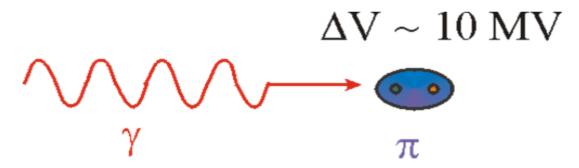


COMPASS 2006/2007 Status Report

G. K. Mallot CERN PH-COE

for the Collaboration



- New physics results from 2002–2004 data
 - Pion polarisability (hadron beam)
 - Inclusive and semi-inclusive DIS (long.)
 - Gluon polarisation
 - Transversity
- 2006 upgrades and performance
- · Beam delivery and spectrometer performance
- · 2007 goals and schedule
- Conclusion

Polarizabilities

- electric polarisability :
- magnetic polarisability : $\vec{\mu} = \beta \vec{H}$

Charges oscillate $\sim 0.1\% \pi$ radius

 $\vec{d} = \alpha \vec{E}$

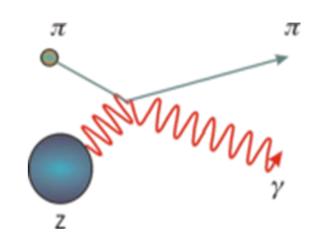
Polarisability: a test of χPT

 \cdot $\overline{\alpha}_{\pi}$ electrical , $\overline{\beta}_{\pi}$ magnetic polarisability

•
$$\chi$$
PT: $\overline{\alpha}_{\pi} \pm \overline{\beta}_{\pi} = \frac{\alpha}{16\pi^2 m_{\pi} f_{\pi}^2} \left\{ a_{\pm} + b_{\pm} + \mathcal{O}(\frac{m_{\pi}^2}{f_{\pi}^2}) \right\}$
1 loop 2 loop

 $\cdot a_{+} = 0, \ a_{-} \sim \text{Low Energy Constant (LEC)}$

•
$$\chi PT$$
: $\overline{\alpha}_{\pi} + \overline{\beta}_{\pi} = (0.16 \pm 0.1) \cdot 10^{-4} \text{ fm}^3 = 0 \text{ at } 1 \text{ loop}$
 $\overline{\alpha}_{\pi} - \overline{\beta}_{\pi} = (5.7 \pm 1.0) \cdot 10^{-4} \text{ fm}^3$



Polarisability: Primakoff

· measurable in Compton scatt.

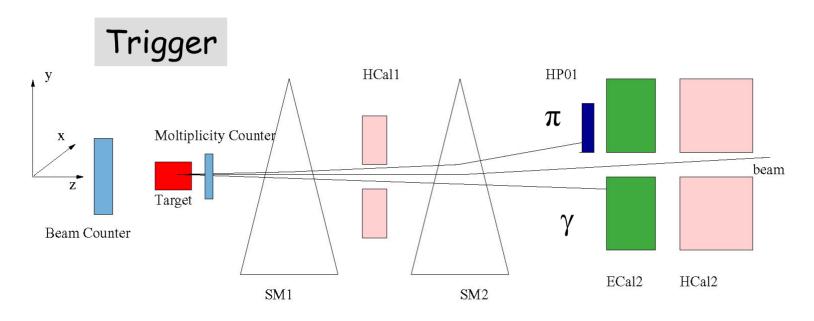
$$\gamma\pi \times \gamma\pi$$

- · Primakoff: inverse kinematics
- with $\omega=E_{\gamma}/E_{\rm beam}$ and $\overline{\alpha}_{\pi}+\overline{\beta}_{\pi}=0$

$$\begin{split} \frac{\mathrm{d}\sigma_{\gamma\pi}^{\mathrm{Prim}}}{\mathrm{d}\omega} &= \frac{\mathrm{d}\sigma_{\gamma\pi}^{\mathrm{Thomson}}}{\mathrm{d}\omega} + \\ &+ \omega \, 4Z^2 \alpha^2 m_\pi \overline{\beta}_\pi \left\{ \ln \frac{Q_{\mathrm{max}}^2}{Q_{\mathrm{min}}^2} - 3 + 4 \sqrt{\frac{Q_{\mathrm{max}}^2}{Q_{\mathrm{min}}^2}} \right\} \end{split}$$

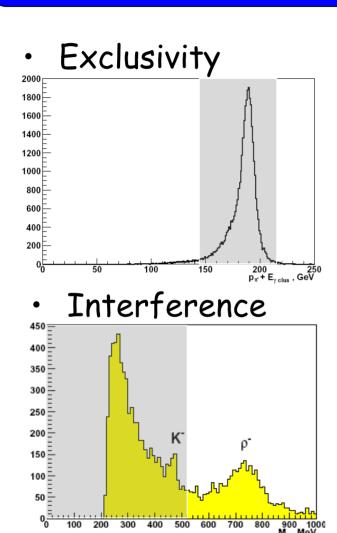
where
$$Q_{\min}^2 = \frac{m_{\pi}^2}{2E_{\text{beam}}} \frac{\omega}{1-\omega}$$
 and Q_{\max}^2 depends on analysis cuts

