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outline

Part 1 • i1 i2 → H → f1 f2

inroduction • a diagrammatic point of view

Part 2 • toy model

with M. Beneke, S. Chapovsky, • an effective-theory approach

G. Zanderighi
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part 1

• Consider process i1 i2 → H → f1 f2 with additional constraint s ≡ (pf1 + pf2 )
2 ∼M2

H .

• observable is not H, but f1 f2 pair with invariant mass s ∼M2
H .

• two small parameters: α and δ ≡ s−M2
H

M2
H

• hierarchy of scales (s−M2
H) ≪ s ∼M2

H is the feature, not gauge invariance
(gauge invariance has to be automatic)

• systematically (double)
�

�

�

�
expand in δ ∼ α≪ 1 and do not worry about gauge invariance

• start with the tree-level diagram

i2

i1

H

f2

f1

∼ 1

s−M2
H

∼ 1

δ
⇒ LO
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part 1

resummation of self-energy Π(s,M2
H ,m

2
X)

usual problem: Π ∼ 1

s−M2
H

Π
1

s−M2
H

∼ 1

δ
α

1

δ
∼ 1

δ
⇒ LO

expansion in α and δ: Π(s,M2
H ,m

2
X) =

∑

n=1

αn
∑

m=0

δm Π(n,m)(M2
H ,m

2
X)

only leading part αΠ(1,0)(M2
H ,m

2
X) needs to be resummed

(1,0) (1,0) · · · ⇒ ⇒ LO

1

s−M2
H

αΠ(1,0) 1

s−M2
H

αΠ(1,0) . . . ⇒ 1

s−M2
H − αΠ(1,0)

(gauge invariant)
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part 1

Propagator insertions beyond LO

Π(2,0) ∼ 1

δ
α2 1

δ
∼ α

δ
Π(1,1) ∼ 1

δ
αδ

1

δ
∼ α

δ
⇒ NLO

There are additional NLO corrections, have to distinguish between hard k ∼M and soft k ≪M

C(1) B ∼ 1

δ
α ⇒ NLO

• the hard contributions are separately gauge invariant

• the sum of all soft contributions is also gauge invarian

• this is not a concidence, but is due to an underlying stucture Leff =
∑
ciOi
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part 1

At NNLO there are purely hard contributions . . .

∆(3) C(2) B(1) C(1)C(1)

. . . purely soft contributions . . .

. . . and mixed hard and soft contributions.

C(1) B(1) C(1)

• each hard coefficient
is separately gauge
independentt
factorizable
corrections

• gauge dependence of
soft contributions
cancel in the sum of
all soft diagrams
non-factorizable
corrections
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part 1 → part 2

• split into hard and soft cannot be done on a diagrammatic level, certain Feynman diagrams
contribute to hard and soft

• use method of regions to split into hard and soft [Beneke, Smirnov] and follow usual
effective-theory procedure (HQET, NRQCD, SCET)

• use effective theory methods to systematically expand in α ∼ δ ∼ Γ/m [Chapovsky,
Khoze, AS, Stirling]

• identify relevant modes (usually more than simply hard and soft, depends on details of
observable) → asymptotic expansion [Beneke, Chapovsky, AS, Zanderighi]

• integrate out ‘unwanted’ modes → tower of effective theories (Unstable Particle Effective
Theory)

• hard effects correspond to factorizable corrections

• non-factorizable corrections due to still dynamical modes

• this is neither a “quick-fix” nor a “free lunch”, it is a method to identify the minimal amount
of calculation to be done for a systematic expansion in the small parameters

• gauge invariance is automatic since the split into the various contributions respects gauge
invariance
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part 2

Toy model with charged (under massless U(1)) Higgs, massless electron and massless neutrino
[Beneke, Chapovsky, AS, Zanderighi]

• Lagrangian:

L = (Dµφ)
†Dµφ− M̂2φ†φ+ ψi 6Dψ + χi 6∂χ− 1

4
FµνF

µν

− 1

2ξ
(∂µA

µ)2 + yφψχ+ y∗φ†χψ − λ

4

(

φ†φ
)2

− Lct

• Process:

