Future Physics and Detectors at n_TOF

Alberto Mengoni IAEA, Vienna

Experimental characteristics of the n_TOF beam & detection setup

n_TOF-Phase 2

www.cern.ch/n TOF

wide energy range

www.cern.ch/n_TOF

small samples

 $^{232}Th(n,\gamma)$

 wide energy range
 high neutron flux & high energy resolution

www.cern.ch/n_TOF

²³⁶U(n,f)

 wide energy range
 high neutron flux & high energy resolut

www.cern.ch/n_TOF

⁹³Zr(n,γ

www.cern.ch/n_TOF

- wide energy range
- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver

source: P Rullhusen (GELINA)

comparison with GELINA (~ same average flux at 30m)

- wide energy range
- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver
- Iow background conditions

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate
 of the proton driver
- Iow background conditions

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate
 of the proton driver
- Iow background condit

WARNING: important in-beam γ-ray BG present

low background conditions, but...

www.cern.ch/n_TOF

In-beam photon time distribution

In-beam photon time distribution $(E_{\gamma}>1MeV)$

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

R Plag et al. (The n_TOF Collaboration) NIMA 496 (2003) 425

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity

sample changer and beam pipe made out of carbon fiber

- 40 BaF₂ crystals
- high detection efficiency ≈100%
- good energy resolution
- so far, only used for (n,γ) measurements in 2004

- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high-efficiency detectors (TAC)

- wide energy range
- high neutron flux & high energy resolution
- Iow repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high-efficiency detectors (TAC)
- state of the art daq system

- wide energy range
- high neutron flux & high energy resolution
- low repetition rate of the proton driver
- Iow background conditions
- detectors with extremely low neutron sensitivity
- high-efficiency detectors (TAC)
- state of the art daq system

n_TOF beam characteristics and experimental setup proved to be a unique combination for high accuracy measurements

www.cern.ch/n_TOF

Capture

151Sm

204,206,207,208Pb, 209Bi

²³²Th

^{24,25,26}Mg

90,91,92,94,96**Zr**, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, <u>²⁴⁵Cm</u>

n_TOF experiments 2002-4

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and related <u>Nuclear Technologies</u>
 - Th/U fuel cycle (capture & fission)
 - Transmutation of MA (capture & fission)
 - Transmutation of FP (capture)
- Cross sections relevant for <u>Nuclear Astrophysics</u>
 - s-process: branchings
 - s-process: presolar grains
- Neutrons as probes for fundamental Nuclear Physics
 - Nuclear level density & n-nucleus interaction

The n_TOF-Ph2(*) experiments 2008 and beyond

- Measurements of neutron cross sections relevant for Nuclear Waste Transmutation and Advanced Nuclear Technologies
- Cross sections relevant for Nuclear Astrophysics
- Neutrons as probes for fundamental Nuclear Physics

(*) The physics case and the related proposal for measurements at the CERN Neutron Time-of-Flight facility n_TOF in the period 2006-2010 CERN-INTC-2005-021; INTC-P-197 April 2005

The n_TOF-Ph2 experiments 2008 and beyond

Capture measurements

<u>Mo, Ru, Pd stable isotopes</u>	r-process residuals calculation isotopic patterns in SiC grains
<u>Fe, Ni, Zn, and Se (stable isotopes)</u> ⁷⁹ Se	s-process nucleosynthesis in massive stars accurate nuclear data needs for structural materials
<u>A≈150 (isotopes varii)</u>	s-process branching points long-lived fission products
<u>234,236U, 231,233Pa</u>	Th/U nuclear fuel cycle
<u>235,238U</u>	standards, conventional U/Pu fuel cycle
^{239,240,242} Pu, ^{241,243} Am, ²⁴⁵ Cm	incineration of minor actinides

(*) endorsed by CERN INTC (execution in 2008?)

The n_TOF-Ph2 experiments 2008 and beyond

TOF-Ph

Fission measurements

<u>MA</u>	ADS, high-burnup, GEN-IV reactors
²³⁵ U(n,f) with p(n,p')	new ²³⁵ U(n,f) cross section standard
<u>²³⁴U(n,f)</u>	study of vibrational resonances at the fission barrier
Other measurements	
¹⁴⁷ Sm(n,α), ⁶⁷ Zn(n,α), ⁹⁹ Ru(n,α) ⁵⁸ Ni(n,p), other (n,lcp)	p-process studies gas production in structural materials
<u>AI, V, Cr, Zr, Th, ²³⁸U(n,Icp)</u>	structural and fuel material for ADS and other advanced nuclear reactors
<u>He, Ne, Ar, Xe</u>	low-energy nuclear recoils (development of gas detectors)
<u>n+D₂</u>	neutron-neutron scattering length
<u>Al, V, Cr, Zr, Th, ²³⁸U(n,lcp)</u> <u>He, Ne, Ar, Xe</u> <u>n+D₂</u>	structural and fuel material for ADS and other advanced nuclear reactors low-energy nuclear recoils (development of gas detectors) neutron-neutron scattering length

