## Magnet design, final parameters

#### Paolo Ferracin and Attilio Milanese

#### EuCARD ESAC review for the FRESCA2 dipole CERN 28-29 March, 2012



## Outline

- Introduction: magnet overview
- Conductor and cable parameters
- Coil design and magnet parameters
- Pre-load and stresses
- End forces and axial support
- Conclusions



## Introduction Overview of magnet design

- OD: 1.030 m
- Al shell, 65 mm thick
- Iron yoke
  - Holes for axial rods
- Horizontal s.s pad
  - 3 bladders, 75 mm wide
  - 2 load keys
- Vertical iron and s.s. pad
  - 2 bladders, 60 mm wide
  - 2 load keys
- Auxiliary bladders between yokes
- Four double-layer coils
- Iron and Ti alloy central posts
- 100 mm aperture
- Target bore field: 13 T





## Conductor and cable parameters

- Strand diameter: 1 mm
- Cu/Sc: 1.25 → 56% Cu
- Strand #: 40
- Bare width after cabling: 20.900 mm
- Bare thickness after cabling: 1.860 mm
- Insulation: 0.200 mm
- Assumed growth during HT

   4% in thickness and 2% in width
- Bare width after HT: **21.400** mm
- Bare thickness after HT: 1.934 mm







**EUCARD** 

## Conductor and cable parameters

- J<sub>c</sub> of virgin strand (4.2 K) from short-sample measurements
  - 2500 A/mm<sup>2</sup> at 12 T
  - 1400 A/mm<sup>2</sup> at 15 T
- Self field corr. of 0.41 T/kA (by B. Bordini)
- 10% cabling degradation
- Resulting J<sub>c</sub> for computations
   2400 A/mm<sup>2</sup> at 12 T
  - 1300 A/mm<sup>2</sup> at 15 T





2D magnetic analysis Coil cross-section

- Two double-layers with 36 and 42 turn
- Iron pole in layer 3-4
- 3.5 mm mid-plane shim
- 1.5 mm inter-coil gap

200 250

**EUCARD** 

150

• 0.5 mm inter-layer shim



- Coil aperture 116 mm, bore 100 mm
- Iron yoke with OD of 0.9 m
- Iron filler
  - S.S. horizontal pads



- Short sample conditions
  - 4.2 K, I<sub>ss</sub>: 13.6 kA
    - B<sub>bore</sub>: 15.8 T
    - B<sub>peak</sub>: 16.4 T
  - 1.9 K, I<sub>ss</sub>: 14.9 kA
    - B<sub>bore</sub>: 17.0 T
    - B<sub>peak</sub>: 17.6 T
  - Strain during loading/excitation not included
- Operational conditions
  - 13 T bore field
  - I<sub>op</sub>: 10.9 kA
  - B<sub>peak\_op</sub>: 13.4 T
  - 80% of I<sub>ss</sub> at 4.2 K
  - 73% of  $\rm I_{ss}$  at 1.9 K





 Stability current I<sub>s</sub> a factor of 3 higher then maximum strand current at short sample cond.





Paolo Ferracin

- Peak field in layer 1
  Layer 2 with field 1% lower
- Margin in L3 and L4
  From 3 to 9 %
- Field quality at 2/3 of aperture
  - <1% homogeneity</p>
    - ~70 units of b<sub>3</sub>, ~30 of b<sub>5</sub>
- E.m. forces directed outwardly
  - Lorentz stress
    - Ranging from 80 MPa in L12 to 100 MPa in L34
    - 150 MPa with 15 T bore field





## 3D magnetic analysis Coil design

- 730 mm of total straight section
- Hard-way bend with minimum radius of 700 mm
- Inclined straight section (17 degr.) of about 30 mm
- Overall coil length of 1.5 m
- Iron parts
  - Winding post in L34
  - Vertical pad over straight section
  - Full length yoke





