

ESAC REVIEW OF THE HIGH FIELD DIPOLE DESIGN

REACTION OVEN, SPLICING AND IMPREGNATION

MARCH 2012 FOR EUCARD-WP7-HFM

J.C. Perez

•Reaction Oven

•Impregnation mold

•Vacuum Impregnation tank

•Instrumentation and Traces

• Sub-scale models activities

• Splicing design and tests

OUTLINE

28/03/2012

J.C. Perez TE-MSC-MDT C Review **EuCARD WP7-HFM**

(CERN

2

EUCARD HEAT TREATMENT FURNACE

28/03/2012

- J.C. Perez TE-MSC-MDT EuCARD ESAC Review (CERN)
- ERN)

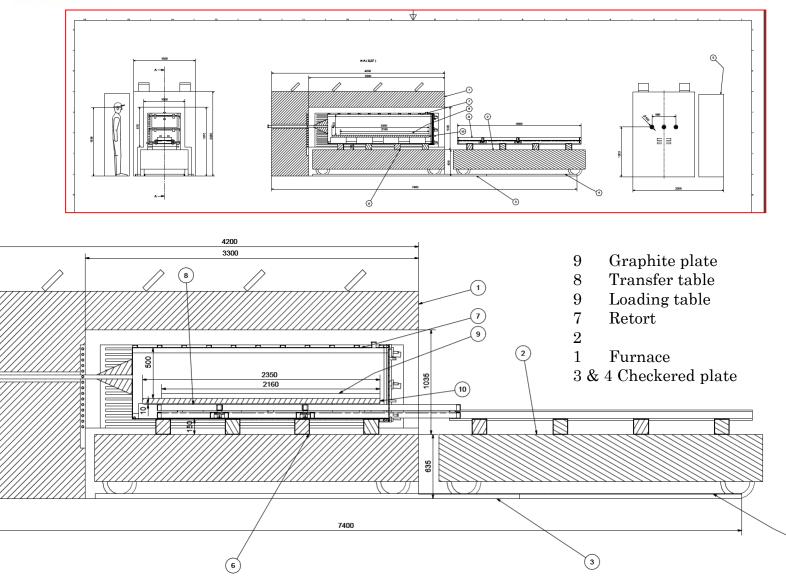
3

• Technical specification ready beginning 2011

- We had issues in Spring 2011 concerning the price proposed in EU
- Market survey in US on Spring 2011
- Repeat market survey in summer 2011
- Acceptable offer received from GERO (Germany) summer 2011

Max. Ofentemperatur: 1000°C Max. Chargengewicht: 1500Kg Ofengewicht: ca. 2800Kg Max. Arbeitstemperatur: 900°C

Innenabmessungen Ofen(mm): 1000breitx4200tiefx1950hoch


Außenabmessungen Ofen(mm): ca.1500breitx4200tiefx1950hoch

• Final contract with GERO placed in September 2011

(4)

EUCARD

PICTURES FROM GERO

28/03/2012

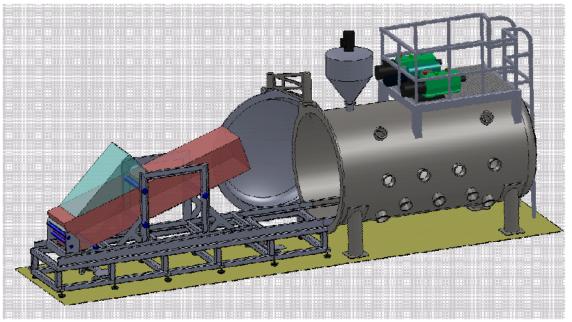
J.C. Perez TE-MSC-MDT EuCARD WP7-HFM ESAC Review (CERN)

SCHEDULE

28/03/2012

Task **Schedule** Persons **GERO** Kisir, Geiger CAD design approval, electrical layout February 21st Transfer table and inert gas piping layout February 27th **GERO Kisir**, Geiger Approval/comments to design March 1st **CERN** March 2nd Ordering further components **GERO** Reception furnace box at GERO Week 21 **GERO** (May 21st - 27th) Electrical wiring, control assembly, Week 22 **GERO** (May 28^{th} - June 3^{rd}) VDE GERO and CERN Acceptance test at GERO Week 23 (June 4th - June 10th) GERO and CERN Delivery to CERN Week 24 $(June 11^{th} - June 17^{th})$

Transport risk:


A special transport to CERN will be organized from GERO. Shock sensors will be applied to the furnace. Risk of small cracks on the inner brickwork. The status will be investigated after delivery. Smaller cracks will be filled with a special Cement.

