequency region of interest**, nor in the measurements neither in the model **i.e. The magnet stability can be measured on the outside**
- Most important modes are the **magnet suspension modes** > important input for design

Mechanics

Water cooling tests T4 MBQ on equivalent supports

29

[I] SW provide the second se

Very small measured increase (< 1 nm) Very conservative estimate increase of r.m.s. displacement of 2 nm (without stabilisation)

S. Janssens

Stiff support a good choice

<u>Modeling multiple d.o.f. in parts:</u> get firm understanding of interactions between mechanics and controller

- Continue our 2011 resolutions...
- +
- Build and test a stabilised Type 1 and type 4 MBQ placed on the alignment system
 At first with Guralp
- Install it (after full testing in ISR) in the test module.
- Design and build a type 1 for CLEX
- Build and test several sensor prototypes
- Remote control part of the electronics
- Radiation testing : SEU + accumulated dose
- Join the work on FF

Monolithic approach of the design:

- To simplify the assembly + increase precision
- Reduce assembly stresses on actuator + magnet
- Improve sensor installation: inertial ref. mass and displacement gauges
- Optimise vertical, lateral and longitudinal stiffness
- Solve integration in module
- Mechanical locking for transport
- Improve interface with alignment

Work in progress: T1 test module

Development Inertial reference

34

Goal: Improved transfer function Radiation and magnetic field hard Lower noise, higher resolution

Several Prototypes under preparation + testing Plan to subcontract 1 development to

industry

Courtesy J.M. Dalin

- Contact with RAD WG
- Option to do SEU tests in the H4IRAD test stand at CERN before summer
- Several components under evaluation. Larger community working on same problems
- Sensitivity simulation of controller to changes in the components
- Essential for CLIC: obtain more complete and sure expected radiation values.
- Available shielding in the CLIC tunnel ????

Pablo Fernandez Carmona

Courtesy S. Mallows

Five R&D themes :

1. Performance increase

2. Compatibility with environment

3. Cost optimization

5. Pre-industrialization

- \rightarrow Increase resolution (Final focus)
- → Radiation, magnetic field, Operation, Temperature
- → Standardize and optimize components, decrease number of components, simplify mounting procedures,...
- → Interaction with the beam-based orbit and IP feedback to optimise luminosity Integration with other CLIC components
- \rightarrow Adapt to changing requirements
- \rightarrow Ability to build for large quantities

http://clic-stability.web.cern.ch/clic-stability/publications.htm