Dose Rates, Radio Isotope Inventories and Air Activation

RP Calculations & Impact on Design and Upgrade

Activation, Handling, Ventilation

M. Brugger, P. Cennini, A. Ferrari, E. Lebbos, V. Vlachoudis CERN AB/ATB/EET

Intro Waste New Target Ventil. & Cooling Maint. Cone Iteration based on the previously defined RP Classifications

Project Phase	Calculations	Procedures	Measurements
New Target Conceptual Design	 Feasibility Determination of Technical Constraints Determination of Safety Constraints 	- Quality assurance	- Model Development & Benchmark
Technical Design	 Design Calculation: Engineering o material damage & fatigue o cooling o handling Facility o shielding layout o activation of water o activation of air Safety (e.g., handling) o residual dose rates 	- Operational Procedures - Safety Procedures - Handling Procedures	- Benchmark (lest measurements) - Point-Zero - Material damage and or fatigue
Operation	- Refined calculations of 'as-is' situation - Respective evaluation	- Monitoring - Refinement of Intervention Procedures - Intervention Planning	Commissioning o engineering parameters o activation of cooling water o activation of air o activation levels of the facility Monitoring of the above
Existing Targe Dismantling & Disposal	Final nuclide vector - Residual dose rates (based on real operation)	 Organisation of Disposal + handling + container + transport - Dismantling of Facility 	 Evaluation: o residual dose rates o contamination check o GS of target (mobile) o GS of samples
June 15th 2007	nToF Review	- RP FLUKA Calculations	

Overview

Introduction

- Required specifications
- FLUKA calculations

FLUKA calculations for Radiation Protection Characterization

- Existing target activation (Radioactive Waste, Handling)
- New Target Design Options (Engineering Design, Waste, Handling,)
- Ventilation
- Target Cooling Circuit
 - Contamination
 - Corrosion
 - Consequences

Conclusion

Intro Waste New Target Ventil. & Cooling Maint. Conci **Required Specifications** RW specifications for the nToF target disposal Specific and total activities Alpha emitters • Residual dose rates around the storage container Contamination Target handling Residual dose rates around the existing target Procedures and dose planning

- New Target design
 - Impact on radionuclide vector
 - Residual dose rates & handling

ntro Waste New Target Ventil. & Cooling Maint. Conc **Required Specifications** Ventilation requirements Radioisotope production Different operational scenarios Dose to the critical group Cooling System & Implications Contamination: facts/hypotheses Inspection Possible Repair Corrosion: facts/hypotheses Inspection Possible Repair Intervention scenario Handling, Inspection, Repair Planning & Optimization nToF Review - RP FLUKA Calculations June 15th 2007

FLUKA Calculations

Geometry Implementation

 the simulation includes a detailed layout and design, for both the target and the tunnel up to the experimental area

New Design Options

 flexibility to change design parameters and estimate respective influences

Detailed Estimates concerning

- neutron fluences (physics) [Y. Kadi]
- energy deposition (engineering design) [Y. Kadi]
- isotope production (radioactive waste, air activation)
- residual dose rates (handling, waste)

Accuracy

June 15th 2007

• well benchmarked code in all required fields

8

Intro Waste New Target Ventil. & Cooling Maint. Concl. Target in the Pit

10

Important Input Parameters

Chemical Composition

- accurately known for the used lead (e.g., 19ppm Bi)
- for steel: variation "known" from benchmark experiments carried out at CERN, "confirmed" by preliminary dose rate measurement and finally to be evaluated during the target removal

Irradiation History

• beam intensity and irradiation time profile is accurately known

Geometry

• implemented in a very detailed way

MC Calculation

 extensive calculations (computer cluster), statistics is better than the systematic error

FLUKA Models – Activation/Residual DR

- well benchmarked for low/medium-mass materials at CERF
- recent comparison for high mass isotopes show a very good overall agreement

Intro Waste New Target Ventil. & Cooling Maint. Concl. Residual Dose Rates - Benchmark

Existing Lead Target

Detailed geometry

• target and support, surrounding structure downstream tunnel structure

Beam & Irradiation Parameters

- Proton intensity:
- Protons on target:
- Irradiation time: 6 months/year [2001-2004]
 - 7x10¹² p/pulse ~1 pulses/2.4s
 - real average: 1.3x10¹⁹ p/year (maximum: 3.2x10¹⁹ p/year)

Activation of target

- specific and total activity as well as expression of the first as multiple of the respective exemption limit
- residual dose rates around the target
- nuclide vector for waste disposal
- time evolution of main parameters

June 15th 2007

Intro Waste New Target Ventil. & Cooling Maint. Conc Time Dependence - Total Activity

Nuclide Vector

after 4 years of operations and 3 years of cooling: September 2007

non α-emitting

Lead Target

Most abundant in terms of the Exemption limit (LE)