EUCARD VACUUM IMPREGNATION TANK

28/03/2012

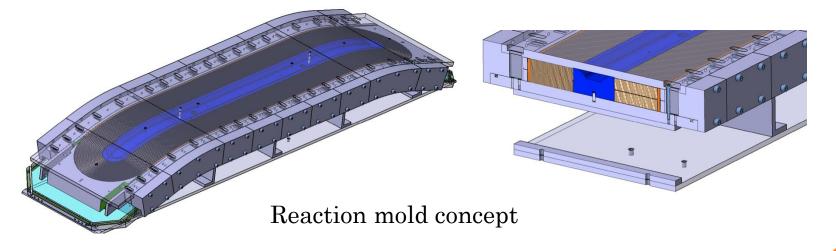
- A vacuum impregnation facility will be installed in building 927 near the heat treatment furnace
- The technical specification has been approved in December 2011
- 3 confirming offers have been received 0
- The order has been placed middle of March 2012 (TELSTAR-Spain)
- Dedicated electrical power lines are installed in 927 laboratory

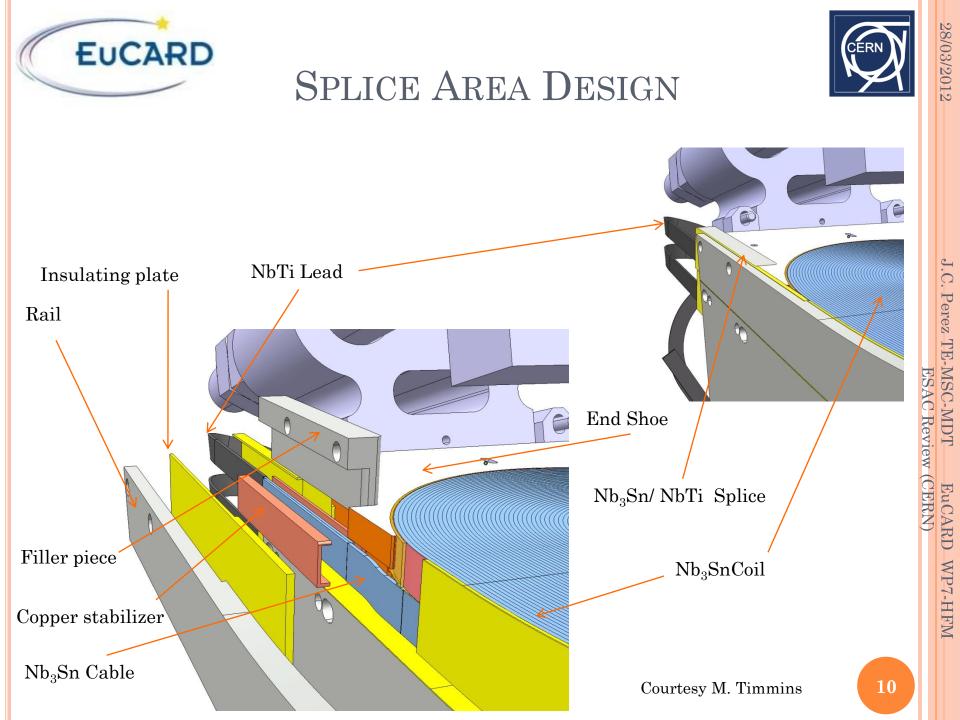
Loading the mold

VACUUM THANK DELIVERY SCHEDULE

Milestones	Relevant Dates	
Signature of the contract	March 15 th 2012	
Preliminary design review and definition	April 12 th 2012	
Preliminary manufacturing plan	April 19 th 2012	
Final design file and Risk assessment presentation	May 2 nd 2012	
Design file and risk Assessment approval by CERN	June 9 th 2012	
Tests at supplier premises	August 22 nd August	
Vacuum tank delivery at CERN	September 6 th 2012	
Final installation and commissioning	September 20 th 2012	

