CERN, 14/15 May 2012

Approaching Higgs production

from an effective-theory point of view

Adrian Signer

Paul Scherrer Institut

THE CASE OF A LARGE-MASS HIGGS; 14/15 MAY 2012; CERN

Part 1

inroduction

Part 2

with M. Beneke, S. Chapovsky, G. Zanderighi

Part 3

with C. Anastasiou, F. Dulat,

B. Mistlberger, Z. Kunszt

- $i_1 i_2 \rightarrow H \rightarrow f_1 f_2$
- a diagrammatic point of view
- toy model
- an effective-theory approach
- from toy model towards the Standard Model
- under construction

- Consider process $i_1 i_2 \to H \to f_1 f_2$ with additional constraint $s \equiv (p_{f_1} + p_{f_2})^2 \sim M_H^2$.
- observable is not H, but f_1 f_2 pair with invariant mass $s \sim M_H^2$.
- two small parameters: α and $\delta \equiv \frac{s-M_H^2}{M_H^2}$
- hierarchy of scales $(s-M_H^2) \ll s \sim M_H^2$ is the feature, not gauge invariance (gauge invariance has to be automatic)
- systematically (double) expand in $\delta \sim \alpha \ll 1$ and do not worry about gauge invariance
- start with the tree-level diagram

resummation of self-energy $\Pi(s,M_H^2,m_X^2)$

expansion in α and δ : $\Pi(s,M_H^2,m_X^2) = \sum_{n=1} \alpha^n \sum_{m=0} \delta^m \, \Pi^{(n,m)}(M_H^2,m_X^2)$

only leading part $\alpha\Pi^{(1,0)}(M_H^2,m_X^2)$ needs to be resummed

$$\frac{1}{s-M_H^2} \alpha \Pi^{(1,0)} \frac{1}{s-M_H^2} \alpha \Pi^{(1,0)} \dots \Rightarrow \frac{1}{s-M_H^2 - \alpha \Pi^{(1,0)}} \text{ (gauge invariant)}$$

Propagator insertions beyond LO

There are additional NLO corrections, have to distinguish between hard $k \sim M$ and soft $k \ll M$

- the hard contributions are separately gauge invariant
- the sum of all soft contributions is also gauge invarian
- this is not a concidence, but is due to an underlying stucture $\mathcal{L}_{ ext{eff}} = \sum c_i \, O_i$

At NNLO there are purely hard contributions . . .

... purely soft contributions ...

... and mixed hard and soft contributions.

- each hard coefficient is separately gauge independentt factorizable corrections
- gauge dependence of soft contributions cancel in the sum of all soft diagrams non-factorizable corrections

- split into hard and soft cannot be done on a diagrammatic level, certain Feynman diagrams contribute to hard and soft
- use method of regions to split into hard and soft [Beneke, Smirnov] and follow usual effective-theory procedure (HQET, NRQCD, SCET)
- use effective theory methods to systematically expand in $\alpha \sim \delta \sim \Gamma/m$ [Chapovsky, Khoze, AS, Stirling]
- identify relevant modes (usually more than simply hard and soft, depends on details of observable) → asymptotic expansion [Beneke, Chapovsky, AS, Zanderighi]
- integrate out 'unwanted' modes \rightarrow tower of effective theories (Unstable Particle Effective Theory)
- hard effects correspond to factorizable corrections
- non-factorizable corrections due to still dynamical modes
- this is neither a "quick-fix" nor a "free lunch", it is a method to identify the minimal amount of calculation to be done for a systematic expansion in the small parameters
- gauge invariance is automatic since the split into the various contributions respects gauge invariance

Toy model with charged (under massless U(1)) Higgs, massless electron and massless neutrino [Beneke, Chapovsky, AS, Zanderighi]

Lagrangian:

$$\mathcal{L} = (D_{\mu}\phi)^{\dagger}D^{\mu}\phi - \hat{M}^{2}\phi^{\dagger}\phi + \overline{\psi}i\not\!\!D\psi + \overline{\chi}i\not\!\!\partial\chi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$$-\frac{1}{2\xi}(\partial_{\mu}A^{\mu})^{2} + y\phi\overline{\psi}\chi + y^{*}\phi^{\dagger}\overline{\chi}\psi - \frac{\lambda}{4}(\phi^{\dagger}\phi)^{2} - \mathcal{L}_{ct}$$

Process:

$$\bar{\nu}(p_1)e^-(p_2) \to \phi \to X$$

with $s - \hat{M}^2 \sim M\Gamma$. Use optical theorem and compute ${
m Im}\, {\cal T}$