The second n_TOF beam line & EAR-2

Flight-path length : ~20 m at 90° respect to p-beam direction expected neutron flux enhancement: ~ 100 drastic reduction of the t_0 flash

n_TOF-Ph2

EAR-2: Optimized sensitivity

Improvements (ex: ¹⁵¹ Sm case)		consequences for sample mass	
sample mass / 3 s/bkgd=1		✓ 50 mg	
use BaF ₂ TAC	ε x 10	✓ 5 mg	
■ use D ₂ O	Ф ₃₀ х 5	1 mg	
use 20 m flight path	$\Phi_{30} \times 100$	10 μg	
		2MZ	

boosts sensitivity by a factor of 5000!

problems of sample production and safety issues relaxed

2 ml

Summary & conclusion

n_TOF unique for high precision cross section measurements
 plan for measurements in EAR-1 already available

ready to restart activities!

possible improvements for the present setup for EAR-1:
 reduction of in-beam γ-ray (use Borated H₂O or D₂O)
 mods to safe use of radioactive samples

future perspectives:

- second beam line construction plan
- Class-A as EAR-2

The n_TOF Collaboration

U.Abbondanno¹⁴, G.Aerts⁷, H.Álvarez²⁴, F.Alvarez-Velarde²⁰, S.Andriamonje⁷, J.Andrzejewski³³, P.Assimakopoulos⁹, L.Audouin⁵, G.Badurek¹, P.Baumann⁶, F. Bečvář³¹, J.Benlliure²⁴, E.Berthoumieux⁷, F.Calviño²⁵, D.Cano-Ott²⁰, R.Capote²³, A.Carrillo de Albornoz³⁰, P.Cennini⁴, V.Chepel1⁷, E.Chiaveri⁴, N.Colonna1³, G.Cortes²⁵, D.Cortina²⁴, A.Couture²⁹, J.Cox²⁹, S.David⁵, R.Dolfini¹⁵, C.Domingo-Pardo²¹, W.Dridi⁷, I.Duran²⁴, M.Embid-Segura²⁰, L.Ferrant⁵, A.Ferrari⁴, R.Ferreira-Marques¹⁷, L.Fitzpatrick⁴, H.Frais-Koelbl³, K.Fujii¹³, W.Furman¹⁸, C.Guerrero²⁰, I.Goncalves³⁰, R.Gallino³⁶, E.Gonzalez-Romero²⁰, A.Goverdovski¹⁹, F.Gramegna¹², E.Griesmayer³, F.Gunsing⁷, B.Haas³², R.Haight²⁷, M.Heil⁸, A.Herrera-Martinez⁴, M.Igashira³⁷, S.Isaev⁵, E.Jericha¹, Y.Kadi⁴, F.Käppeler⁸, D.Karamanis⁹, D.Karadimos⁹, M.Kerveno⁶, V.Ketlerov¹⁹, P.Koehler²⁸, V.Konovalov¹⁸, E.Kossionides³⁹, M.Krtička³¹, C.Lamboudis¹⁰, H.Leeb¹, A.Lindote¹⁷, I.Lopes¹⁷, M.Lozano²³, S.Lukic⁶, J.Marganiec³³, L.Marques³⁰, S.Marrone¹³, P.Mastinu¹², A.Mengoni⁴, P.M.Milazzo¹⁴, C.Moreau¹⁴, M.Mosconi⁸, F.Neves¹⁷, H.Oberhummer¹, S.O'Brien²⁹, M.Oshima³⁸, J.Pancin⁷, C.Papachristodoulou⁹, C.Papadopoulos⁴⁰, C.Paradela²⁴, N.Patronis⁹, A.Pavlik², P.Pavlopoulos³⁴, L.Perrot⁷, R.Plag⁸, A.Plompen¹⁶, A.Plukis⁷, A.Poch²⁵, C.Pretel²⁵, J.Quesada²³, T.Rauscher²⁶, R.Reifarth²⁷, M.Rosetti1¹, C.Rubbia⁵, G.Rudolf⁶, P.Rullhusen¹⁶, J.Salgado³⁰, L.Sarchiapone⁴, C.Stephan⁵, G.Tagliente¹³, J.L.Tain²¹, L.Tassan-Got⁵, L.Tavora³⁰, R.Terlizzi¹³, G.Vannini³⁵, P.Vaz³⁰, A.Ventura¹¹, D.Villamarin²⁰, M.C.Vincente²⁰, V.Vlachoudis⁴, R.Vlastou⁴⁰, F.Voss⁸, H.Wendler⁴, M.Wiescher²⁹, K.Wisshak⁸

40 research teams 120 researchers MoU for Phase-2 ready for signature

The End

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

 $<D_0> = 1.49 \pm 0.07 \text{ eV}$ S₀ = (3.87 ± 0.33)×10⁻⁴ R₁ = 3575 ± 210 b

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103 S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

• $T_8 > 4$ using the "classical" s-process model

• from AGB modeling: 71% of ¹⁵²Gd

Present main uncertainty: $\lambda_{\beta}(T)$ of ¹⁵¹Sm

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n	TOF	experi	iments
		•	

U Abbondanno et al. (The n_TOF Collaboration) Phys. Rev. Lett. **93** (2004), 161103

S Marrone et al. (The n_TOF Collaboration) Phys. Rev. C 73 03604 (2006)

TABLE IX. The ${}^{151}\text{Sm}(n,\gamma)$ cross section in the unresolved resonance region from 1 keV to 1 MeV.