IMPREGNATION MOLD

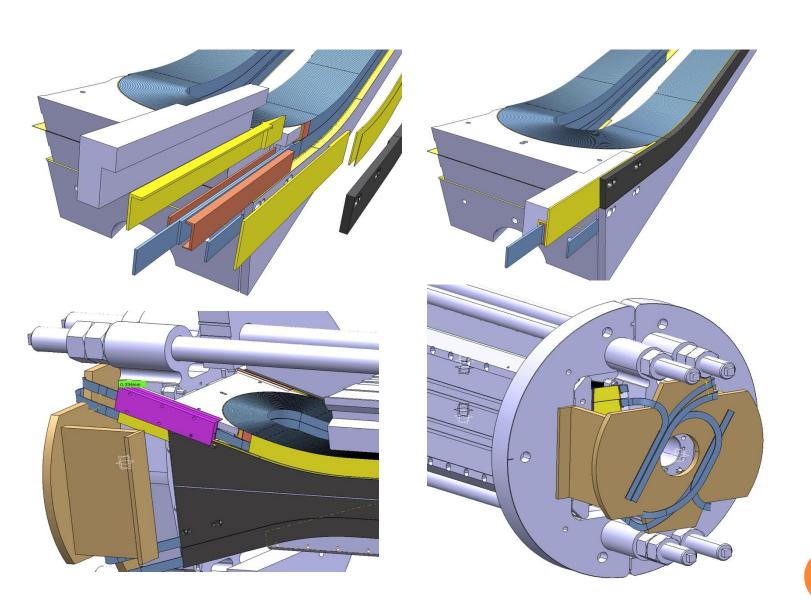



28/03/2012

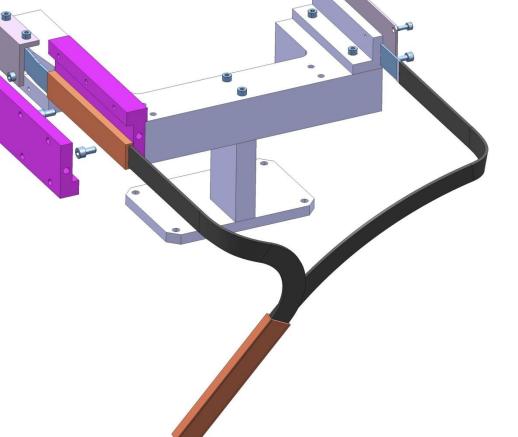
J.C. Perez TE-MSC-MDT

C Review

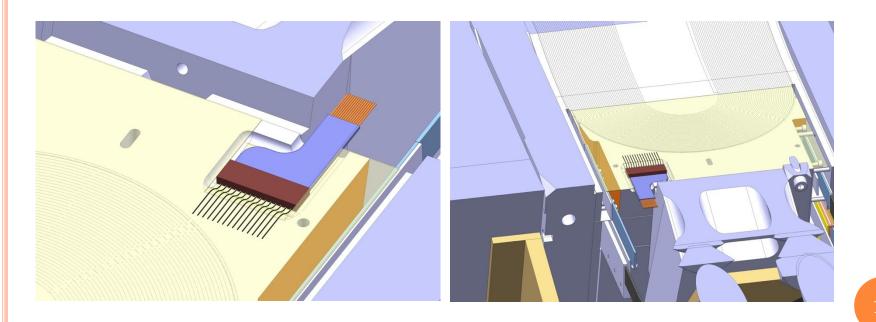
- Technical meeting on impregnation mold concept held at CEA on 16th of March 2012
- CERN team will provide all required information for mold design
- The mold concept will be inspired from the reaction tooling
- Al alloy with O-rings will be used
- CEA will produce the fabrication drawings for impregnation mold layer 3-4 by June the 15th 2012
- CERN will launch the price inquiry and follow-up the fabrication
- First mold to be delivered at CERN by September the 15th 2012



FRESCA2 INTERCONNECTION



EUCARD



An interconnection mock-up has been designed to validate splice operations. The delivery is expected on last week of March. Validation tests are scheduled on April 2012. 28/03/2012

- The traces will cover the total surface of the coil
- The connections will be hidden in a pocket machined on the end-shoe connection side (mold released)
- No wires will come out from the mold during impregnation process
- After coil impregnation, wires will be soldered to the traces and routed via a groove machined on the end-shoe (local impregnation)

• E. Todesco will be the reference Engineer at CERN for trace design He will visit different laboratories in the coming weeks to collect all required information on programs and calculation methods presently used to design Quench Heaters (Base line HD3/HQ/LQ?)