Steel Support

		-								
0	Isotope	Halflife (s)	Specific Activity (Bq/g)	Exemption Limit LE (Bq/g)	Multiples of LE	Total Activity (Bq)		⁹⁰ Sr ¹⁹⁵ Au ¹⁰⁹ Cd ¹⁷³ Lu	9.12E+08 1.61E+07 3.99E+07 4.32E+07	1.91 1.56 1.54
	⁶⁰ Co	1.66E+08	1.31E+04	1	13149	4.31E+09		⁶⁵ Zn	2.11E+07	6.28
	⁵⁵ Fe	8.64E+07	3.00E+05	30	9996	9.82E+10		²⁰² Pb	1.66E+12	1.58
2	⁵⁴ Mn	2.70E+07	2.99E+03	10	299	9.79E+08		¹⁹⁴ Au	1.37E+05	3.02
1	⁶³ Ni	3.16E+09	1.73E+04	70	247	5.67E+09		¹⁰¹ Rh	1.04E+08	2.72
	⁵⁷ Co	2.35E+07	7.65E+02	50	15	2.51E+08		⁵⁴ Mn	2.70E+07	1.27
1	²² Na	8.21E+07	1.95E+01	3	6	6.37E+06		¹⁹³ Pt	1.58E+09	3.48
	³ Н	3.89E+08	6.30E+02	200	3	2.06E+08		¹⁷⁹ Ta	5.74E+07	2.02
	⁴⁴ Ti	1.89E+09	5.29E+00	2	2 3		⁵⁵ Fe		8.64E+07	2.76
٦	⁴⁹ V	2.84E+07	1.11E+03	600	2	3.63E+08		¹⁰⁶ Ru	3.23E+07	9.19
	⁵⁹ Ni	2.40E+12	1.46E+02	200	1	4.78E+07		¹⁰⁶ Rh	2.98E+01	9.19
	⁴⁵ Ca	1.41E+07	1.95E+00	10	0.2	6.37E+05		¹³³ Ba	3.32E+08	6.11
	⁴⁴ Sc	1.43E+04	5.29E+00	30	0.2	1.73E+06		¹³⁴ Cs	6.52E+07	2.97
7		TOTAL:	3.36E+05			1.10E+11			TOTAL:	9.30
	June 15th	n 2007	1110	6.	nT	FOF Review	v - R	P FLUK	A Calculat	ions

lsotope	Halflife (s)	Specific Activity (Bq/g)	Exemption Limit LE (Bq/g)	Multiples of LE	Total Activity (Bq)	
²⁰⁴ TI	1.19E+08	2.27E+04	8.0	2841	9.05E+10	
¹⁹⁴ Hg	1.40E+10	3.02E+02	0.2	1509	1.20E+09	
⁶⁰ Co	1.66E+08	3.21E+02	1.0	321	1.28E+09	
³ H	3.89E+08	5.48E+04	200.0	274	2.18E+11	
²⁰⁷ Bi	1.04E+09	1.82E+03	8.0	227	7.24E+09	
¹⁷² Lu	5.79E+05	1.29E+03	8.0	161	5.12E+09	
¹⁷² Hf	5.90E+07	1.27E+03	10.0	127	5.07E+09	
⁹⁰ Sr	9.12E+08	1.91E+01	0.4	48	7.59E+07	
¹⁹⁵ Au	1.61E+07	1.56E+03	40.0	39	6.22E+09	
¹⁰⁹ Cd	3.99E+07	1.54E+02	5.0	31	6.13E+08	
¹⁷³ Lu	4.32E+07	1.01E+03	40.0	25	4.02E+09	
⁶⁵ Zn	2.11E+07	6.28E+01	3.0	21	2.50E+08	
²⁰² Pb	1.66E+12	1.58E+01	1.0	16	6.31E+07	
¹⁹⁴ Au	1.37E+05	3.02E+02	20.0	15	1.20E+09	
¹⁰¹ Rh	1.04E+08	2.72E+02	20.0	14	1.08E+09	
⁵⁴ Mn	2.70E+07	1.27E+02	10.0	13	5.08E+08	
¹⁹³ Pt	1.58E+09	3.48E+03	300.0	12	1.39E+10	
¹⁷⁹ Ta	5.74E+07	2.02E+03	200.0	10	8.03E+09	
⁵⁵ Fe	8.64E+07	2.76E+02	30.0	9	1.10E+09	
¹⁰⁶ Ru	3.23E+07	9.19E+00	1.0	9	3.66E+07	
¹⁰⁶ Rh	2.98E+01	9.19E+00	1.0	9	3.66E+07	
¹³³ Ba	3.32E+08 6.11E+0		10.0		2.43E+08	
¹³⁴ Cs	6.52E+07	2.97E+00	0.5	6	1.18E+07	
	TOTAL:	9.30E+04			3.70E+11	