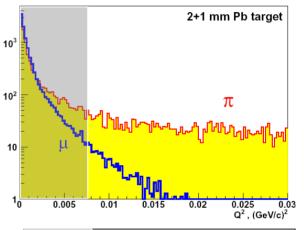
Polarisability: Primakoff

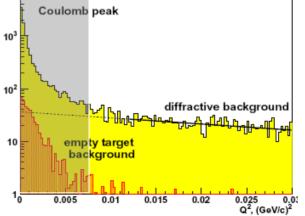

 Finally compare the shape of the measured Primakoff cross-section to a Monte Carlo simulation for the pointlike case.

$$R(\omega) = \frac{\mathrm{d}\sigma_{\gamma\pi}^{\mathrm{Prim}}}{\mathrm{d}\sigma_{\gamma\pi}^{\mathrm{Thomson}}} \simeq 1 + \frac{3}{2} \frac{m_{\pi}^3}{\alpha} \frac{\omega^2}{1 - \omega} \overline{\beta}_{\pi}$$

· Note COMPASS also measured the point-like muon

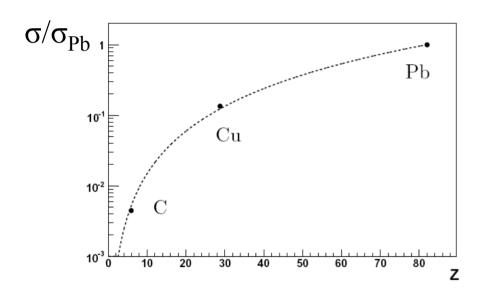

Pilot hadron-beam run 2004


- 190 GeV π beam, low intensity: 2 ·106/spill
- Beam time: 7 days
- Trigger: beam, pion in hodoscope, and E_γ > 90 GeV
- Trigger rate (40-50k/spill)
- Different targets (Pb, C, Cu)

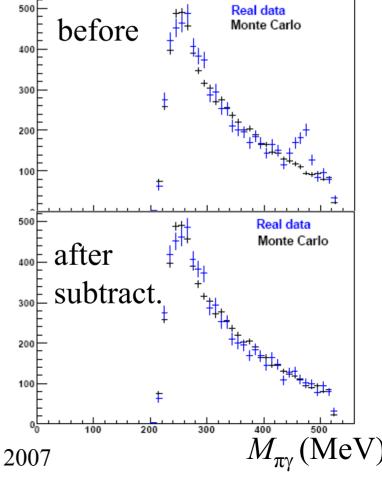

Event selection

Diffractive background

Coulomb peaks of π and μ agree

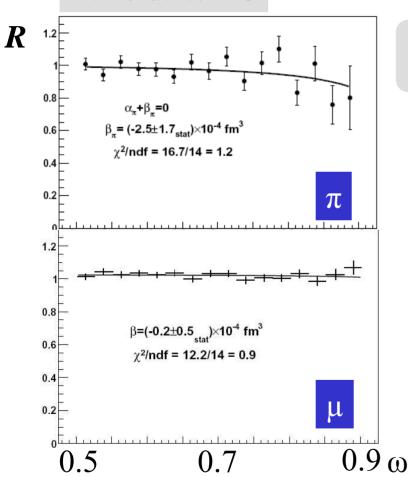


Extrapolate diffr. background


Cross checks

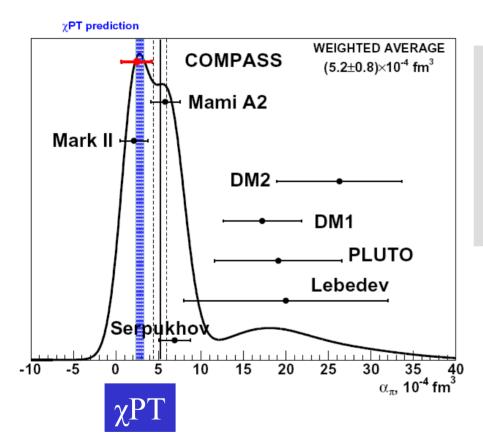
Cross section ratios

- Abs. Pb cross-section: estimate $\sim 100 \ \mu b$ theory $\sim 140 \ \mu b$
- · Not needed in analysis