Energy bin	σ _(n,γ) (b)	Uncertainty (%)		
(keV)		Stat.	Syst.	Tot
1-1.2	24.52	0.8	4.4	4.5
1.2-1.5	23.68	0.8	4.3	4.4
1.5-1.75	21.94	1.0	4.2	4.3
1.75-2	19.76	1.2	4.2	4.3
2-2.5	15.43	1.1	4.1	4.3
2.5-3	15.36	1.3	4.1	4.3
3-4	12.78	1.2	4.1	4.3
4–5	10.04	1.4	4.1	4.3
5-7.5	8.91	2.1	2.9	3.6
7.5-10	5.85	3.0	3.1	4.3
10-12.5	5.38	3.9	2.9	4.8
12.5-15	4.26	4.9	3.2	5.8
15-20	3.82	3.8	3.2	4.9
20-25	3.52	4.6	3.5	5.8
25-30	3.13	4.5	3.1	5.5
30-40	2.69	4.4	3.2	5.5
40-50	2.17	4.8	3.4	5.9
50-60	1.90	5.2	3.3	6.2
60-80	1.66	4.1	3.6	5.5
80-100	1.30	5.1	4.6	6.9

for nuclear data evaluators: all infos available in refereed journal publications & on the n_TOF website www.cern.ch/ntof

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²⁰⁷Pb(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

accepted for publication in PRC (in press)

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²⁰⁷Pb(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & accepted for publication in PRC (in press)

substantial disagreement for $E_n > 45 \text{ keV}$
¹⁵¹Sm

²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

accepted for publication in PRC (in press)

TABLE II: Resonance parameters and radiative kernels from the analysis of the $^{207}\mathrm{Pb}(\mathrm{n},\gamma)$ data measured at n_TOF^a.

E_{\circ}	l	J	Γ_n	Γ_{γ}	$g\Gamma_{\gamma}\Gamma_n/\Gamma$	
(eV)			(meV)	(meV)	(meV)	
3064.700(3)	1	2	111.0(8)	145.0(9)	78.6(9)	
10190.80(4)	1	2	656(50)	145.2(12)	149(14)	
16172.80(10)	1	2	1395(126)	275(3)	287(30)	
29396.1	1	2	16000	189(7)	234(9)	
30485.9(5)	1	1	608(45)	592(50)	225(30)	
37751(3)	1	1	50×10^{3}	843(40)	620(30)	
41149(46)	0	1	1.220×10^{6}	3970(160)	2970(120)	
48410(2)	1	2	1000	230(20)	235(20)	
82990(12)	1	2	29×10^{3}	360(30)	444(30)	
90228(24)	1	1	272×10^{3}	1615(100)	1200(80)	
127900	1	1	613×10^{3}	1939(150)	1449(120)	
130230	1	1	87×10^{3}	900(80)	675(60)	
181510(6)	0	1	57.3×10^{3}	14709(500)	8780(300)	
254440	2	3	$111{\times}10^3$	1219(90)	2110(150)	
256430	0	1	1.66×10^{6}	12740(380)	9482(280)	
317000	0	1	850×10^{3}	10967(480)	8120(350)	
bital angular momenta l and resonance spins J are from						
Ref. [17].						

3% accuracy of the capture kernel

 ^{a}Or

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

204Pb(n, γ)

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & submitted for publication to PRC, October 2006

Very low neutron sensitivity of capture γ -ray detection systems & high resolution The **n** TOF Collabor