19

Nuclide Vector

after 4 years of operations and 3 years of cooling: September 2007

α-emitting

Most abundant in terms of the Exemption limit
Significantly smaller than the PSI reference value
for a specific activity of ~ 20kBq/g (<<ATA)

lsotope	Halflife (s)	Specific Activity (Bq/g)	Exemption Limit LE (Bq/g)	Multiples of LE	Total Activity (Bq)
¹⁴⁸ Gd	2.24E+09	2.95E+01	0.2	147	1.17E+08
²⁰⁸ Po	9.15E+07	6.97E-02	0.01	7	2.77E+05
²¹⁰ Po	1.20E+07	8.10E-02	0.04	2	3.22E+05
¹⁴⁵ Pm	5.59E+08	7.32E+01	90	1	2.92E+08
²⁰⁹ Po	3.22E+09	1.04E-03	0.01	0.1	4.16E+03
¹⁵¹ Gd	1.07E+07	3.13E+00	50	0.1	1.25E+07
¹⁴⁶ Sm	3.25E+15	1.99E-05	0.2	0	7.92E+01
¹⁴⁸ Eu	4.71E+06	2.97E-05	8	0	1.18E+02
¹⁹⁰ Pt	2.05E+19	1.35E-07	1	0	5.36E-01
¹⁴⁷ Sm	3.35E+18	1.75E-08	0.2	0	6.98E-02
¹⁵² Gd	3.41E+21	1.87E-11	0.2	0	7.46E-05
¹⁴⁷ Eu	2.08E+06	1.54E-11	20	0	6.15E-05
¹⁸⁸ Pt	8.81E+05	5.57E-29	10	0	2.22E-22
¹⁴⁹ Gd	8.02E+05	2.56E-33	20	0	1.02E-26
²⁰⁶ Po	7.60E+05	4.86E-39	0.08	0	1.94E-32
¹⁵⁴ Dy	9.47E+13	8.92E-04	0	0	3.55E+03
¹⁵⁰ Gd	5.65E+13	1.04E-03	0	0	4.15E+03
	TOTAL:	1.06E+02			4.22E+08

Lead Target

Intro Waste New Target Ventil & Cooling Maint Conc Time Dependence – Dose Rates

Target Disposal – Conclusion

- **Characterization of the nuclide vector** Specific activities, total activity, residual dose rate (for different cooling times)
 - detailed calculation and good statistics
 - including alpha emitters (showing low levels)
 - dose rate + gamma spectroscopy measurement
 - contamination measurement on AI, SS, Pb

Transport

might be performed as Class-A

- final activation levels are checked
- hotspots of target can be shielded locally

Possible elimination pathway

all necessary input is available

coordinated by RP & NAGRA, to be sent to PSI

New Target Design Options

Target Type	Shape	Lateral Dimensions	Length	Comments
Pb	Cubic	80 x 80 cm	60 cm	Existing Target
Pb	Cubic	80 x 80 cm	60 cm	New Cladded
Pb	Cylindrical	53 cm Ø	40 cm	MiniPool Solution
Та	Cylindrical	30 cm Ø	30 cm	Sliced Ta Disks
Ta + Pb	Cyl + Cub	Ta: 20 cm Ø Pb: 55 cm Ø	Ta: 25 cm Pb: 40 cm	Hybrid Solution

Several configurations were studied:

Pure Lead

- Existing target (or cladedd)
- Mini-pool solution to avoid the direct contact between the target and the cooling water

Tantalum

Tantalum solution to withstand higher mechanical stresses and may solve the contamination issue without need for cladding

Hybrid

Combination between lead and tantalum

Intro Waste New Target Ventil. & Cooling Maint. Conci Pb Cylinder With Mini-Pool Solution

Intro Waste New Target Ventil. & Cooling Maint. Conc Sliced Ta Cylinder (Air) + Al cladding

Sliced Ta + Lead + Cooling System

Side view

Front view

Pb – Ta: Nuclide Vector

after 4 years of operations and 3 years of cooling: September 2007

	Lead Tar	get Solutio	on	Та	Tantalum Target Solution						
lsotope	Halflife (s)	alflife (s) (Bq/g) (Bq)		Isotope	Halflife (s)	Specific Activity (Bq/g)	Total Activity (Bq)				
²⁰⁴ TI	1.19E+08	2.27E+04	9.05E+10	¹⁷² Lu	5.79E+05	4.18E+05	1.48E+11				
¹⁹⁴ Hg	1.40E+10	3.02E+02	1.20E+09	¹⁸² Ta	9.89E+06	3.02E+05	1.07E+11				
⁶⁰ Co	1.66E+08	3.21E+02	1.28E+09	¹⁷² Hf	5.90E+07	4.14E+05	1.46E+11				
³ Н	3.89E+08	5.48E+04	2.18E+11	¹⁴⁸ Gd	2.24E+09	3.29E+03	1.16E+09				
²⁰⁷ Bi	1.04E+09	1.82E+03	7.24E+09	¹⁷⁹ Ta	5.74E+07	2.43E+06	8.59E+11				
¹⁷² Lu	5.79E+05	1.29E+03	5.12E+09	¹⁷³ Lu	4.32E+07	4.49E+05	1.59E+11				
¹⁷² Hf	5.90E+07	1.27E+03	5.07E+09	³ Н	3.89E+08	5.64E+05	1.99E+11				
	TOTAL:	9.30E+04	3.70E+11		TOTAL:	4.70E+06	1.66E+12				

Tantalum results in about a factor of 4 higher total activity Having much less mass and being concentrated around the beam core part, this results in a factor of ~50 higher specific activity