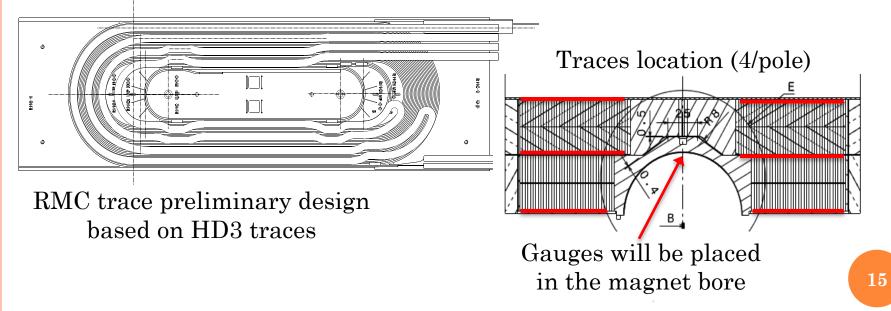
Inputs for Quench Heaters design will be provided by M. Durante

QUENCH HEATERS & TRACES

- Fresca2 traces design and fabrication @ CERN using 50 μm kapton and 25 μm stainless steel sheets (delivery time about 2 months after final design validation)
- Final Fresca2 traces are expected for end of October 2012 (on time for the first real coil)
- A preliminary trace will be used on the first copper coil

EUCARD

and M. Bajko



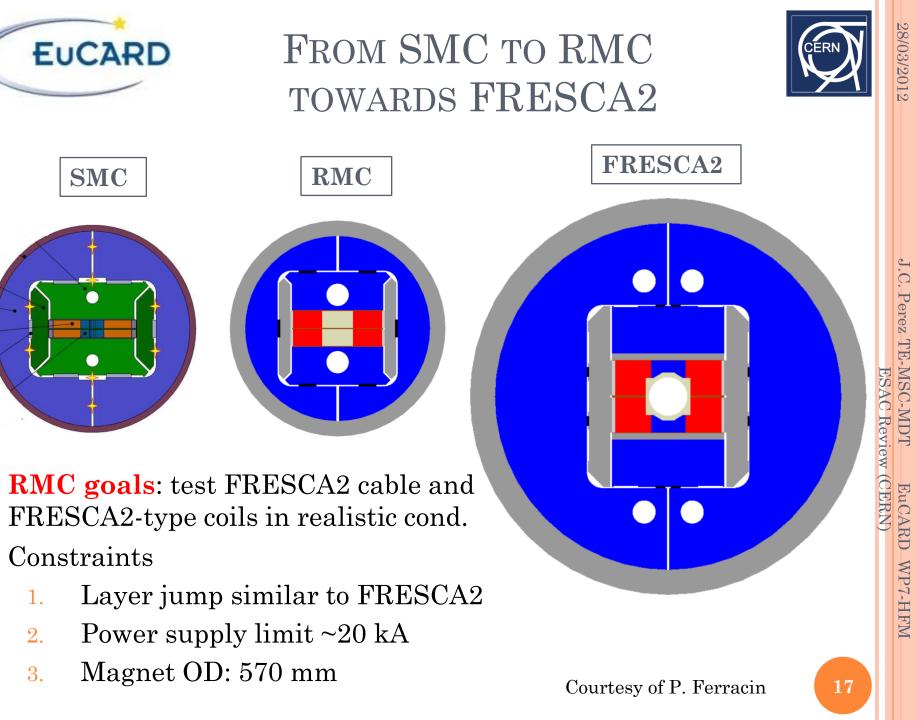
- Each double pancake will be equipped with 2 traces
- The coils will be equipped with about 8 Vtaps/layer
- No strain gauge in the trace (gauges will be glued layer 1 pole)