¹⁵¹Sm

²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 &

submitted for publication to PRC, October 2006

E_{\circ} l J	Γ_{γ}	$\Delta \Gamma_{\gamma}$	Γ_n	K_r	ΔK_r
(eV)	(meV)	(%)	(meV)	(meV)	(%)
480.3 1 1/2	1.33	4	3.0	0.92^{a}	2.7
1333.8 1 1/2	105	4	46.3 ^b	32.1^{a}	1.3
$1687.1 \ 0 \ 1/2$	1029	0.7	3340	787^{a}	0.5
$2481.0 \ 0 \ 1/2$	514	1.1	5470	470^{a}	1.0
2600.0				8.35	6
$2707.1 \ 1 \ 3/2$	31.2	9	11.5	16.8	2
$3187.9 \ 0 \ 1/2$	316	10	1.7	1.69	0.1
$3804.9 \ 1 \ 1/2$	280	8	66.4	53.7	1.6
$4284.1 \ 1 \ 3/2$	111	9	24.0	39.4	1.7
4647.5				2.57	9
$4719.4 \ 1 \ 3/2$	41.2	5	95.0	57.5	3
5473.2 1 1/2				79.0	1.6
5561.4 (1/2)	1.03	10	1.9	0.67	6.4
$6700.5 \ 0 \ 1/2$	312	3	4540	292	3
7491.0				19.0	0.5
$8357.4 \ 0 \ 1/2$	1286	1.9	45000	1250	1.9
8422.9				11.3	7
8949.6				22.9	3
9101.0 $(1/2)$	193	8	150	84.4	4
$9649.3 \ 0 \ 1/2$	1076	2	7860	946	2
10254				37.0	8
$11366 \ 1 \ 3/2$	39.0	10	226	66.5	9
11722				22.8	9
12147				54.4	8

The second s	IABLE IV: Average neutron capture cross section for ²⁰⁴ F	ъ.
--	--	----

E_{1ow}	E_{high}	Cross section	Statistical uncertainty ^a
(keV)	(keV)	(barn)	(%)
88.210	92.404	0.059	9
92.404	96.748	0.059	5
96.748	101.406	0.058	11
101.406	106.408	0.057	8
106.408	111.790	0.057	7
111.790	117.591	0.056	8
117.591	123.855	0.056	7
123.855	130.634	0.055	7
130.634	137.985	0.054	6
137.985	145.974	0.054	6
145.974	154.678	0.053	6
154.678	164.185	0.053	7
164.185	174.596	0.052	7
174.596	186.030	0.051	6
186.030	198.625	0.051	5
198.625	212.544	0.050	5
212.544	227.981	0.049	5
227.981	245.162	0.049	5
245.162	264.363	0.048	4
264.363	285.911	0.047	4
285.911	310.207	0.046	4
310.207	337.739	0.046	4
337.739	369.107	0.045	4
369.107	405.060	0.044	4
405.060	443.512	0.043	3

^aThis value has to be added in quadrature with the overall systematic uncertainty of 10%.

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²⁰⁹Bi(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Domingo-Pardo, et al. (The n_TOF Collaboration) Phys. Rev. C **74**, 025807 (2006)

Very low neutron sensitivity of capture γ -ray detection systems & high resolution

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

²⁰⁹Bi(n,γ)

C Domingo-Pardo, et al. (The n_TOF Collaboration) Phys. Rev. C **74**, 025807 (2006)

NEW MEASUREMENT OF NEUTRON CAPTURE ...

PHYSICAL REVIEW C 74, 025807 (2006)

TABLE II. Resonance parameters ^a and radiative kernels ^o for ²⁰⁹ Bi.					
$E_{\circ} (\mathrm{eV})$	l	J	$\Gamma_n (\mathrm{meV})$	Γ_{γ} (meV)	$g\Gamma_{\gamma}\Gamma_{n}/\Gamma(\text{meV})$
801.6(1)	0	5	4309(145)	33.3(12)	18.2(6)
2323.8(6)	0	4	17888(333)	26.8(17)	12.0(8)
3350.83(4)	1	5	87(9)	18.2(3)	9.5(2)
4458.74(2)	1	5	173(13)	23.2(22)	11.3(11)
5114.0(3)	0	5	5640(270)	65(2)	35.3(11)
6288.59(2)	1	4	116(18)	17.0(17)	6.7(7)
6525.0(3)	1	3	957(100)	25.3(14)	8.6(5)
9016.8(4)	1	6	408(77)	21.1(14)	13.0(9)
9159.20(7)	1	5	259(45)	21.4(21)	10.9(11)
9718.910(1)	1	4	104(22)	74(7)	19.5(21)
9767.2(3)	1	3	900(114)	90(8)	28.7(26)
12098					65(4) ^e
15649.8(1.0)	1	5	1000	47(4)	20.2(17)
17440.0(1.3)	1	6	1538(300)	32(3)	20.4(18)
17839.5(9)	1	5	464(181)	43(4)	21.7(20)
20870	1	5	954(227)	34.4(33)	18.3(17)
21050	1	4	7444(778)	33(3)	14.8(13)
22286.0(9)	1	5	181(91)	33.6(32)	15.1(15)
23149.1(1.3)	1	6	208(154)	25.3(25)	14.7(15)

^aAngular orbital momenta, l, resonance spins J, and neutron widths, Γ_n , are mainly from Refs. [27,28].

^bUncertainties are given as 18.2(6)=18.2±0.6.

^cThis area corresponds to the sum of the areas of the broad *s*-wave resonance at the indicated energy, plus two *p*-wave resonances at 12.092 and 12.285 keV.