June 15th 2007

Cooling Water - Comparison

after 4 years of operations and 3 years of cooling: September 2007

The tritium content being the main element of the cooling water nuclide vector, shows changes of up to a factor three depending on the target solution
In case of the hybrid solution the increase is less than a factor of two

Target Configuration	Total Activity (Bq)	Specific Activity (Bq/g)
Existing Lead Target	3.61E+09	4.51E+03
Lead cylinder with Mini-Pool	5.29E+09	6.61E+03
Sliced Tantalum Cylinder with Aluminum Cladding	1.07E+10	1.34E+04
Small Tantalum Cylinder Surrounded by Lead	1.01E+10	1.26E+04
Sliced Tantalum Cylinder Surrounded by Lead with Cooling Water Passages	5.21E+09	6.51E+03

A possible wash-out of isotopes stemming from the pipes or the target (cladding) is not considered. Always being present, they will however be captured in the filters.

the exit side

The hotspot at the entrance side could be easily covered with a lead plug as soon as the target is removed

June 15th 2007

Intro Waste New Target Ventil & Cooling Maint Conc Comparison - Residual Dose Rates

Target Nuclide Vector - Comparison

after 4 years of operations and 3 years of cooling: September 2007

Target Configuration	Total (Activity Bq)	Specific Activity (Bq/g)		Most Abundant Isotope (Multiple of LE, Total and Specific Activity)		Dose Rate (@10cm) for three different locations (mSv/h)		
	Lead	Tantalum	Lead	Tantalum	Lead	Tantalum	Proton Beam Entrance	Exit Proton Beam	Target Top
Existing Lead Target	3.7×10 ¹¹ α: 4.2×10 ⁸		9.3×10 ⁴ α: 1.0×10 ²		²⁰⁴ TI / 2841.17 9.0×10 ¹⁰ Bq 2.3×10 ⁴ Bq/g		~ 20	~ 20	~ 5
Lead cylinder with Mini-Pool	3.3×10 ¹¹ α: 1.6×10 ⁹		3.3×10⁵ α: 1.6×10³		²⁰⁴ TI / 10308.37 8.3×10 ¹⁰ Bq 8.2×10 ⁴ Bq/g		~ 30	~ 35	~ 2
Sliced Tantalum Cylinder with Aluminum Cladding		1.6×10 ¹²		4.5×10 ⁶		¹⁷² Lu / 52263.77 1.4E+11 Bq 4.2E+05 Bq/g	~ 70	~ 200	~ 2
Small Tantalum Cylinder Surrounded by Lead	2.1×10 ¹¹ α: 7.9×10 ⁸	7.4×10 ¹¹	2.0×10 ⁵ α: 7.7×10 ²	9.4×10 ⁶	²⁰⁴ TI / 7628.22 6.2×10 ¹⁰ Bq 6.0×10 ⁴ Bq/g	¹⁷² Lu / 109693.7 6.5×10 ¹⁰ Bq 8.7×10 ⁵ Bq/g	~ 100	~ 20	~ 1
Sliced Tantalum Cylinder Surrounded by Lead with Cooling Water Passages	1.0×10 ¹¹ α: 2.7×10 ⁸	1.1×10 ¹²	1.7×10 ⁵ α: 4.8×10 ²	8.4×10 ⁶	²⁰⁴ TI / 8656.9 3.9×10 ¹⁰ Bq 6.8×10 ⁴ Bq/g	¹⁷² Lu / 98623.7 1.0×10 ¹¹ Bq 7.8×10 ⁵ Bq/g	~ 100	~ 20	~ 1

- Tantalum leads to significant higher isotope production
- Tantalum shows important residual dose rates at both the proton beam entry and exit
- The latter can be overcome by a hybrid solution
- Both, the existing and the hybrid target seem to be a possible solution

June 15th 2007

Intro Waste New Target Ventil. & Cooling Maint. Concl. Critical Groups

Air Activation - Assumptions

General:

- Facility operation time: 6 months
- Air volume considered for activation: 600m³
- Air volume considered for decay: 120m³
- No dilution
- Dose to Public: annual dose based on long-term dose conversion factors (P. Vojtyla)
- Dose to Personnel: dose rate due to direct exposure (conversion factors from the Swiss and French legislation)
- **Possible Ventilation System:**
 - Ventilation speed: 5000m³/h
 - Enclosed Case: Waiting time before access: 1 day

Annual Dose Calculation

FLUKA simulations to calculate the isotope production yield (39 different isotopes considered)

Exposure of personnel (access to nToF area)

• Dose conversion coefficients based on the Swiss and French legislation

Dose to the public (outside CERN)

- Definition of critical groups (border guards)
- Calculation of dose conversion coefficients (P. Vojtyla) based on environmental models

Different ventilation scenarios

- Existing situation
- Continuous ventilation (laminar flow)
- Enclosed area and flush before access (full mixing)

June 15th 2007

Studied Options

- Isotope production term is "transported" according to the assumed ventilation scenario
- Assumptions for exposure:
 - personnel: direct (full) exposure at the pit
 - critical group: specific dose conversion factors

Continuous ventilation system

- laminar flow to the pit
- ventilation speed of 5000 m³/h

Enclosed ventilation system

- full mixing in the cavern
- one day waiting time before flush (before access)
- ventilation speed of 5000 m³/h
- direct exposure happens during full air exchange