ν̄(p1)e
−(p2) → φ→ X

with s− M̂2 ∼MΓ. Use optical theorem and compute Im T
• scales: decay time 1/M , lifetime 1/Γ ≫ 1/M

• counting: αg =
g2

4π
∼ αy =

yy∗

4π
∼ δ ≡ s− M̂2

M̂2
and

αλ

4π
=

λ

(4π)2
∼
α2
g

4π

• expand in α ∼ αg ∼ αy and δ ∼ Γ/M ∼ α “at Lagrangian level”

• fermions: SCET; scalar (higgs): H”Q”ET
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part 2

underlying 
theory

  theory
effective 

integrate out
hard modes

L(φh, φc, φs)
dynamical modes:

hard, collinear, soft

factorizable
corrections

ց

non-factorizable
corrections

ւ
L =

∑

n cn(h)On(φc, φs)

dynamical modes:

collinear, soft

CERN 2012 – p. 9/20



part 2

Soft-Collinear Effective Theory + Heavy “Quark” Effective Theory

fermions higgs

pµ = (n+p)
n
−

2
+ (n−p)

n+

2
+ p⊥ qµ =Mvµ + kµ; q⊤ = qµ − vµ(qv)

n2
± = 0, n+n− = 2 vµ ≡ (qµ1 + qµ2 )/

√
s, v2 = 1

hard: p ∼M hard: kµ ∼M

(u)soft: p ∼Mδ soft: kµ ∼ δ

collinear: p⊥ ∼Mδ1/2; n+p ∼M ; n−p ∼Mδ

H HHC CS HS,CC C
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part 2

The effective Lagrangian for the NLO line shape:

Leff = −1

4
Fµν
s Fsµν + 2M̂ φ†v

(

i(vDs)−
∆

2

)

φv + 2M̂ φ†v

(

iD2
s⊤

2M̂
+

∆2

8M̂

)

φv

+ ψsi 6Dsψs + χsi 6∂χs + ψn−

(

in−D+ 6Dc⊤
i

n+Dc
6Dc⊤

)

ψn−

+ C
(

y φvψ̄n−χn+ + y∗ φ†vχ̄n+ψn−

)

+
yy∗B

4M̂2

(
ψ̄n−χn+

)
(χ̄n+ψn−) + . . .

Matching coefficients (contain hard effects)

• ∆ ≡ (s̄− M̂2)/M̂ =
∑

i ∆
(i)

= M̂ Π(1,0) + M̂
(
Π(2,0) +Π(1,1)Π(1,0)

)
+ . . . ×

In the pole scheme: ∆ = −iΓ

• C = 1 + αC(1) + . . . ×

• B = 1 + αB(1) + . . .
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part 2

Consider self-energy diagrams + higher orders

split self-energy into hard and soft part Π(s) = Πh(s) + Πs(s) and expand the hard part of the
self energy Πh(s) = M̂2

∑
αkδlΠ(k,l)

• Π(1,0) (gauge independent) → ∆(1) (LO, Propagator)

• Π(1,1) (gauge dependent) → C(1) (NLO)

• Π(1,2) (gauge dependent) → B(1) (NNLO)

• Π(2,0) and Π(1,0)Π(1,1) (separately gauge dependent) → ∆(2) (NLO, gauge
independent)

• Πs (gauge dependent) → diagram in effective theory (NLO)
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part 2

Matching of C (in MS scheme)

C =

1 +
αy

4π

[

ln M2

µ2 − 1
4
− iπ

2

]

+
αg

4π

[

− 1
ǭ2

+ 1
ǭ

(

ln M2

µ2 − 5
2

)

− 1
2
ln2 M2

µ2 + 7
4
ln M2

µ2 − 15
4

− π2

12

]

+
δ

1
δ

+ =

Matching of B at order α (contributes at NNLO)

δ
1
δ

+
δ2

1
δ

1
δ

+ =

︸ ︷︷ ︸

gauge dependence cancels
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part 2

Explicit results in MS scheme

∆(1)

