n_TOF Introduction

Vasilis.Vlachoudis@cern.ch

n_TOF External Panel Review CERN, 14/6/2007

FOR MORE INFO...

http://cern.ch/ntof

Outline

- Introduction
- Facility and Collaboration
- Experimental Infrastructure & Phase I program
- Spallation Target

Need for neutron cross sections

- Nuclear Waste Transmutation
- Medical Isotopes Production and Therapy
- Cleaner Energy Production
- Boron Neutron Capture Therapy [BNCT]
- Astrophysics:
 - Stellar evolution
 - Cosmochronometer

Require the complete and precise knowledge of neutron cross sections

Neutron Cross section Libraries

Publicly Available Databases

- ENDF-B/VI
- JENDL
- JEF
- BROND-2

Problems:

- Limited to 20 MeV
- Differences
- Isotopes Missing
- ...

Concept of n_TOF

- 1. Knowledge acquired from TARC (PS-211)
- 2. PS of CERN [26 GeV/c, 3 10¹³ pr / pulse]
- 3. Spallation target Pb, to produce neutrons [1 proton 24 GeV/c \Rightarrow ~700 neutrons on infinite target]
- 4. Long flight path ~200 m

Results:

- Wide energy range [thermal to GeV]
 - high energy proton induced spallation process (20 GeV/c proton beam)
- high instantaneous neutron flux [~ 7×10⁵ n/cm²/7×10¹²p]
 - high neutron yield/incident particle
- high resolution [$\Delta \lambda$ =1.8 cm @ low E_n]
 - due to short proton pulse (6 ns RMS) and long flight path
- large suppression for flash and ambient background [0.1 γ /n & 0.2 c/n]
 - reduced γ-ray production, low repetion frequency
- favorable duty cycle for measurements of cross sections of radioactive samples [1/1.2 s⁻¹]

History

- 1997 Concept by C.Rubbia validated by TARC exp. [CERN/EET/Int. Note 97-19]
- May '98 Further development of the initial idea towards a working facility [CERN/LHC/98-02+Add]
- Aug '98 CERN-GELINA joint Letter of Intent [CERN/SPSC/98-15, I220]
- 1999 Construction started
- Oct 2000 First proton on the spallation target

n_TOF Collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Marques³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³ T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti¹¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

40 Research Institutions 120 researchers

n_TOF Collaboration structure & operation

n_TOF Phase-1 (2001-2004)

n_TOF Collaboration Board Chairman, Spokesperson

- 23 n_TOF teams
- all teams participates in the development, commissioning, and operation of detectors, daq, etc.
- all teams participated in all the experiments/measurements
- 16 partners in the n_TOF-ND-ADS EC Project (FP5)
 2.4 MEUR investment in equipments (6.3 MEUR total budget) run over the period 2001-2004 (completed)

- n_TOF Phase-2 (> 2006)
- n_TOF Collaboration Board Chairman & Spokesperson
- Teams involved in individual proposals/experiment (with individual spokesperson)
 - Fe, Ni, Zn & Se proposal
 - Fission measurements proposal
 - n-scattering proposal
 - ...
- Common M&O budget
- Some team involved in EC/FP6 projects (EFNUDAT, EUROTRANS)

Lead Target

- Dimensions: $80 \times 80 \times 60 \text{ cm}^3$
- Pure Lead: 4 t
- H₂O moderator: 5 cm
- Al-window: 1.6 mm
- Al-container: 140 l

1 month irradiation 2 months of Cooling

Vasilis Vlachoudis AB-ATB-EET

n_TOF Virtual Tour

Lead Container

Sweeping Magnet

2nd Collimator

Exp. Area

n_TOF TAC for (n,\gamma) measurements

- Structure mounted in April-04
- 4π geometry: end of May-04
- 1.5 month commissioning
- Au(n, γ) & other standards

First measurement with a radioactive sample started in August 2004 $^{237}Np(n,\gamma)$

www.cern.ch/n_TOF

n_TOF fission detectors

•20x20 cm²
•Isobutane gas 7 mbar
•HV 500-600 V
•3 mm between electrodes
•1 anode (a few ns signal width)
•Electrode thickness: 1.5 μm (Mylar+Al)
•Deposit thickness : 100-300 μg/cm²
•Backing thickness : 0.1 μm (Al)
: 1.5 μm (Mylar)
•Fission event identification: T2 in coincidence with T1

