Neutrino and Cosmic Ray Signals from the Moon

Jeong, Yu Seon Yonsei University 2012. 2. 21

Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383 [arXiv:1108.2549]

Outline

- Cosmogenic neutrinos
- Radio Cherenkov detection
- Effective aperture
- Signals of neutrinos and cosmic rays
- Signal changes with the cross sections and the flux

Ultra High Energy Cosmic Rays and Neutrinos

JRS (2012)

- Neutrino fluxes: from K. Kotera, D. Allard, and A. V. Olinto (JCAP, 2010)
- Cosmic ray flux: from the Pierre Auger Collaboration (PLB 685, 2010)

The Moon as a detector

- The area of the Moon $\sim 10^7$ km² -> good as a big detector
- For E>10⁷ GeV, neutrinos interact inside the Moon.
- The Moon was suggested as a neutrino detector by Dagkesamanskii and Zhelenznykh (1989) based on the prediction of Askaryan effect.
- Askaryan Effect (1962) High energy particle interactions in the materials (e.g. salt, ice, dry rock) produce about 20% net charge excess.

Detection Method – Radio Cherenkov

- High energy neutrinos produce showers in the lunar regolith.
- While the shower develop in the regolith, 20% of electron excess is created. => Askaryan Effect (G. Askaryan(1962))
- The bunch of electrons generates the Cherenkov radiation.
- This Cherenkov radiation is observed by the array of antennas.

resun.physics.uiowa.edu

Experiments (Lunar Target)

- Parkes telescope, Hankins et al (1996)
- Goldstone Lunar UHE Neutrino experiment, Gorham et al. (2001; 2004)
- Beresnyak et al. (2005) Kalyazin telescope
- Buitink et al. (2008), nuMoon with Westerbork Synthesis Radio Telescope
- Jaeger et al., RESUN with VLA

Event Rate

$$\Gamma = \int_{E_{min}} dE_{\nu} \Phi(E_{\nu}, X(\theta_{\nu})) A_{\nu}(E_{\nu})$$

•
$$\Phi(E_{\nu}, X(\theta_{\nu})) \simeq e^{-2R\cos\theta_{\nu}/\lambda} \Phi(E_{\nu}, 0)$$
 : the flux
• $A_{\nu}(E) = A_0 \int d\hat{V}_m \int d\hat{\Omega}_{\gamma} \int d\hat{\Omega}_{\nu} e^{-\tau_{\nu}} \mathcal{H}_R \mathcal{H}_D$
 $= A_0 P_{\nu}(E)$: the effective aperture

 A_0 : the maximum cross sectional area of the detector $P_\nu(E)$: Probability of Interaction within the detector

Effective Aperture

$$A_{\nu}(E) = A_0 P_{\nu}(E)$$

 $A_0 = 4\pi (\pi R_M^2)$: the maximum geometric aperture of the Moon

$$P_{\nu}(E) = \frac{(n_r^2 - 1)}{8n_r} \frac{L_{\gamma}}{L_{\nu}} f_0^3 \Delta_0 (\Psi_{ds} + \Psi_{dr} + \Psi_u)$$

: the neutrino interaction probability in the Moon

of

$$L_{\gamma} = 5 \times 10^{-6} R \left(\frac{\nu}{\text{GHz}}\right)^{-1}$$
: interaction lengths of photon and neutrinos
$$L_{\nu} = \frac{1}{\sigma_{\nu N}^{tot} N_A}$$

 $n_r = 1.73$: the index of refraction

K. G. Gayley, R. L. Mutel, and T. R. Jaeger Astropart. Phys. 706, 1556 (2009)

Effective Aperture – more parameters

$$f_0 = \sqrt{\ln\left(\frac{0.6\varepsilon_0}{\varepsilon_{min}}\right)}$$

: Ratio of the full thickness of the Cherenkov cone to the thickness at the minimum detectable electric field

 ε_{min} : the minimum detectable electric field

$$\varepsilon_0 = 0.0845 \left[\frac{d}{\mathrm{m}}\right]^{-1} \left[\frac{E_s}{\mathrm{EeV}}\right] \left[\frac{\nu}{\mathrm{GHz}}\right] \left[1 + \left(\frac{\nu}{2.32}\right)^{1.23}\right]^{-1}$$
: Maximum electric field

 $E_s = \langle y \rangle \, E_{\nu} \ = \ 0.2 E_{\nu} \ :$ the shower energy

$$\Delta_0 = 0.05 \left[\frac{\mathrm{GHz}}{\nu} \right] \left[1 + 0.075 \mathrm{log} \left(\frac{E_s}{10^{19} \mathrm{eV}} \right) \right]^{-1}$$

: the half width of the Cherenkov cone

K. G. Gayley, R. L. Mutel, and T. R. Jaeger Astropart. Phys. 706, 1556 (2009)

Effective Aperture

K. G. Gayley, R. L. Mutel, and T. R. Jaeger Astropart. Phys. 706, 1556 (2009)

Effective aperture for neutrinos

Width of Cherenkov cone is wider for lower frequencies

 \rightarrow At low frequency – more smooth contributions.

Effective aperture for neutrinos

Lower minimum detectable electric field reduces the minimum energy of neutrinos.

Cosmic ray signals

Interaction length of cosmic rays is short.

➤There is attenuation effect for the downward particles.

≻There is no contribution from the upward particles.

• The effective aperture for cosmic rays

$$A_{CR}(E) = A_{ds} + A_{dr} = A_0 P_{CR}(E)$$

$$P_{CR}(E) = \frac{\sqrt{n_r^2 - 1}}{8} f_0 \Delta_0 \left(\frac{2}{3} f_0^2 \Delta_0^2 + \frac{1}{2} \sigma_0\right)$$

➤ The effective aperture and event rate for cosmic rays are independent of the cross section.

Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383

Events of Cosmic Rays and Neutrinos

The Cosmic ray events exceeds the neutrino events. \rightarrow NOT possible to detect the neutrino signal in the SM.

How to obtain the higher neutrino events

- To increase the neutrino cross section
- To increase the neutrino flux

Neutrino Cross Section for mini-Black Hole

A. Connolly et al. Phys. Rev. D. 83. 113009 (2011)

Events with the cross sections for mini-Black Hole production

Astrophysical neutrinos

Conclusion

- Cosmic ray signals are independent of the cross section.
- In the standard model, the cosmic ray signals overwhelm the cosmogenic neutrino signals.
- With the enhanced cross sections (in the non-standard model), neutrinos can be detected. But the detection threshold is currently not attainable.
- Both enhanced neutrino fluxes and enhanced cross sections could make the neutrino signals observable.

Extra

Astrophysical neutrinos

Jeong, Reno and Sarcevic, Astroparticle Physics 35 (2012) 383

Events (100 hours)

Limits