- scales: decay time 1/M, lifetime $1/\Gamma\gg 1/M$
- counting: $\alpha_g = \frac{g^2}{4\pi} \sim \alpha_y = \frac{yy^*}{4\pi} \sim \delta \equiv \frac{s \hat{M}^2}{\hat{M}^2}$ and $\frac{\alpha_\lambda}{4\pi} = \frac{\lambda}{(4\pi)^2} \sim \frac{\alpha_g^2}{4\pi}$
- expand in $\alpha \sim \alpha_g \sim \alpha_y$ and $\delta \sim \Gamma/M \sim \alpha$ "at Lagrangian level"
- fermions: SCET; scalar (higgs): H"Q"ET

underlying theory

integrate out hard modes

effective theory

$$\mathcal{L}(\phi_h, \phi_c, \phi_s)$$

dynamical modes:

hard, collinear, soft

dynamical modes:

collinear, soft

Soft-Coll	inear Effective Theory	+	Heavy "Quark" Effective Theory
fermions		higgs	
$p^{\mu} = (n_{+}p)^{\frac{n_{-}}{2}} + (n_{-}p)^{\frac{n_{+}}{2}} + p_{\perp}$		$q^{\mu} = Mv^{\mu} + k^{\mu}; q_{\top} = q^{\mu} - v^{\mu}(qv)$	
$n_{\pm}^2 = 0,$	$n_+ n = 2$		$v^{\mu} \equiv (q_1^{\mu} + q_2^{\mu})/\sqrt{s}, v^2 = 1$
hard:	$p \sim M$		hard: $k^{\mu} \sim M$
(u)soft:	$p \sim M \delta$		soft: $k^{\mu} \sim \delta$
collinear:	$p_{\perp} \sim M\delta^{1/2}; \ n_+p \sim M; \ np \sim M\delta$		

The effective Lagrangian for the NLO line shape:

$$\mathcal{L}_{\text{eff}} = -\frac{1}{4} F_{\text{s}}^{\mu\nu} F_{\text{s}\mu\nu} + 2\hat{M} \, \phi_{v}^{\dagger} \left(i(vD_{\text{s}}) - \frac{\Delta}{2} \right) \phi_{v} + 2\hat{M} \, \phi_{v}^{\dagger} \left(\frac{iD_{\text{s}}^{2}}{2\hat{M}} + \frac{\Delta^{2}}{8\hat{M}} \right) \phi_{v}$$

$$+ \overline{\psi}_{\text{s}} i \not\!\!\!D_{\text{s}} \psi_{\text{s}} + \overline{\chi}_{\text{s}} i \not\!\!\!D_{\chi} \chi_{\text{s}} + \overline{\psi}_{n-} \left(in_{-}D + \not\!\!\!D_{\text{c}} \top \frac{i}{n_{+}D_{\text{c}}} \not\!\!\!D_{\text{c}} \top \right) \psi_{n-}$$

$$+ C \left(y \, \phi_{v} \bar{\psi}_{n-} \chi_{n+} + y^{*} \, \phi_{v}^{\dagger} \bar{\chi}_{n+} \psi_{n-} \right) + \frac{yy^{*}B}{4\hat{M}^{2}} \left(\bar{\psi}_{n-} \chi_{n+} \right) (\bar{\chi}_{n+} \psi_{n-}) + \dots$$

Matching coefficients (contain hard effects)

In the pole scheme: $\Delta = -i\Gamma$

$$\bullet \quad C = 1 + \alpha C^{(1)} + \dots$$

$$\bullet \quad B = 1 + \alpha B^{(1)} + \dots$$

Consider self-energy diagrams

split self-energy into hard and soft part $\Pi(s)=\Pi_h(s)+\Pi_s(s)$ and expand the hard part of the self energy $\Pi_h(s)=\hat{M}^2\sum \alpha^k\delta^l\Pi^{(k,l)}$

- $\Pi^{(1,0)}$ (gauge independent) $\to \Delta^{(1)}$ (LO, Propagator)
- $\Pi^{(1,1)}$ (gauge dependent) $\to C^{(1)}$ (NLO)
- $\Pi^{(1,2)}$ (gauge dependent) $\rightarrow B^{(1)}$ (NNLO)
- $\Pi^{(2,0)}$ and $\Pi^{(1,0)}\Pi^{(1,1)}$ (separately gauge dependent) $\to \Delta^{(2)}$ (NLO, gauge independent)
- Π_s (gauge dependent) \rightarrow diagram in effective theory (NLO)

Matching of C (in \overline{MS} scheme)

$$C = 1 + \frac{\alpha_y}{4\pi} \left[\ln \frac{M^2}{\mu^2} - \frac{1}{4} - \frac{i\pi}{2} \right] + \frac{\alpha_g}{4\pi} \left[-\frac{1}{\bar{\epsilon}^2} + \frac{1}{\bar{\epsilon}} \left(\ln \frac{M^2}{\mu^2} - \frac{5}{2} \right) - \frac{1}{2} \ln^2 \frac{M^2}{\mu^2} + \frac{7}{4} \ln \frac{M^2}{\mu^2} - \frac{15}{4} - \frac{\pi^2}{12} \right]$$

$$\uparrow \frac{1}{\delta} \quad \delta \qquad + \qquad - - - \qquad =$$

Matching of B at order α (contributes at NNLO)