M̂
= ag

(

−3 ln
M̂2

µ2
+ 7

)

+ ay

(

2 ln
M̂2

µ2
− 4− 2 iπ

)

∆(2)

M̂
= a2g

(

8 ln2
M̂2

µ2
+

16

3
ln
M̂2

µ2
− 193

4
+

40π2

3
− 16π2 log(2) + 24ζ(3)

)

+ a2y

(

ln2
M̂2

µ2
−
(

11 + 10 iπ
)

ln
M̂2

µ2
+

89

4
− 23π2

3
+ 13 iπ

)

+ agay

(

−9 ln2
M̂2

µ2
+
(

31 + 12 iπ
)

ln
M̂2

µ2
− 115

4
+ 5π2 − 24ζ(3)− 41 iπ +

8 iπ3

3

)

+ aλ

(

ln
M̂2

µ2
− 1

)

C(1) = ay

(

log
M̂2

µ2
− 1

4
− iπ

2

)

+ ag

(

− 1

ǫ2
+

1

ǫ

(

ln
M̂2

µ2
− 5

2

)

− 1

2
ln2

M̂2

µ2
+

7

4
ln
M̂2

µ2
− 15

4
− π2

12

)
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part 2

Forward scattering amplitude at NLO:

× ×

i T (1)
h = i T (0)×

(

2C(1) − [∆(1)]2

8DM̂
+ ∆(2)

2D
− D

2M̂

)

i T (1)
s = i T (0) αg

4π

(
−2D
µ

)−2ǫ
×

(
2
ǫ2

+ 2
ǫ
+ 4 + 5π2

6

)

where = i T (0) = −yy∗s

4M̂D
with D ≡ √

s− M̂ − ∆(1)

2

poles 1/ǫ cancel when adding soft and hard contributions (up to initial state collinear singularity)
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part 2

Partonic cross section for M = 100 GeV as a function of
√
s.
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1e-06

0.0001

0.01

combined
effective theory
full theory

full range of
√
s: matching of resonant

to off-resonant cross section
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0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

resonant region: LO vs. NLO for pole
and MS scheme
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part 2 → part 3

From toy model to Standard Model

• effective theory relies on the fact that all scales are explicit

• main issue in Standard Model: apart from MH (hard) and δ ·MH = (s−MH)2/MH (soft)
there are additional scales MW ,MZ , ξMW , ξMZ ,Mt . . .

• external particles not necessarily massless

• structure of effective theory and method of region has to be adapted

• consider: i1 i2 → H → f1 f2

with (i1, i2) ∈ {(g, g), (b, b̄)} and (f1, f2) ∈ {(b, b̄), (t, t̄), (Z,Z), (W+,W−) . . .}

i2

i1

H

f2

f1
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part 3

At LO we need hard part of one-loop self energy:

+ . . .

• expansion of tadpole and bubble integrals into hard (k ∼MH) and soft (k ≪MH),
assuming MZ ∼ ξMZMW ∼ ξMW ∼≪MH reproduces full integrals

• these contrbutions, i.e. ∆(1) are process independent (and obviously gauge independent)
and have to be resummed ⇒ effective-theory propagator

• the only (trivial) dependece on the process is in the tree-level vertices H → X Y
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part 3

At NLO we need hard part of two-loop self energy for process independent ∆(2) . . .

for example: involves scales: MH , (ξ)MW and mγ = 0

. . . hard part of one-loop vertices for process dependent C(1) . . .

for example:

. . . and process dependent soft contributions
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part 3 → conclusions

• effective theories are a proven tool for processes with kinematic constraints such as
s ∼M2

• systematic expansion in all small quantities
• resummation always through renormalization-group equations

• this offers a complementary approach, useful for comparison and cross checks

• application of effective-theory methods to the full Standard Model in the case of Higgs
production has a number of additional complications
• additional scales
• massive external particles
• more involved structure of effective theory

• goal: description of most relevant processes at NLO (in effective theory counting)
this requires:
• two-loop self-energy process independent
• one-loop vertices process dependent
• four-point vertices process dependent
• soft (non-hard) contributions process dependent
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