16% higher MACS for kT = 5-8 keV81% r-process abundance for ²⁰⁹Bi

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**O**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Phys. Rev. C 73, 054610 (2006)

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004 & G Aerts et al. (The n_TOF Collaboration)

200 OF CERN) this work 180 Lindner et al. (1976) ∕eV) Poenitz et al. (1976) Macklin et al. (1981) 160 Kobayashi et al. (1981) Wisshak et al. (2001) Karamanis et al. (2001) 140 Borella et al. (2006)
 IAEA evaluation (2005) 120 $\Sigma_{(\mathbf{n},\gamma)} = \mathbf{E}$ 100 60 10^{5} 10^{6} 10^{4} neutron energy (eV)

Capture

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Ma

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹ a

186,187,188**O**S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th 209Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

F Gunsing, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

G Aerts et al. (The n_TOF Collaboration) Phys. Rev. C 73, 054610 (2006)

TABLE II. Different components of estimated systematic or correlated uncertainty in the measured cross section.

Component	Uncertainty (%)	
PHWT	0.5	
Normalization	0.5	
Background	2.5	
Flux shape	2.0	
Total	3.3	

For $E_n = 4$ keV up to 1 MeV full dataset is available on the PRC publication

E _{lew} (keV)	E _{high} (keV)	Cross section (b)	Uncertainty (b)
3.994	4.482	0.958	0.020
4.482	5.028	1.281	0.021
5.028	5.642	1.097	0.016
5.642	6.331	1.004	0.014
6.331	7.103	0.912	0.013
7.103	7.970	0.919	0.013
7.970	8.942	0.848	0.013
8.942	10.033	0.817	0.012
10.033	11.257	0.800	0.012
11.257	12.631	0.787	0.012
12.631	14.172	0.761	0.012
14.172	15.902	0.729	0.011
15.902	17.842	0.685	0.011
17.842	20.019	0.613	0.010
20.019	22.461	0.641	0.010
22.461	25.202	0.566	0.009
25.202	28.277	0.545	0.009
28.277	31.728	0.513	0.008
31.728	35.599	0.497	0.009
35.599	39.943	0.468	0.009
39.943	44.816	0.456	0.008
44.816	50.285	0.413	0.007
50.285	56.421	0.365	0.006
56.421	63.305	0.346	0.006
63.305	71.029	0.318	0.006
71.029	79.696	0.275	0.005
79.696	89.421	0.248	0.005
89.421	100.332	0.229	0.005
100.332	112.574	0.220	0.004
112.574	126.310	0.204	0.004
126.310	141.722	0.192	0.004

The n TOF Collaboration

&

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

۶.

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

n_TOF experiments

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

F Gunsing, et al. - The n_TOF Collaboration analysis in progress

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

Very low neutron sensitivity of capture γ -ray detection systems & high resolution The n_TOF Collaboration

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Source: P Koehler & S O'Brien

Capture & transmission data (from ORELA) analyzed simultanously

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Moreau, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – September 2004 G Tagliente et al. (The n_TOF Collaboration) NIC-IX, CERN, June 2006

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La <u>186,187,1</u>88Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

⁹³Zr(n, γ): raw data

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

¹³⁹La(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

R Terlizzi, et al. (The n_TOF Collaboration) CGS12 Notre Dame, IN, USA AIP Conference Proceedings 819 &

submitted for publication to PRC, October 2006

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

¹³⁹La(n,γ)

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Remarkable energy resolution and background conditions have allowed to determine the resonance parameters up to 9 keV

RI = 10.8 ± 1.0 barn average γ -widths: s-waves = 50.7 ± 5.4 meV p-waves = 33.6 ± 6.9 meV $\langle D_0 \rangle = 252 \pm 22 \text{ eV}$ $S_0 = (0.82 \pm 0.05) \times 10^{-4}$ $S_1 = (0.55 \pm 0.04) \times 10^{-4}$

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Re/Os clock

¹⁵¹Sm

^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>Os</mark>

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

Neutron Energy [keV]

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th 24,25,26Mg 90,91,92,94,96Zr, ⁹³Zr ¹³⁹La 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th 24,25,26Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

W Dridi, E Berthoumieux, *et al.,* CEA/Saclay Paper in preparation (October 2006)

The n TOF Collaboration

¹⁵¹Sm

204,206,207,208Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

Figure 3: Neutron capture on ²³⁴U yield in the thermal region and for the first resonance obtained in the present experiment.