Empty target bkgrd

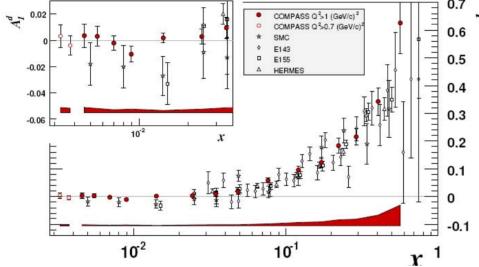
Result for $\overline{\beta}_{\pi}$

Ratio data/MC

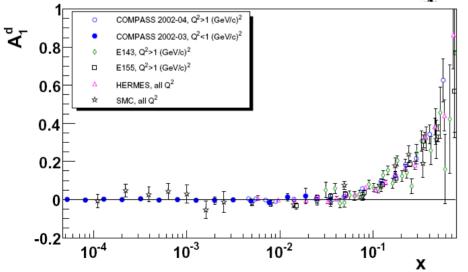

$$\overline{\beta}_{\pi} = (-2.5 \pm 1.7 \pm 0.6) \times 10^{-4} \text{ fm}^3$$

- Radiative corrections included
- zero result for muon
- Systematic error:

Origin	Syst. Error
	10^{-4} fm^3
Setup description in MC	± 0.5
Background subtraction	± 0.3
Beam muons	< 0.2
Beam electrons	< 0.1
Total	± 0.6



World data on $\overline{\alpha}_{\pi}$

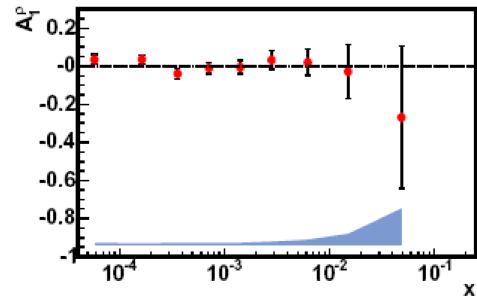

- · Precise result
- Good agreement with χPT
- Smaller than Serpukhov and Mainz result

SPSC 82, 26 June 2007

1

- $Q^2 > 1 \text{ GeV}^2$
- $4 \cdot 10^{-3} < x < 0.7$
- a_0 (∞) = $0.33 \pm 0.03 \pm 0.05$
- $\Delta s (\infty) = -0.08 \pm 0.01 \pm 0.02$
- \overline{MS} : $a_0 = \Delta \Sigma = \Delta u + \Delta d + \Delta s$

- $Q^2 < 1 \text{ GeV}^2$
- $4 \cdot 10^{-5} < x < 2.5 \cdot 10^{-2}$

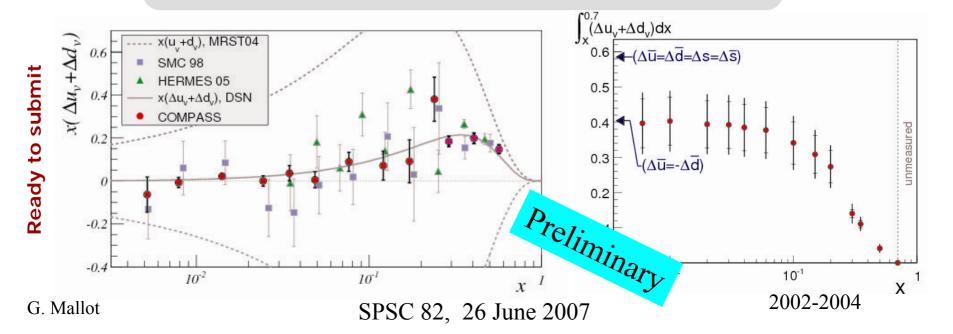

Asymmetries from SIDIS: rho

• Longitudinal double-spin asymmetry A_1^{ρ} in exclusive incoherent ρ production

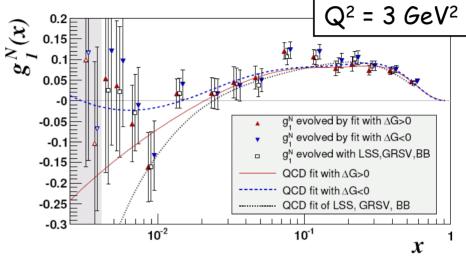
$$\mu + N \rightarrow \mu' + \rho^0 + N'$$

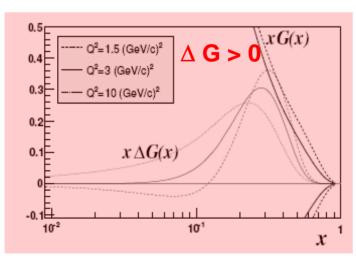
 Related to spin-dependent, generalised parton distribution functions