Ventilation System - Comparison

Ventilation		Perso	nnel	Public			
Scenario	Maximum	Maximum	Most Abundant	Maximum	Most Abundant		
Scenario	Dose Rate	Total Dose	Isotopes	Annual Dose	Isotopes		
Continuous	~90 uSv/h	not applicable	~45% N ¹³ (~10 minutes) ~40% O ¹⁵ (~2 minuts) ~10% Ar ⁴¹ (~2 hours)	1.2 uSv	~30% C ¹¹ (~20 minutes) ~40% N ¹³ (~10 minutes) ~20% Ar ⁴¹ (~2 hours)		
Enclosed + Flush	~120 uSv/h	14 uSv	~10% Be ⁷ (~53 days) ~80% P ³² (~14 days)	0.01 uSv	~90% Be ⁷ (~53 days)		

All calculations consider strict conservative assumptions
 Continuous ventilation leads to a maximum annual dose to the public of ~1 µSv

An enclosed scenario with flush before access would reduce the dose to the public by a factor of 100 with a maximum exposure of personnel up to a total dose of $\sim 15 \mu Sv$ (however under unrealistic assumptions)

The continuous ventilation scenario is highly depending on the chosen ventilation speed (main contributing isotopes)

Target Cooling - Contamination

Facts/Hypotheses

- Origin -> Many Hypotheses as outlined before
- Level of contamination only estimated, deposits exist, based on dose rate measured above and below
- Contamination: contained or soluble?

Options

- accept contamination and continue running with existing circuit
- accept contamination and upgrade certain parts of the cooling circuit
- decontamination/replacement

Foreseen Measurements

- Visual inspection (partly remote)
- Contamination sample
- Pictures & Macro-Pictures

Intervention Scenarios

Planned (individual/collective dose)

- Sand removal (~20 μSv)
- Taking of pictures (~20 μSv)
- Taking of samples (~80 μSv)

Corrosion Inspection (Endoscopy)

- Previous visual inspection and detailed intervention planning
- Person needs to be lowered into the target shaft
- Attached to the crane with safety passage
- Mock-up training and time optimization

If major Corrosion is observed Replacement of Pipes inside the Shielding

- Dismantling of most of the shielding
- Localized residual dose rates (hotspots) as well as generally high values with respect to the needed long intervention
- Estimated time for full intervention: 6 months, 3 persons

Intro Waste New Target Ventil. & Cooling Maint. Conc Residual Activation in the Shaft

- 3D residual dose rate maps are available for various cooling times inside the shaft
- Can be performed in a specialized 2-step approach accounting for the activation coming from
 - the walls & container only
- Hotspots are located at the exit point (window) of the beam as well as the lateral wall

1.9e-003 7.2e-003 2.7e-002 1.0e-001 3.7e-001 1.4e+000 5.2e+000 1.9e+001 7.2e+001 2.7e+002

1.0e-003 3.7e-003 1.4e-002 5.2e-002 1.9e-001 7.2e-001 2.7e+000 1.0e+001 3.7e+001 1.4e+002 5.2e+002

mSv/h

Dose Planning: Corrosion Inspectior

Preliminary estimates

- Average dose rate in the shaft: ~50 μSv/h
- Expected hot spots: ~250 μSv/h
- Intervention time in the shaft: 5 minutes
- Intervention time close to hot spots: 2 minutes
- Needed minimum safety factor: 2 (Time) x 2 (Dose Rates)
- Estimated maximum individual dose: ~50 μSv

Requirements (details to be refined)

- Work in contaminated area
 - protection clothing, respiratory mask (filter), preparation of mobile SAS
- Careful intervention planning, optimization, mock-up training
- Monitoring during the intervention with pre-defined thresholds to stop the work

June 15th 2007

Replacement of the Cooling Circuit

Preliminary estimates

- Average dose rate in the area: \sim 5 10 μ Sv/h
- Average dose rate close to the tank: ~50 100 μSv/h
- Expected hot spots: ~0.5 1 mSv/h
- Estimated individual dose (preliminary): ~1 mSv
- Estimated collective dose (preliminary): ~3 mSv

Requirements

- long intervention asking for detailed optimization even for parts with low residual dose rates
- many requirements see partly before

RP Calculation - Summary

Needed input for existing target disposal

- all available
- final report in preparation
- delay: no
- resources: no

Existing target handling

- all needed input available
- procedures prepared
- additional inspection needed (cooling system)
- delay: no

• resources: 0.5 FTE month

New Target design

- preliminary designs studied
- physics included

Ventilation requirements

- all input available
- different options studied
- final report in preparation
- delay: no
- resources: no
- Cooling System & Implications
 - Measurements needed
 - Possible interventions
 - Refined intervention scenarios needed
 - delay: 1-2 weeks
 - resources: 0.5 FTE month
- delay: 2+ months
- engeneering design needed resources: 2+ FTE months

Intro Waste New Target Ventil. & Cooling Maint Conc Isotope Production - Benchmark