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>OS</mark>

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th
 ²⁰⁹Bi
 ²³⁷Np
 ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

W Dridi, E Berthoumieux, et al. (The n_TOF Collaboration) PHYSOR-2006, Vancouver, September 2006 full paper in preparation

n_TOF TAC in operation

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232Th 24,25,26Mg 90,91,92,94,96Zr, 93Zr ¹³⁹La 186,187,188Os 233,234U ²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

^{186,187,188}Os

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

n_TOF ²³⁷Np $\sigma(n,\gamma)$ compared to Evaluated Data Libraries

n_TOF TAC in operation

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²³⁷Np experimetal Yield fitted with SAMMY

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi

²³²Th

^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²³⁷Np Radiative Kernel from nTOF compared to JENDL

 $RK_{n_{TOF}}$ on average 3% below the RK_{JENDL} and 6% below the RK_{ENDF}

The n_TOF Collaboration

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th 24,25,26Mg 90,91,92,94,96Zr, ⁹³Zr ¹³⁹ a 186,187,188<mark>OS</mark> 233,234 ²³⁷Np,²⁴⁰Pu,⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

204,206,207,208Pb, ²⁰⁹Bi

90,91,92,94,96Zr, ⁹³Zr

²³⁷Np,²⁴⁰Pu,⁴³Am

233,234,235,236,238

^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm

²³²Th

¹³⁹ a

233,234

²³²Th

²⁰⁹Bi

²³⁷Np

^{24,25,26}Mg

186,187,188**Os**

Fission

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

n_TOF ²⁴⁰Pu σ (n, γ) compared to Evaluated Data Libraries

n_TOF TAC in operation
^{204,206,207,208}Pb, ²⁰⁹Bi

¹⁵¹Sm

n_TOF experiments

C Guerero, D Cano-Ott, et al. - The n_TOF Collaboration PHYSOR 2006, Vancouver, September 2006

²⁴⁰Pu Radiative Kernel from nTOF compared to evaluated data

²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La ^{186,187,188}Os ^{233,234}U ²³⁷Np, ²⁴⁰Pu, ⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg

^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188<mark>O</mark>S

233,234

²³⁷Np,²⁴⁰Pu²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

D Cano-Ott, et al. - The n_TOF Collaboration ND2004 Conference, Santa Fe, NM – Sept. 2004

n_TOF TAC in operation

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg
^{90,91,92,94,96}Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238U

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

PPACs & FIC-0 (2003)

An unprecedent wide energy range can be explored at n_TOF in a single experiment

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg 90,91,92,94,96Zr, ⁹³Zr

¹³⁹La

186,187,188**OS**

233,234

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments PPACs & FIC-0 (2003)

High-resolution data up to high(er) energies

The n_TOF Collaboration

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg ^{90,91,92,94,96}Zr, ⁹³Zr ¹³⁹La ^{186,187,188}Os 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

n_TOF experiments PPACs & FIC-0 (2003)

High-resolution data up to high(er) energies

¹⁵¹Sm
^{204,206,207,208}Pb, ²⁰⁹Bi
²³²Th
^{24,25,26}Mg
^{90,91,92,94,96}Zr, ⁹³Zr
¹³⁹La
¹³⁹La
^{233,234}U
²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np

^{241,243}Am, ²⁴⁵Cm

n_TOF experiments

FIC-0 (2003)

An unprecedent wide energy range can be explored at n_TOF in a single experiment

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg 90,91,92,94,96<mark>Zr,</mark> ⁹³Zr ¹³⁹La 186,187,188<mark>O</mark>S 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am **Fission** ²³²Th

²⁰⁹Bi

²³⁷Np 241,243Am, ²⁴⁵Cm

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg 90,91,92,94,96Zr, ⁹³Zr ¹³⁹La 186,187,188Os 233,234J

²³⁷Np,²⁴⁰Pu,²⁴³Am

Fission

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np ^{241,243}Am, ²⁴⁵Cm

An unprecedent wide energy range can be explored at n_TOF in a single experiment

¹⁵¹Sm 204,206,207,208Pb, ²⁰⁹Bi ²³²Th ^{24,25,26}Mg 90,91,92,94,96Zr, ⁹³Zr ¹³⁹La ^{186,187,188}Os 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am Fission 233,234,235,236,238 ²³²Th ²⁰⁹Bi

²³⁷Np ^{241,243}Am, ²⁴⁵Cm

Higher fission x-section in the sub-threshold region

The n_TOF Collaboration

¹⁵¹Sm
204,206,207,208Pb, 209Bi
232Th
24,25,26Mg
90,91,92,94,96Zr, 93Zr
¹³⁹La
186,187,188Os
233,234U
237Np,240Pu,243Am

Fission

233,234,235,236,238

²³²Th

²⁰⁹Bi

²³⁷Np ^{241,243}Am, ²⁴⁵Cm

Higher fission x-section in the sub-threshold region

The n_TOF Collaboration

¹⁵¹Sm ^{204,206,207,208}Pb, ²⁰⁹Bi ²³²Th 24,25,26Mg 90,91,92,94,96Zr, ⁹³Zr ¹³⁹ a 186,187,188OS 233,234 ²³⁷Np,²⁴⁰Pu,²⁴³Am **Fission**

233,234,235,236,238

^{241,243}Am, ²⁴⁵Cm

²³²Th

²⁰⁹Bi

²³⁷Np

High-resolution data up to high(er) energies

¹⁵¹Sm 204,206,207,208Pb, 209Bi 232Th 24,25,26Mg 90,91,92,94,96Zr, 93Zr ¹³⁹La 186,187,188Os 233,234U