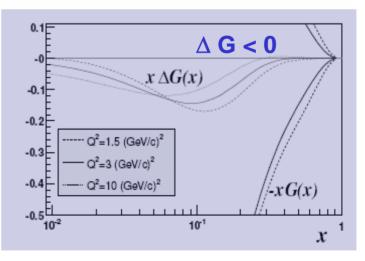
hep-ex/0704.1863


SPSC 82, 26 June 2007

Valence quark polarisation

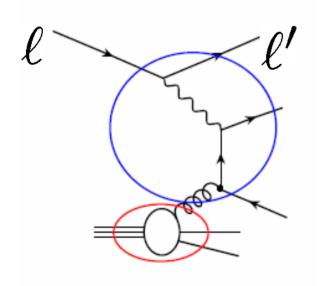

- Asymmetry A^{h+-h-} of $\Delta \sigma^{+-} = (\sigma^{h+} \sigma^{h-})$
- Fragmentation functions drop out
- · Flavour symmetric sea disfavoured


$$\Gamma_v^1 = \int_0^1 dx \left(\Delta u_v + \Delta d_v \right) = 0.41 \pm 0.07 \pm 0.05$$



QCD fit

- New g₁^d data + world data
- Solutions for $\triangle G > 0$ and $\triangle G < 0$
- $|\Delta G| \sim 0.2-0.3$



PLB 647 (2007) 8

Photon-gluon fusion (PGF)

Gluon polarisation is directly measurable in PGF

$$A_{\parallel} = R_{pgf} \langle \hat{a}_{pgf} \rangle \frac{\Delta G}{G}$$

- \cdot measure A_{\parallel}
- calculate R_{pgf} and $\langle \hat{a}_{pgf} \rangle$

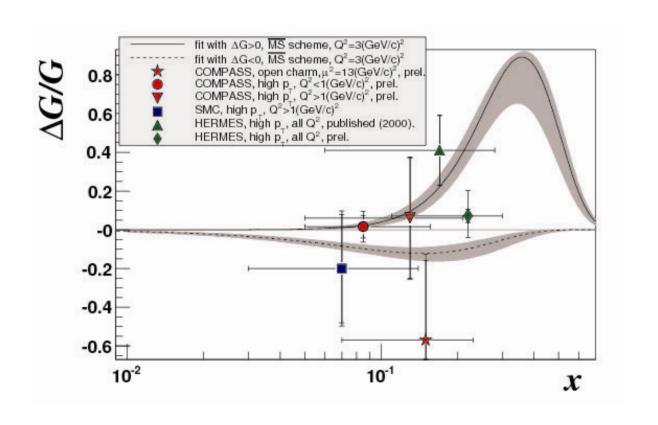
using Monte Carlo

Gluon polarisation

high-pT pairs; $Q^2 > 1 \text{ GeV}^2$:

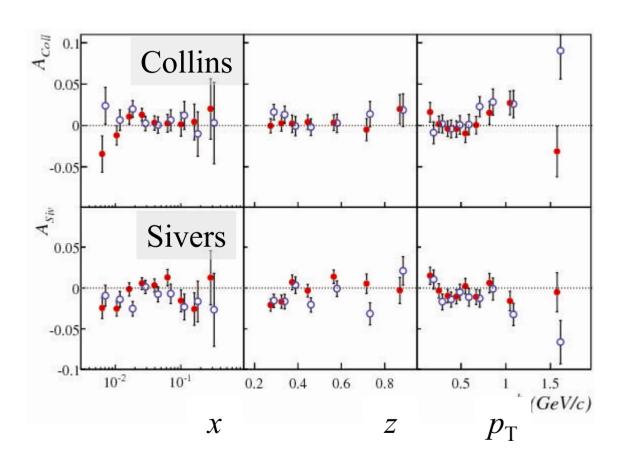
$$\frac{\Delta G}{G} = 0.06 \pm 0.31 \text{(stat.)} \pm 0.06 \text{(syst.)} \qquad \langle x_g \rangle = 0.13$$

high-pT pairs; Q2<1 GeV2:

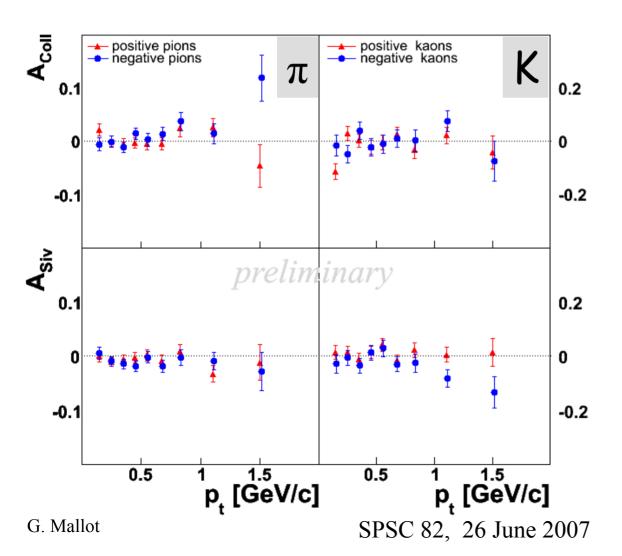

$$\frac{\Delta G}{G} = 0.016 \pm 0.058 (\text{stat.}) \pm 0.055 (\text{syst.})$$
 $\langle x_g \rangle = 0.085$
 $\langle \mu^2 \rangle = 3 \text{ GeV}^2$