1 A GeV ²⁰⁸Pb + p reactions Nucl. Phys. A 686 (2001) 481-524

One expects an accurate characterization of the nuclide vector for nToF, well below the required accuracy

June 15th 2007

Intro Waste New Target Ventil. & Cooling Maint. Conci **Tantalum cylinder** Side view Front view Y (cm) (cm 40 20 • Length: 30 cm 20 10 • Diameter: 30 cm 0 0 -10 -20 -20 -40 -30 -20 -10 10 20 30 -30 0 -40 -20 0 20 40 X (cm) Z (cm) June 15th 2007 nToF Review - RP FLUKA Calculations 52

Continuous Ventilation Design

Directionspectsupel(Rer(sontional agriogphe Air)

Isotope	[#Of_Isoto total Volu secor	Production [#Of_Isotopes per total Volume and second]		a_i Inhalation Specific Conversion Activity Coefficients [Bq/m3] [Sv/Bq]		rel. Contr. [%]	Total Release [Bq]	Conversion Coefficients EXIT 3 [Sv/Bg1	Critical Group' [uSv]	rel. Contr. [%]
H-3 12.35	4.20E+08 +/-	0.40 %	5.37E-01	1.80E-11	1.16E-05	0.00	1.16E+07	1.82E-19	2.11E-06	0.00
Be-7 53.3 c	1.40E+08 +/-	0.50 %	1.52E+01	4.80E-11	8.75E-04	0.00	3.28E+08	7.47E-17	2.45E-02	2.01
Be-10 1.6E6	y 1.80E+08 +/-	0.60 %	1.87E-06	3.20E-08	7.19E-08	0.00	4.04E+01	4.53E-16	1.83E-08	0.00
C-11 20.38	m 3.20E+08 +/-	0.60 %	1.12E+05	2.52E-11	3.39E+00	3.92	2.42E+12	1.42E-19	3.44E-01	28.20
C-14 5730.	V 2.70E+111+/	0.40 %	7.49E-01	6.20E-12	5.57E-06	0.00	1.62E+07	2.72E-17	4.40E-04	0.04
N-13 9.965	m 4.50E+08 +/-	0.40 %	2.67E+05	1.19E-10	3.81E+01	44.05	5.76E+12	8.32E-20	4.79E-01	39.32
O-14 71.0 s	2.10E+07 +/	1.20 %	1.48E+04		0.00E+00	0.00	3.20E+11	1.301E-20	4.17E-03	0.34
0-15 122.2	s 2.60E+08 +/-	0.50 %	2.41E+05	1.19E-10	3.45E+01	39.87	5.21E+12	9.33E-21	4.86E-02	3.99
0-19 27.1 5	1.50E+04 +/-	1.50 %	2.72E+00		0.00E.+00	0.00	5.88E+07	6.7E-22	3.94E-08	0.00
F-18 109.7	m 3.40E+05 +/-	· 1.10 %	2.49E+01	9.30E-11	2.78E-03	0.00	5.38E+08	2.63E-18	1.41E-03	0.12
Ne-23 28.0 s	3.80E+04 +/-	1.30 %	1.25E+01		0.00E+00	0.00	2.71E+08	2.315E-22	6.27E-08	0.00
Ne-24 3.38 r	8.00E+03 +/-	· 1.40 %	7.67E+00		0.00E+00	0.00	1.66E+08	1.108E-20	1.84E-06	0.00
Na-22 2.602	/ 1.20E+05 +/-	1.00 %	7.30E-04	2.00E-09	1.75E-06	0.00	1.58E+04	3.16E-14	4.98E-04	0.04
Na-24 15.0 h	1.80E+05 +/-	0.90 %	1.66E+00	5.30E-10	1.05E-03	0.00	3.58E+07	6.78E-17	2.43E-03	0.20
Na-25 60.0 S	6.90E+04 +/-	1.10 %	4.14E+01		0.00E+00	0.00	0.90E+08	1.606E-21	1.44E-00	0.00