²³⁷Np,²⁴⁰Pu,²⁴³Am

<u>Fission</u>

233,234,235,236,238

²³²Th ²⁰⁹Bi ²³⁷Np

^{241,243}Am, ²⁴⁵Cm

<u>back</u>

Capture samples

Sample	Α	half-life	half-life	Lambda	Mass	Ν	Act	ivity	LA	# of LA
		yr	S	1/s	mg		Bq	Ci	Bq	
Sm-151	151	9.30E+01	2.9E+09	2.36E-10	160	6.36E+20	1.5E+11	4.1E+00	-	-
U-233	233	1.59E+05	5.0E+12	1.38E-13	100	2.58E+20	3.6E+07	9.6E-04	700	50,755
U-234	234	2.46E+05	7.7E+12	8.95E-14	37	9.49E+19	8.5E+06	2.3E-04	700	12,126
U-236	236	2.34E+07	7.4E+14	9.38E-16	400	1.02E+21	9.5E+05	2.6E-05	800	1,192
Np-237	237	2.10E+06	6.6E+13	1.05E-14	50	1.27E+20	1.3E+06	3.6E-05	300	4,413
Pu-240	240	6564	2.1E+11	3.35E-12	50	1.25E+20	4.2E+08	1.1E-02	200	2,091,380
Pu-242	242	3.73E+05	1.2E+13	5.88E-14	20	4.96E+19	2.9E+06	7.9E-05	200	14,588
Am-241	241	432	1.4E+10	5.08E-11	400	9.96E+20	5.1E+10	1.4E+00	200	253,164,001
Am-243	243	7370	2.3E+11	2.98E-12	25	6.17E+19	1.8E+08	5.0E-03	200	919,833

Fission samples (FIC detectors)

Isotope	Diam. [mm]	Density [µg/cm2]	# of targets	Mass [mg]	T1/2 [yr]	A [Bq]	A[Ci]	N
U-234	50	150	6	35.3	2.46E+05	8.1E+06	2.2E-04	9.1E+19
U-235	50	200	2	15.7	7.04E+08	1.3E+03	3.4E-08	4.0E+19
U-236	80	100	2	20.1	2.34E+07	4.8E+04	1.3E-06	5.1E+19
U-238	80	300	2	60.3	4.47E+09	7.5E+02	2.0E-08	1.5E+20
Th-232	80	400	2	80.4	1.41E+10	3.2E+02	8.8E-09	2.1E+20
Np-237	80	150	1	15.1	2.10E+06	4.0E+05	1.1E-05	3.8E+19
Am-241	80	5	4	2.0	432.2	2.5E+08	6.9E-03	5.0E+18
Am-243	80	25	4	10.0	7370	7.4E+07	2.0E-03	2.5E+19
Cm-245	80	10	2	2.0	8500	1.3E+07	3.4E-04	4.9E+18

<u>back</u>

Capture studies

Capture studies: Fe, Ni, Zn & Se

<u> <<</u>

Motivations:

- Study of the weak s-process component (nucleosynthesis up to A \sim 90)
- Fe and Ni are the most important structural materials for nuclear technologies. Results of previous measurements at n_TOF show that capture rates for light and intermediate-mass isotopes need to be revised

• Contribution of massive stars (core He-burning phase) to the s-process nucleosynthesis

s-process efficiency due to bottleneck cross sections (Example: ⁶²Ni)

Capture studies: Fe, Ni, Zn & Se

The ⁷⁹Se case

• s-process branching: neutron density & temperature conditions for the weak component

• t_{1/2} < 6.5 x 10⁴ yr

<<

Capture studies: Fe, Ni, Zn & Se

- Setup: C₆D₆ in EAR-1
- All samples are stable(*) and non-hazardous
- Metal samples preferable (oxides acceptable)

<<

(*) except ⁷⁹Se

Capture studies: Mo, Ru & Pd

<u> <<</u>

Neutron-Capture Abundances in CS 22892-052 ******* .5 C -.5 3 Bo -1.5 -2 22892-052 abundances scaled solar r-process -2.5 50 80 90 40 60 70 .5 (3 gol)δ 90 50 60 70 80 40 Atomic Number n TOF-Ph

Motivations:

- Accurate determination of the r-process abundances (r-process residuals) from observations
- SiC grains carry direct information on s-process efficiencies in individual AGB stars. Abundance ratios in SiC grains strongly depend on available capture cross sections data.

$$N_r = N_{solar} - N_s$$

Capture studies: Mo, Ru & Pd

<<

- Setup: The n_TOF TAC in EAR-1 (a few cases with C₆D₆ if larger neutron scattering)
- All samples are stable and non-hazardous
- Metal samples preferable (oxides acceptable)

Capture studies: actinides

Neutron cross section measurements for nuclear waste transmutation and advanced nuclear technologies

^{241,243} Am	The most important neutron poison in the fuels proposed for transmutation scenarios. Build up of Cm isotopes.
239,240,242 Pu	(n,γ) and (n,f) with active canning. Build up of Am and Cm isotopes.
²⁴⁵ Cm	No data available.
235,238	Improvement of standard cross sections.
²³² Th, ^{233,234} U ^{231,233} Pa	Th/U advanced nuclear fuels. ²³³ U fission with active canning.