Open charm:

$$\frac{\Delta G}{G} = -0.57 \pm 0.41 ({
m stat.}) \pm 0.17 ({
m syst.})$$
 $2002-2004$ $\langle x_g \rangle = 0.15 \ \langle \mu^2 \rangle = 13 \ {
m GeV}^2$


$\Delta G/G$ summary

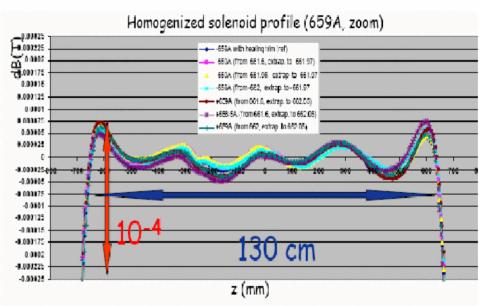
Note: not included is syst. uncertainty due to the PDF parametrisation


Transverse asymmetries

- 2002 2004 data
- · all hadrons
 - positive
 - negative

Transverse asymmetries

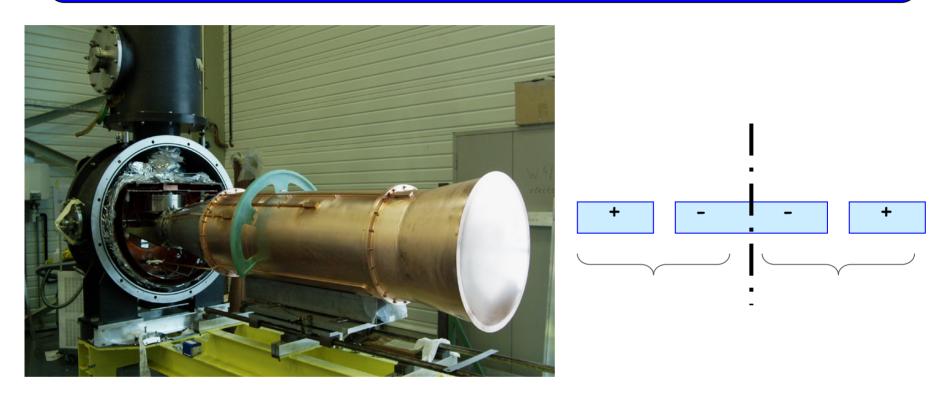
- 2003 2004 data
- Identified hadrons
 - positive $\pi \& K$
 - negative π & K


2006 upgrades and performance

- Main projects:
 - Polarised target magnet and cavity
 - RICH photon detectors
- · Not discussed:
 - RICH wall tracker & preshower
 - Drift chamber DC04
 - ECAL1

Polarized target magnet

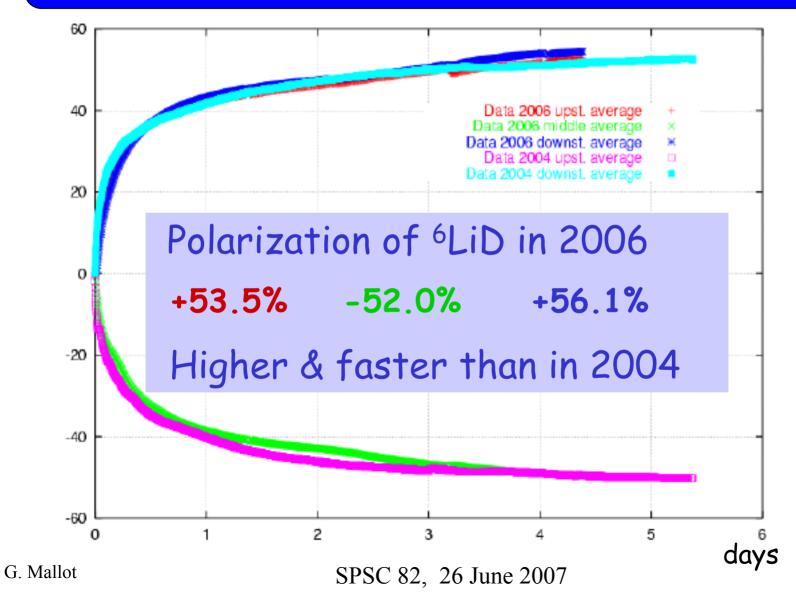
New target magnet SMC (70 mrad) → COMPASS (180 mrad)


Field homogeneity of $\sim 3 \times 10^{-5}$ achieved @ Saclay

Operation delicate, however reliable.