Mg-27 9.5 m	1.00E+03 +/-	0.70 %	6.13E+01	4 705 00	0.00E+00	0.00	1.32E+09	2.29E-18	3.04E-03	0.23
Mg-28 20.91	1 3.90E+04 +/-	0.70 %	2.09E-01	1.70E-09	3.28E-04	0.00	0.09E+U6	0.78E-17	3.23E-04	0.03
AI-26 7.2E5	y 1.70E+00 +/-	0.70 %	3.69E-09	1.80E-08	7.97E-11	0.00	7.97E-02	3.77E-13	3.00E-08	0.00
ΔI-20 2.24 T	2 10E+05 +/	0.70 %	1.61E+02	1.000-00	0.00E+00	0.04	3.48E±09	1 133E-19	3.94E-04	0.20
Si-31 157.3	2.10E+05 +/-	0.50 %	1.51E+02	1.10E-10	1.99E-03	0.00	3.25E±08	6.41E-19	2.08E-04	0.00
Si-32 450.0	1 70E+05 +/-	0.50 %	1.57E-05	2 78E-07	5.24E-06	0.00	3.39E+02	8.99E-16	3 05E-07	0.02
P-30 2 499	m 1.30E+05 +/-	0.70 %	1.01E 00	2.102.01	0.00E+00	0.00	2 71F+09	3 43E-20	9.30E-05	0.01
P-32 14.29	1 1 60E+06 +/-	0.50 %	6.65E-01	3 20E-08	2.55E-02	0.03	1 44F+07	9.56E-17	1.37E-03	0.11
P-33 25.4 c	2.60E+06 +/-	0.40 %	5.90E-01	1.40E-09	9.91E-04	0.00	1.27E+07	2.06E-17	2.62E-04	0.02
P-35 47.4 s	2.20E+05 +/-	0.30 %	1.02E+02		0.00E+00	0.00	2.21E+09	2.20E-19	4.85E-04	0.04
S-35 87.44	2.60E+06 +/-	0.40 %	1.71E-01	1.10E-10	2.25E-05	0.00	3.69E+06	1.97E-17	7.25E-05	0.01
S-37 5.06 r	7.60E+05 +/-	0.60 %	6.55E+02		0.00E+00	0.00	1.41E+10	1.373E-19	1.94E-03	0.16
S-38 2.87 h	4.90E+05 +/-	0.40 %	2.39E+01		0.00E+00	0.00	5.17E+08	5.36E-18	2.77E-03	0.23
CI-34 32.0 r	8.20E+04 +/-	0.60 %	6.26E-16		0.00E+00	0.00	1.35E-08	0	0.00E+00	0.00
CI-36 3.0E5	y 6.50E+06 +/-	0.50 %	3.41E-07	6.90E-09	2.83E-09	0.00	7.38E+00	1.36E-14	1.00E-07	0.00
CI-38 37.21	m 5.20E+06 +/-	0.40 %	1.07E+03	7.30E-11	9.40E-02	0.11	2.32E+10	1.33E-18	3.08E-02	2.53
CI-39 55.6 r	8.70E+06 +/-	0.40 %	1.24E+03	7.60E-11	1.13E-01	0.13	2.67E+10	1.85E-18	4.93E-02	4.05
CI-40 1.4 m	1.40E+06 +/-	0.60 %	1.09E+03		0.00E+00	0.00	2.35E+10	2.306E-20	5.41E-04	0.04
Ar-37 35.02	2.00E+07 +/-	0.30 %	3.33E+00	1.42E-16	5.68E-10	0.00	7.19E+07	4.69E-25	3.37E-11	0.00
Ar-39 269.0	/ 3.30E+07 +/-	1.10 %	1.94E-03	3.82E-13	8.88E-10	0.00	4.19E+04	1.782E-21	7.46E-11	0.00
Ar-41 1.827	n 5.90E+08 +/-	0.40 %	4.32E+04	1.84E-10	9.54E+00	11.04	9.34E+11	2.338E-19	2.18E-01	17.91
K-00 /.000	1 0.30E+04 +/-	2.40 %	4.4 IE+UI	1.19E-10	0.30E-03	0.01	9.53E+08	8.38E-19	7.98E-04	0.07
N-40 1.3E9	y 3.UUE+U5 +/-	Z.90 %	3.72E-12	3.00E-09	1.34E-14	0.00	0.U3E-U3	4.U9E-14	3.29E-12	0.00
			683298.38		86.49	usv/n	1.48E+13		1.219	usv