- 10% (about 1.5 T) of margin in the ends
- 1% uniformity of B<sub>y</sub> over 540 mm along z
- Stored energy
  - FRESCA2 (13 T): **3.8 MJ** 
    - HD2 (13 T): 0.6 MJ
    - LQ (240 T/m): 1.4 MJ
    - HQ (170 T/m): 0.8 MJ
- Stored energy density (J/cm<sup>3</sup> of coil)
  - FRESCA2 (13 T): 80 J/cm<sup>3</sup>
    - HD2 (13 T): 78 J/cm<sup>3</sup>
    - LQ (240 T/m): 101 J/cm<sup>3</sup>
    - HQ (170 T/m): 97 J/cm<sup>3</sup>





## 2D mechanical analysis Load sequence and assumptions

- Bladders inflated to open clearance between pads and yoke
- 2. Load key shimmed
- 3. Bladder deflated to lock the keys
- 4. Cool-down
- 5. E.m. forces
- Coil pre-load to prevent separation/tension between pole turn and post with e.m. forces
- 0.2 friction between component
- Coil parts bonded





## 2D mechanical analysis **Bladder operation**

- Clearance of 0.7 mm created by horizontal bladders pressurized to about 30-40 MPa
- Coil peak stress ~100 MPa
  - Mainly due to bending of horizontal pad



#### 2D mechanical analysis Key insertion

- Insertion of a shim in hor. load keys of about 0.6 mm
- Coil peak stress reduced to ~ 50 MPa
  - No pad bending  $\rightarrow$  more uniform pre-load from



#### 2D mechanical analysis Cool-down

- Increase of average shell stress from 50 to 150 MPa
- Coil peak stress ~ 130 MPa
  - Deformation of L12 post



#### 2D mechanical analysis Excitation

- Coil pole turns still in contact with posts
- Coil peak stress <150 MPa
  - Maximum stress moved to low field region



## 2D mechanical analysis Stress in the support structure

- Peak shell stress: from 70 to 180 MPa
- Maximum tensional stress in the iron: 150 MPa
- All other components within yield stress limits





Paolo Ferracin

3D mechanical analysis Support structure design

- Axial support composed by
  - Aluminum rods with a diameter of 60 mm
  - Nitronic 50 end plate 150 mm thick
    - Bullets to deliver pre-load to end-shoes and wedge





## 3D mechanical analysis Load sequence and assumptions

- 1. Piston system to pre-tension axial rods
- 2. Rod nuts torqued
- 3. Piston system released
- 4. Cool-down
- 5. E.m. forces
- Coil axial pre-load to prevent separation/tension between pole turn and post with e.m. forces
- 0.2 friction between component
- Coil parts bonded

EUCARD





## 3D mechanical analysis Axial pre-load

- E.m. axial force
   2.8 MN
- Room temperature pre-load
  - Rod stress: 150 MPa
  - 1.7 MN
  - Provided by 150-200 t piston
- 4.2 K pre-load
  - Rod stress: 260 MPa
  - 2.8 MN
  - Provided to end-shoes and wedge (glued)





## 3D mechanical analysis Contact pressure coil-pole

- Contact pressure (or tension <20 MPa) between pole turn and pole pieces
  - From straight section to hard-way and easy-way bent





#### 3D mechanical analysis Stress in the coil

 Von Mises stress in the coil <150 MPa after cool-down and with e.m. forces





## Conclusions

- 2D and 3D magnetic and mechanical analysis performed
  - Updated computations with cable growth during reaction and recent extracted strand measurements
- Operational conditions: 13 T bore field
  - 80% of  $\rm I_{ss}$  at 4.2 K
  - 73% of  $\rm I_{ss}$  at 1.9 K
  - Large magnetic stability margin
- Coil peak stress below 150 MPa during all magnet operations
- Support structure capable of providing full pre-load (up to 15 T) in straight section, ramp, and end region



## Appendix



## 3D mechanical analysis Stress in axial support components

• Stress in axial rod (aluminum) and end-plate (Nitronic 50) within yield stress limits