TRACES & INSTRUMENTATION

- 6 stations will be placed on the shell mid-plane (12 gauges)
- 3 stations located on the magnet bore measuring along azimuthal and longitudinal direction
- Axial roads will be instrumented (longitudinal direction)

J.C. Perez TE-MSC-MDT

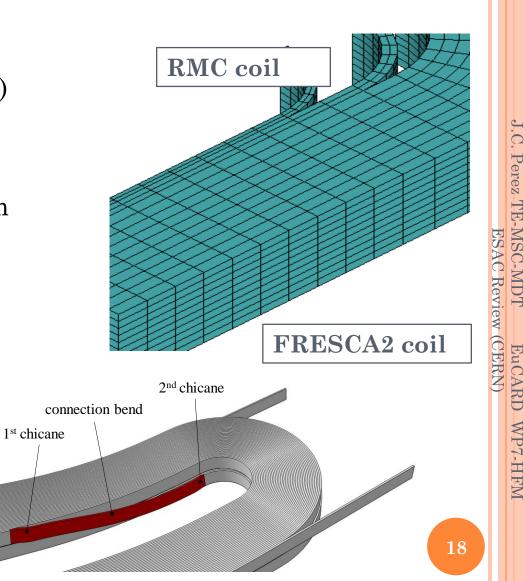
EuCARD


WP7-HFM

ESAC Review

• Characterization on strand and cable performance

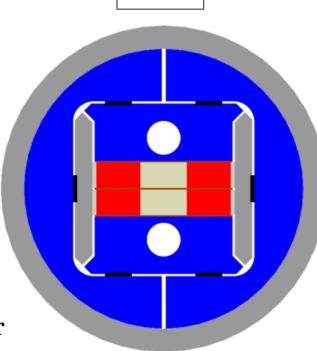
SUB-SCALE MODELS ACTIVITIES


- Layer jump area
- Splicing area
- Insulation method
- Traces connection
- Impregnation method
- Qualification of new vacuum impregnation tank
- Qualification of new oven

RMC COIL DESIGN

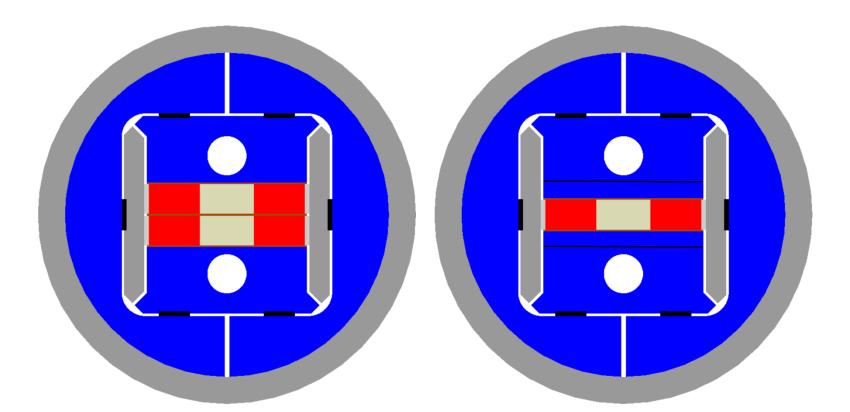
- Same design as SMC
 - 2 end spacers
 - 33 turns (like FRESCA2)
- FRESCA2-type layer jump
- As a result
 - Straight section: 300 mm
 150 mm in SMC
 - Coil length: 820 mm
 500 mm in SMC
 - 96 m of cable per coil
 0 4.0 km of strand