Excellent uniformity

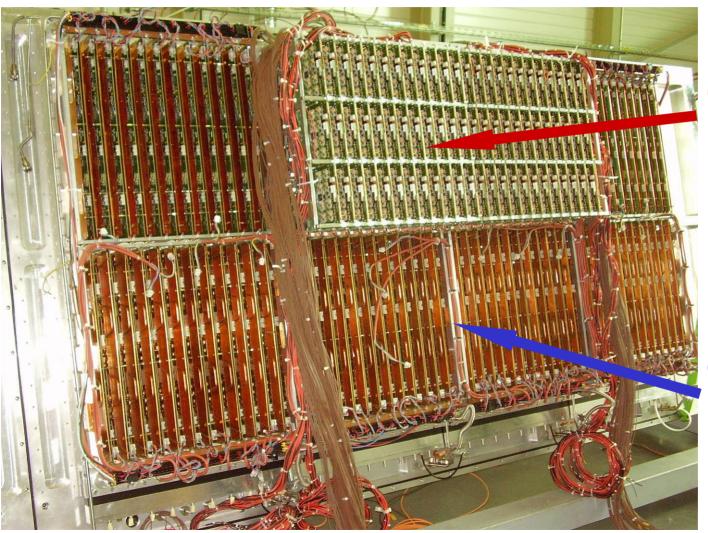
Polarized target new µW cavity



New 3-cell system & microwave cavity matched for larger acceptance

reduces false asymmetries

Polarized target performance

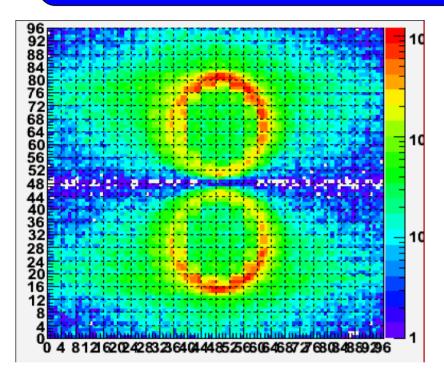


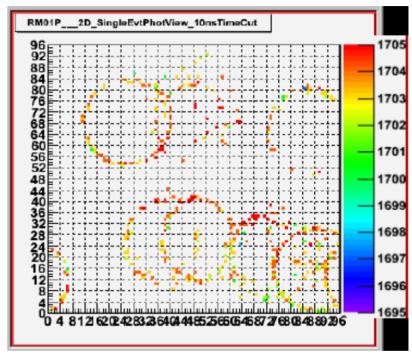
- Central photodetectors (1/4) replaced by MAPMTs
- Significant increase in nb of photons, no dead time, excellent timing.
- Outer (CsI MWPC) photodetectors read by APV25S1
- Nb of photons as with previous electronics, no dead time, uncorrelated background is at least 6 times smaller.

INFN + 8 COMPASS Institutes

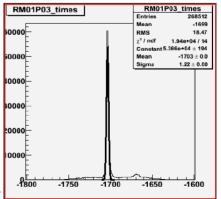
RICH upgrade

Lens system


- + MAPMTs
- + MAD4
- + F1

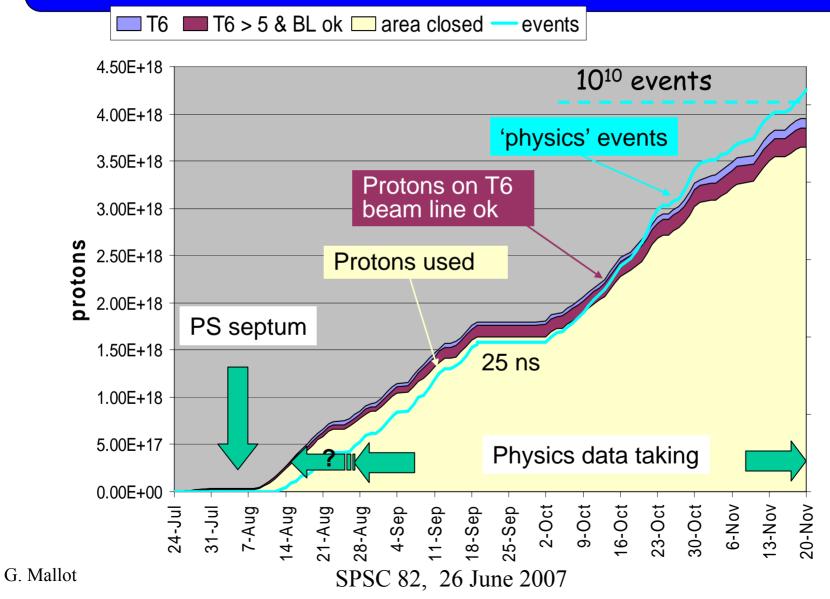

CsI MWPC

- + APV25S1
- + ADC


RICH upgrade, MAPMTs "on-line"

Very promising results!