gauge dependence cancels

Explicit results in $\overline{\mathrm{MS}}$ scheme

$$\begin{split} \frac{\Delta^{(1)}}{\hat{M}} &= a_g \left(-3 \ln \frac{\hat{M}^2}{\mu^2} + 7 \right) + a_y \left(2 \ln \frac{\hat{M}^2}{\mu^2} - 4 - 2 i \pi \right) \\ \frac{\Delta^{(2)}}{\hat{M}} &= a_g^2 \left(8 \ln^2 \frac{\hat{M}^2}{\mu^2} + \frac{16}{3} \ln \frac{\hat{M}^2}{\mu^2} - \frac{193}{4} + \frac{40\pi^2}{3} - 16\pi^2 \log(2) + 24\zeta(3) \right) \\ &+ a_y^2 \left(\ln^2 \frac{\hat{M}^2}{\mu^2} - \left(11 + 10 i \pi \right) \ln \frac{\hat{M}^2}{\mu^2} + \frac{89}{4} - \frac{23\pi^2}{3} + 13 i \pi \right) \\ &+ a_g a_y \left(-9 \ln^2 \frac{\hat{M}^2}{\mu^2} + \left(31 + 12 i \pi \right) \ln \frac{\hat{M}^2}{\mu^2} - \frac{115}{4} + 5\pi^2 - 24\zeta(3) - 41 i \pi + \frac{8 i \pi^3}{3} \right) \\ &+ a_\lambda \left(\ln \frac{\hat{M}^2}{\mu^2} - 1 \right) \\ C^{(1)} &= a_y \left(\log \frac{\hat{M}^2}{\mu^2} - \frac{1}{4} - \frac{i \pi}{2} \right) \\ &+ a_g \left(-\frac{1}{\epsilon^2} + \frac{1}{\epsilon} \left(\ln \frac{\hat{M}^2}{\mu^2} - \frac{5}{2} \right) - \frac{1}{2} \ln^2 \frac{\hat{M}^2}{\mu^2} + \frac{7}{4} \ln \frac{\hat{M}^2}{\mu^2} - \frac{15}{4} - \frac{\pi^2}{12} \right) \end{split}$$

Forward scattering amplitude at NLO:

where
$$=i\,\mathcal{T}^{(0)}=rac{-yy^*s}{4\hat{M}\mathcal{D}}$$
 with $\mathcal{D}\equiv\sqrt{s}-\hat{M}-rac{\Delta^{(1)}}{2}$

poles $1/\epsilon$ cancel when adding soft and hard contributions (up to initial state collinear singularity)

Partonic cross section for M=100~GeV as a function of \sqrt{s} .

full range of \sqrt{s} : matching of resonant to off-resonant cross section

resonant region: LO vs. NLO for pole and $\overline{\rm MS}$ scheme

From toy model to Standard Model

- effective theory relies on the fact that all scales are explicit
- main issue in Standard Model: apart from M_H (hard) and $\delta \cdot M_H = (s-M_H)^2/M_H$ (soft) there are additional scales $M_W, M_Z, \xi M_W, \xi M_Z, M_t \dots$
- external particles not necessarily massless
- structure of effective theory and method of region has to be adapted
- consider: $i_1 i_2 \to H \to f_1 f_2$ with $(i_1,i_2) \in \{(g,g),(b,\bar{b})\}$ and $(f_1,f_2) \in \{(b,\bar{b}),(t,\bar{t}),(Z,Z),(W^+,W^-)\ldots\}$

At LO we need hard part of one-loop self energy:

- expansion of tadpole and bubble integrals into hard $(k \sim M_H)$ and soft $(k \ll M_H)$, assuming $M_Z \sim \xi M_Z M_W \sim \xi M_W \sim \ll M_H$ reproduces full integrals
- these contrbutions, i.e. $\Delta^{(1)}$ are process independent (and obviously gauge independent) and have to be resummed \Rightarrow effective-theory propagator
- ullet the only (trivial) dependece on the process is in the tree-level vertices $H o X\,Y$

At NLO we need hard part of two-loop self energy for process independent $\Delta^{(2)}$...

involves scales: M_H , $(\xi)M_W$ and $m_{\gamma}=0$

 \dots hard part of one-loop vertices for process dependent $C^{(1)}$ \dots

for example:

... and process dependent soft contributions

- effective theories are a proven tool for processes with kinematic constraints such as $s\sim M^2$
 - systematic expansion in all small quantities
 - resummation always through renormalization-group equations
- this offers a complementary approach, useful for comparison and cross checks
- application of effective-theory methods to the full Standard Model in the case of Higgs production has a number of additional complications
 - additional scales
 - massive external particles
 - more involved structure of effective theory
- goal: description of most relevant processes at NLO (in effective theory counting) this requires:
 - two-loop self-energy process independent
 - one-loop vertices process dependent
 - four-point vertices process dependent
 - soft (non-hard) contributions process dependent