Courtesy of P. Ferracin


RMC MAGNET DESIGN

28/03/2012

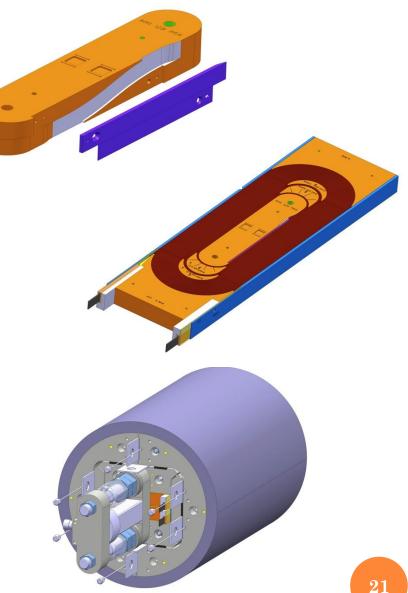
• RMC configuration


- 2 RMC coils
 - I_{ss} (1.9 K) = 18.3 kA
 - Below power supply limit
 - B_{peak} = 16.0 T
- Significantly higher forces
 - From 2.2 MN/m in SMC to 5.4 MN/m
- New structure required
 - Thicker shell, new yoke design, larger bladders, larger axial rods

RMC

EUCARD 1 DOUBLE PANCAKE VS. 2 DOUBLE PANCAKES

- Still possible to test individual coils up to 20 kA
 - Corresponding to about 93% of I_{ss} @ 4.2 K


RMC DESIGN STATUS

28/03/2012

J.C. Perez TE-MSC

- Fabrication drawings for coil components, reaction and impregnation tooling approved for execution.
- First winding scheduled for September 2012
- Mechanical structure design finished. Fabrication drawings are expected within two weeks.
- First mechanical assembly using an instrumented aluminum dummy coil scheduled for September.
- First cold test expected Q4-2012

C Review

ON GOING ACTIVITIES ON SUB-SCALE MODELS

28/03/2012

- Characterization on strand performance in realistic conditions (SMC4 & SMC5)
- Characterization on strand and cable performance in realistic conditions (RMC)
- Layer jump area (RMC)
- Splicing area (RMC)
- Braided insulation (RMC)
- Traces connection (RMC)
- Impregnation method for Fresca2 type coils (RMC Close mold)
- Qualification of new vacuum impregnation tank Qualification of new oven (RMC)

NEXT SMC ASSEMBLED COILS

28/03/2012 J.(

J.C. Perez TE-MSC-MDT MSC-MDT EuCARD WP7-HFM ESAC Review (CERN)

SMC Assembly	Cable Type	Cable Insulation	Scheduled
SMC#3_b	PIT 14 * Ø 1.25 mm	S2-Glass sleeve FNAL type	2 Coils waiting for reaction
SMC#11T_a	OST RRP 108/127 40 * Ø 0.7 mm	33 Tex S2-glass braided	Q2-2012
SMC#11T_b	OST RRP 108/127 40 * Ø 0.7 mm	11 Tex S2-glass braided & Mica 90 μm	Q2-2012
SMC#4	PIT 18 * Ø 1.00 mm	S2-Glass sleeve 100 μm or S2- glass braided	Q3-2012
SMC#5	RRP 18 * Ø 1.00 mm	TBD	Q4-2012 2

EUCARD NEXT RMC COILS PRODUCTION

J.C. Perez TE-MSC-MDT

MSC-MDT EuCARD WP7-HFM ESAC Review (CERN)

RMC Assembly	Cable Type	Cable Insulation	Scheduled
RMC#1 coil 1	PIT 40 * Ø 1.0 mm	S2-Glass braided Or according to FRESCA2 choice	Q3-2012
RMC#1 coil 2	PIT 40 * Ø 1.0 mm	S2-Glass braided Or according to FRESCA2 choice	Q3-2012
RMC#2 coil 1	RRP 40 * Ø 1.0 mm	S2-Glass braided Or according to FRESCA2 choice	Q4-2012
RMC#2 coil 2	RRP 40 * Ø 1.0 mm	S2-Glass braided Or according to FRESCA2 choice	Q4-2012

Acknowledgements

• <u>CEA/Saclay:</u>

M. Durante, P. Manil, J.F. Millot, J.M. Rifflet, F. Rondeaux,

- <u>CERN:</u>
 - P. Ferracin, E. Fornassiere, J. Humbert, A. Milanese, L. Oberli, M. Timmins, G. Villiger,,
- <u>Fresca2 collaboration team</u>

THANKS FOR YOUR ATTENTION