- Precise timing
- High photon statistics

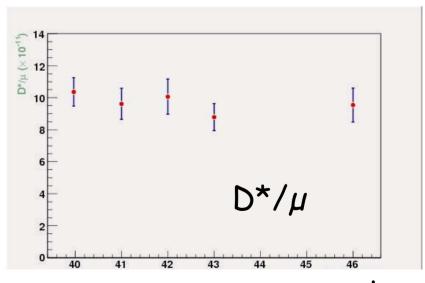


Beam delivery and spectrometer performance in 2006

Beam delivery 2006

2006 beam

- Data taking August 13 November 21
- Basically no CNGS running
- SC 16.8s → 14.4s and higher intensity recovered equivalent of 13 days, thanks to the SPS crew
- Total beam delivered 3.8 10¹⁸ protons
- · Got 10 days commissioning and
 - 71% of beam expected for longitudinal run, but
 - 0% for transverse run (postponed to 2007)
 - 56% of total from 2005 projection, i.e. 140 days at 14.4s SC and 1.2 10^{13} ppp (10/100/30 days)
- 56% of total
- (note the 2005 projection was assuming a longer SPS run)



Spectrometer performance

· Evaluate effectiveness of upgrade for open charm channel

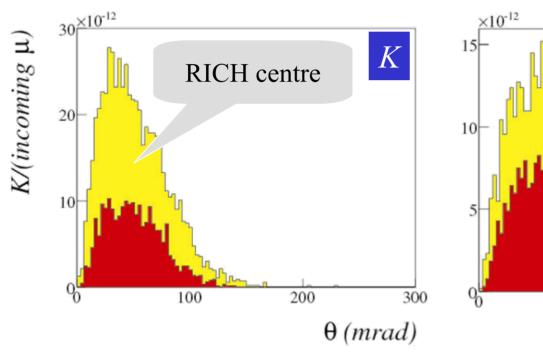
$$D^* \rightarrow D^0 \pi_{slow} \rightarrow K \pi \pi_{slow}$$

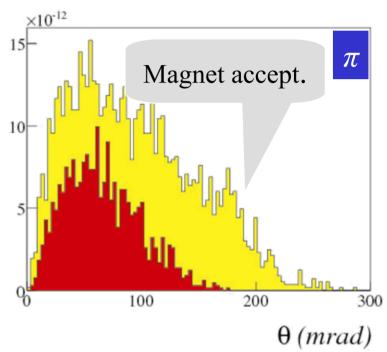
- total > 10^{10} raw events, > 400 TB
- ·86 % of data reconstructed
- Study based on 50 % of data taken
- Extrapolate to full statistics

week

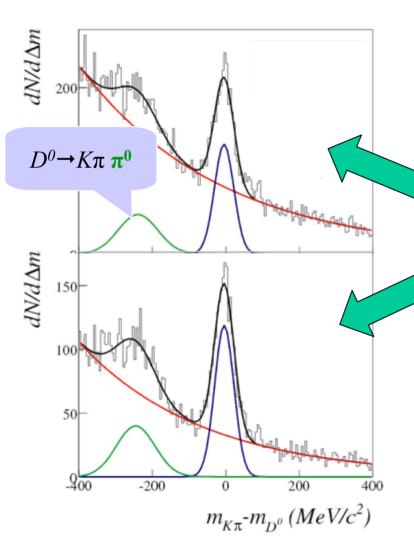
2006 D*statistics (prelim.)

• Compare: number of D^* and effective signal $S_{\rm eff}$


$$S_{\rm eff} = \frac{S^2}{S+B} \propto \delta^{-2} \frac{\Delta G}{G}$$


 Caveat: slightly different kinematics may influence event weight

	2006	2004	2006/2004
D*	3660	2084	1.76
<i>D</i> */(10 ¹² μ)	98	52	1.9
$S_{\rm eff}/(10^{12}\mu)$	46	26	1.8

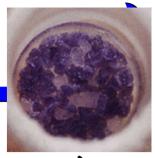

Event gains in 2006 wrt 2004

Signal-to-background ratio

- · Slow π_s not identified
- Larger acceptance in 2006 → larger combinatorial bg
- · Large e^- bg found in π_s sample
- rejected by RICH
- \cdot S/B: 0.99 \rightarrow 2.17!
- S_{eff} increases by 25 % despite of loss of 10 % of events.
- $\cdot S_{eff}(D^*) = 1.25 \times 1.8 = 2.25$

2006 performance

- RICH and target upgrade fully successful
- Almost as many D*s in 2006 as in 2002-2004
- Full data set to be evaluated
 - impact of combinatorial background on untagged Dos?
 - Possible influence of changed kinematics
- If no surprises:


Goal for longitudinal running in 2006 largely achieved

2007

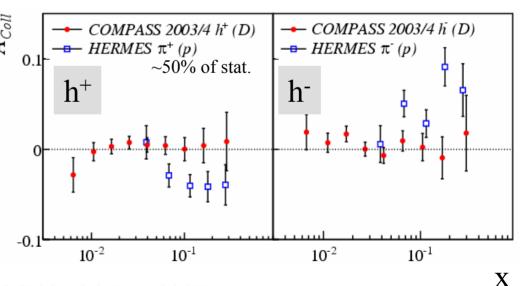
2007 Target

- Different target material NH₃ (proton)
 - Fragile and difficult to handle
 - Successfully loaded
 - Very long relaxation time (~ 4000 h), important for transverse run
 - Magnetic field rotation without polarisation loss (no superradiance)