•Gas: Ar (90%) CF ₄ (1	0%)
 Gas pressure 	: 720 mbar
•Electric field	: 600 V/cm
•Gap pitch	: 5 mm
•Electrode diameter	: 12 cm
•Electrode thickness	: 15 µm (Al)
 Deposit thickness 	: 125 μm/cm ²
 Backing thickness 	: 100 µm (AI)
•Window thickness	: 125 µm
•Window thickness	: 125 µm

dis AB-ATB-EET

Capture

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments 2002-4

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related Nuclear Technologies
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for Nuclear Astrophysics
 - s-process: branchings
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

n_TOF experiments 2002-4

data analysis completed, results published
 data analysis completed, paper in preparation
 data analysis in progress

Spallation Target

Characteristic Parameters

- Neutron Flux Φ [n/cm²/s]
 - Irradiation time
 - Sample size & mass
 - Radioactive isotopes
 - Longer flight paths
- Effective Neutron Path λ± Δλ [cm]
 - Resolution
 - Evaluation process
 - Limit of unresolved resonances

Spallation Target Material Properties

Material	Lead	Tantalum	Tungsten	
Symbol	Pb	Та	W	
Z / A	82 / 208	73 / 181	74 / 183	
Density ρ(g/cm ³)	11.35	16.65	19.3	
Melting Point (C)	327	3017	3422	
Specific Heat C _p @293K (J/kg/K)	129	140	132	
Thermal Conductivity (W/m/K)	35.3	57.5	174	
20 GeV/c p ⁺ Inelastic Interaction Length λ (cm)	16.2	10.6	9.2	
Capture Resonance Integral (n,γ) (En < 20MeV)	0.0061	656.5	333	
Thermal Integral (n,γ)	0.00056	23.7	11.6	
Inelastic integral (n,n')	2.59	10	11	
(n,2n)	1.385	1.387	1.8	
n/p/GeV	30	29	29	
Cost (indicative)	\$1/kg	\$70/kg	\$110/kg	

n_TOF basic parameters

proton beam momentum	20 GeV/c		
intensity (dedicated mode)	7 x 10 ¹² protons/pulse		
repetition frequency	1 pulse/2.4s		
pulse width	6 ns (rms)		
n/p	300		
lead target dimensions	80x80x60 cm ³		
cooling & moderation material	H ₂ O		
moderator thickness in the exit face	5 cm		
neutron beam dimension in EAR-1 (capture mode)	2 cm (FWHM)		

n_TOF beam characteristics

the neutron flux

2^{nd} collimator $\phi = 1.8$ cm (capture mode)

The neutron fluence in EAR-1

Energy range	Uncollimated	Capture mode	Fission mode
	[n/pulse/cm2]	[n/pulse]	[n/pulse]
< 1 eV	2.0E+05	3.1E+05	2.0E+06
1 eV - 10 eV	2.7E+04	4.5E+04	2.9E+05
10 eV - 100 eV	2.9E+04	4.7E+04	3.1E+05
100 eV - 1000 eV	3.0E+04	5.1E+04	3.3E+05
1 eV - 1 keV	8.6E+04	1.4E+05	9.3E+05
1 keV - 10 keV	3.2E+04	5.4E+04	3.6E+05
10 keV - 100 keV	3.9E+04	7.1E+04	4.7E+05
100 keV - 1000 keV	1.1E+05	2.3E+05	1.5E+06
1 keV - 1 MeV	1.8E+05	3.5E+05	2.3E+06
1 MeV - 10 MeV	8.3E+04	2.4E+05	1.7E+06
10 MeV - 100 MeV	2.8E+04	7.2E+04	5.1E+05
> 100 MeV	4.4E+04	1.2E+05	5.6E+05
1 MeV - > 100 MeV	1.6E+05	4.4E+05	2.7E+06
Total	6.2E+05	1.2E+06	8.0E+06

Note: 1 pulse is 7E+12 protons. Collimated fluence (fission and capture modes) is integrated over the beam surface.

- The resolution experiences a peak + a tail due to the peculiarity of the moderation process of the lead + water moderator target
- Δλ was represented with 2 ways: (i) as the sigma obtained by a fit on the peak of a small energy interval (20 bpd), (ii) as the RMS of the λ distribution over the same energy interval

Temperature map for one pulse of 7 10^{12} pr

Sound Waves Calculation

- FLUKA coupled with ELSE³
- Rapid energy deposition → Adiabatic heat up
- Thermal expansion is immediate and not balanced inside the material → Stress & waves are generated
- 15% of elastic vibrations go to water
- Displacement 1mm/m² produce up to 75 dB noise

Resources

- Physics optimization of a possible conceptual design (~1 FTE month)
- Iteration with the engineering design (see Yacine talk)