All measurements can be done in EAR-1 (except ²⁴¹Am and ²³³Pa)

n_TOF-Ph2

Capture studies: actual TAC setup

<<

Capture studies: active canning for simultaneous (n,γ) & (n,f) measurements

Measurement of capture cross sections of fissile materials (veto) and measurement of the $(n,\gamma)/(n,f)$ ratio.

n_TOF-Ph2

<<

Fission studies

Fission studies absolute ²³⁵U(n,f) cross section from (n,p) scattering

Fission studies FF distributions in vibrational resonances

Principles:

- Time-tag detector for the "start" signal
- Masses (kinetic energies) of FF from position-sensitive detectors (MICROMEGAS or semiconductors)

<<

Fission studies cross sections with PPAC detectors: present setup

<<

n TOF-Ph2

Measurements:

- ²³¹Pa(n,f)
- Fission fragments angular distributions (45° tilted targets) for ²³²Th, ²³⁸U and other low-activity actinides

EAR-2 boost:

- measurements of ^{241,243}Am (in class-A lab)
- measurements of ²⁴¹Pu and ²⁴⁴Cm (in class-A lab)

Fission studies with twin ionization chamber

Twin ionization detector with measurement of both FF (PPAC principle)

Measurements:

- FF yields: mass & charge
- Test measurement with ²³⁵U then measurements of other MA

<<

(n,p), (n, α) & (n,lcp) measurements $\leq\leq$

1. CIC: compensated ion chamber already tested at n_TOF

For n_TOF-Ph2:

• four chambers in the same volume for multisample measurements

Measurements:

- ¹⁴⁷Sm(n, α) (tune up experiment)
- ⁶LiF target for calibration

EAR-2 boost:

• approx 100 times the ORELA count rate expected

n TOF-Ph

• ⁶⁷Zn and ⁹⁹Ru (n, α) measurements

(n,p), (n, α) & (n,lcp) measurements $\leq\leq$

2. MICROMEGAS

already used for measurements of nuclear recoils at n_TOF

MICROMEGAS

For n_TOF-Ph2:

- converter replaced by sample
- expected count rate: 1 reaction/pulse (σ=200 mb, Ø=5cm, 1µm thick)

(n,p), (n, α) & (n,lcp) measurements $\leq\leq$ 3. Scattering chambers with $\Delta E-E$ or $\Delta E-\Delta E-E$ telescopes

Setup: in parallel with fission detectors

- ✓ production cross sections $\sigma(E_n)$ for (n,xc)
- ✓ c = p, α, d
- ✓ differential cross sections $d\sigma/d\Omega$, $d\sigma/dE$

Measurements:

- ⁵⁶Fe and ²⁰⁸Pb (tune up experiment)
- Al, V, Cr, Zr, Th, and ²³⁸U
- a few x 10^{18} protons/sample in fission mode

Neutron scattering reactions

Direct n + n scattering experiment not feasible!

Alternatively, interaction of two neutrons in the final state of a nuclear reaction. Examples of such reactions are:

 $\pi^{+} + {}^{2}H \rightarrow n + n + \gamma$

$\blacksquare n + {}^{2}H \rightarrow n + n + p$

Neutron incident energy 30 – 75 MeV in 2.5 MeV bins

Kiematic locus of the $n + {}^{2}H \rightarrow n + p + n$ reaction for: $E_n = 50 \text{ MeV}$ $\Theta_n = 20^{\circ}, \Phi_n = 0^{\circ}$ $\Theta_p = 50^{\circ}, \Phi_p = 180^{\circ}$

n_TOF-Ph2

<<

<u><< back</u>

²³⁷Np(n, γ) at n_TOF

< back

www.cern.ch/n_TOF

Source: J Ullman, n_BANT workshop, CERN, March 2005

Fast neutrons!

<< back

Figure 1: Simulation of the neutron spectrum in the SBRV-75 reactor [2], loaded with the Spiro MA fuel mixture (1/2 of ²⁴¹Am, 1/4 of ²⁴³Am and 1/4 of equal amount of ²⁴⁴Cm and ²³⁷Np). The fission cross sections of several MA in consideration here are shown. The fission cross section of ²³⁹Pu is also shown for a direct comparison with a non-threshold fission case.

Neutron cross sections data are

 Neutron cross sections data are

 243Am(n,f)

Cross Section (barns)

source: n_TOF Collaboration (fission propo<u>sal)</u>

The n_TOF Collaboration

Nucleosynthesis: the s-process

<< back

Nucleosynthesis: the s-process & the r-process residuals

$$N_r = N_{solar} - N_s$$

Atomic Number

<u><< bacl</u>

<u> << back</u>