Goals of 2007 muon-proton run

- 2008: measurements with hadron beam
- 2007: dedicated to muon-proton DIS
- Physics goal: flavour separation of PDFs, requires proton and deuteron (or n) data
- 2007 p data complement the 2002-2006 d data
- Proton target is twice harder:
- Partly compensated by 2006 spectrometer upgrade (channel dependent)

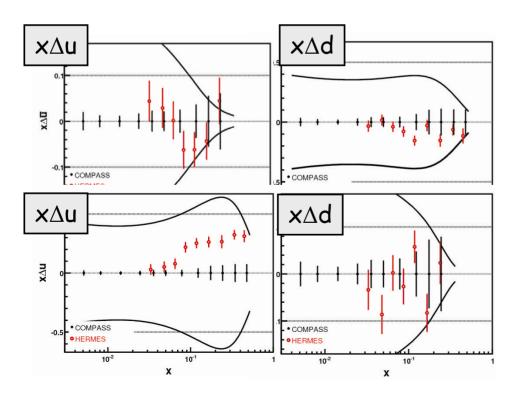
	$^6\mathrm{LiD}$	NH_3
Polarisation (P_T)	0.515	0.89
Dilution factor (f)	0.37	0.14
Density (ρ)	0.84	0.87
Filling factor (k)	0.55	0.60
FOM	0.0168	0.0081

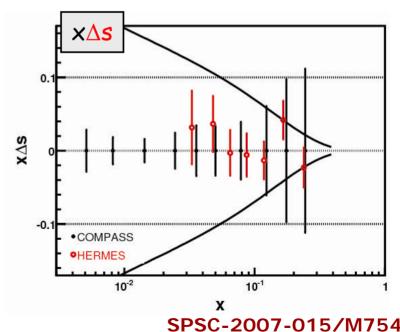

More info SPSC-2007-015/M754

Proton Collins asymmetry A_{Coll}

$$A_{Coll} = \frac{\sum_{q} e_q^2 \cdot \Delta_T q(x) \cdot \Delta_T^0 D_q^h(z, p_T^h)}{\sum_{q} e_q^2 \cdot q(x) \cdot D_q^h(z, p_T^h)}, \quad \Delta_T q(x) \quad \text{transversity PDF}$$

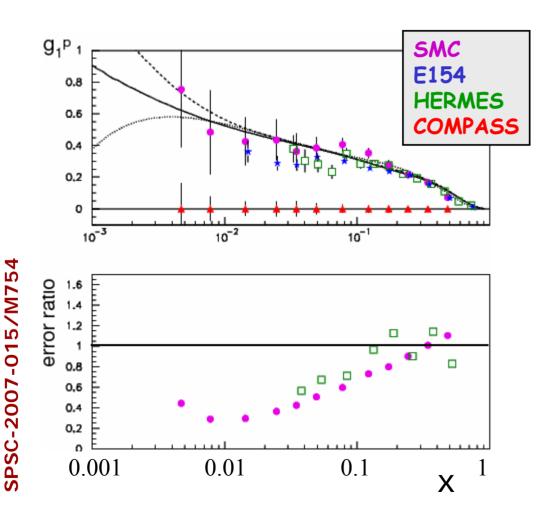
- Proton: only HERMES data at lower Q^2
- Non-zero HERMES results transversity or HT?
- Goal: comparable statistics for:
 - HERMES p
 - COMPASS d
 - COMPASS p
- Sivers asymmetry


SPSC 82, 26 June 2007



Flavour separated PDFs

- Goal for 2007 p and 2002-2006 d data
- What is the sign of $\int dx \Delta s(x)$? <0 from incl. data;
- · COMPASS is unique at small x


>0 from Hermes SIDIS data

g_1 of the proton at small x

- Shape of g_1 at small x unknown
- Reduce SMC error by about a factor 3
- Fade of g₁ at small x depends on gluon polarisation
- But good precision needed
- x range unique to COMPASS
- Bjorken sum rule

2007 schedule

- The discussed physics goals require
 - Excellent spectrometer performance, similar to 2006
 - Stable beam conditions for asymmetry measurements
 - $\sim 10^{19}$ protons on T6 (see SPSC-2007-015/M754, 9.5 10^{18})
- · Optimistically we can expect
 - About 8.4 10¹⁸ protons in 2007
 - Maybe more, if SPS/PS effi > 80 %
- Spectrometer tuned and calibrated
- · Start with transversely polarised proton target
- · Then switch to longitudinal proton polarisation