dose conzersion coefficients (P. Vojtyna) Review - RP FLUKA Calculations

Enclosed Ventilation Design

Directionspectsupel (Rer(sontional allogthe Air)

Isotope		Production [#Of_Isotopes per total Volume and second]	a_i Specific Activity [Bq/m3]	Inhalation Conversion Coefficients [Sv/Bq]	Dose Rate Maximal [µSv/h]	rel. Contr. [%]	Total Release [Bq]	Critical Group Conversion Coefficients EXIT 3 [Sv/Bg]	Dose to 'Critical Group' [uSv]	rel. Cont r . [%]
H-3	12.35 y	4.20E+08 +/- 0.40 %	1.91E+04	1.80E-11	4.12E-01	0.35	1.14E+07	1.82E-19	2.08E-06	0.02
Be-7	53.3 d	1.40E+08 +/- 0.50 %	2.08E+05	4.80E-11	1.20E+01	10.17	1.25E+08	7.47E-17	9.33E-03	89.03
Be-IU	1.666 у	1.80E+08 +/- 0.60 %	6.74E-02	3.20E-08	2.59E-03	0.00	4.04E+01	4.03E-16	1.83E-08	0.00
C-11	20.38 m	3.20E+08 +/- 0.60 %	1.13E-16	2.52E-11	3.42E-21	0.00	6.78E-14	1.42E-19	9.62E-27	0.00
C-14	5730.0 y	2.70E+11 +/- 0.40 %	2.69E+04	6.20E-12	2.00E-01	0.17	1.62E+07	2.72E-17	4.40E-04	4.20
N-13	9.965 m	4.50E+08 +/- 0.40 %	3.36E-38	1.19E-10	4.80E-42	0.00	2.02E-35	8.32E-20	1.68E-48	0.00
0-14	71.0 s	2.10E+07 +/- 1.20 %	0.00E+00		0.00E+00	0.00	0.00E+00	1.301E-20	0.00E+00	0.00
O-15	122.24 s	2.60E+08 +/- 0.50 %	7.86E-212	1.19E-10	1.12E-215	0.00	4.71E-209	9.33E-21	4.40E-223	0.00
O-19	27.1 s	1.50E+04 +/- 1.50 %	0.00E+00		0.00E+00	0.00	0.00E+00	6.7E-22	0.00E+00	0.00
F-18	109.77 m	3.40E+05 +/- 1.10 %	6.49E-02	9.30E-11	7.25E-06	0.00	3.90E+01	2.63E-18	1.02E-10	0.00
Ne-23	28.0 s	3.80E+04 +/- 1.30 %	0.00E+00		0.00E+00	0.00	0.00E+00	2.315E-22	0.00E+00	0.00
Ne-24	3.38 m	8.00E+03 +/- 1.40 %	1.20E-129	0.005.00	0.00E+00	0.00	7.21E-127	1.108E-20	7.99E-141	0.00
Na-22	2.602 y	1.20E+05 +/- 1.00 %	2.46E+01	2.00E-09	5.91E-02	0.05	1.48E+04	3.16E-14	4.67E-04	4.45
Na-24	15.0 h	1.80E+05 +/- 0.90 %	9.90E+01	5.30E-10	6.29E-02	0.05	5.94E+04	6.78E-17	4.03E-06	0.04
Na-25	60.0 s	6.90E+04 +/- 1.10 %	0.00E+00		0.00E+00	0.00	0.00E+00	1.606E-21	0.00E+00	0.00
Mg-27	9.5 m	1.00E+05 +/- 1.00 %	3.91E-44	4 705 00	0.00E+00	0.00	2.35E-41	2.29E-18	5.38E-53	0.00
Mg-28	20.91 n	3.90E+04 +/- 0.70 %	2.93E+01	1.70E-09	5.97E-02	0.05	1.76E+04	5.78E-17	1.01E-06	0.01
AI-26	7.2E5 y	1.70E+05 +/- 0.90 %	1.33E-04	1.80E-08	2.87E-06	0.00	7.97E-02	3.77E-13	3.00E-08	0.00
AI-28	2.24 m	4.60E+05 +/- 0.70 %	6.54E-198	1.39E-09	1.09E-200	0.00	3.92E-195	3.21E-19	1.26E-207	0.00
AI-29 Si 21	6.6 m	2.10E+05 +/- 0.80 %	7.15E-65	1 10E 10	0.00E+00	0.00	4.29E-62	1.133E-19	4.86E-75	0.00
SI-0 Si 20	157.3 11	2.90E+00 +/- 0.00 %	0.2/E-01	1. IUE-IU	1.09E-04	0.00	4.90E+02	0.41E-13	3.10E-10 3.05E.07	0.00
-51-52 D 20	450.0 y	1.70E+05 +/- 0.50 %	9.76E 170	2.70E-07	1.00E-01	0.16	3.39E+02	0.99E-10	3.00E-07	0.00
P-30	2.499 m	1.50E+05 +/- 0.70 %	0.76E-172	2 20E 09	0.00E+00	92.64	1 60E-109	0.6CE 17	1.60E-162	1.20
P-33	254 d	2.60E+06 +/- 0.30 %	2.34L+03	1.40E-00	7.03E+00	5.97	2.51E+06	9.30L-17	1.4JL-04	1.55
P-35	474s	2.00E+05 +/- 0.30 %	0.00E+00	1.402.00	0.00E+00	0.00	0.00E+00	2.00E 11	0.00E+00	0.00
5-35	87.44 d	2.60E+06 +/- 0.40 %	3 26E+03	1 10E-10	4 30E-01	0.36	1.96E+06	1.97E-17	3.84E-05	0.00
S-37	5.06 m	7.60E+05 +/- 0.60 %	2.55E-84	1.102-10	0.00E+00	0.00	1.50E-00	1.373E-19	2 10F-94	0.00
S-38	2.87 h	4.90E+05 +/- 0.40 %	2.05E+00		0.00E+00	0.00	1.23E+03	5.36E-18	6.58E-09	0.00
CI-34	32.0 m	8.20E+04 +/- 0.60 %	0.00E+00		0.00E+00	0.00	0.00E+00	0	0.00E+00	0.00
CI-36	3.0E5 v	6.50E+06 +/- 0.50 %	1.23E-02	6.90E-09	1.02E-04	0.00	7.38E+00	1.36E-14	1.00E-07	0.00
CI-38	37.21 m	5.20E+06 +/- 0.40 %	1.30E-08	7.30E-11	1.14E-12	0.00	7.83E-06	1.33E-18	1.04E-17	0.00
CI-39	55.6 m	8.70E+06 +/- 0.40 %	1.90E-04	7.60E-11	1.74E-08	0.00	1.14E-01	1.85E-18	2.11E-13	0.00
CI-40	1.4 m	1.40E+06 +/- 0.60 %	0.00E+00		0.00E+00	0.00	0.00E+00	2.306E-20	0.00E+00	0.00
Ar-37	35.02 d	2.00E+07 +/- 0.30 %	3.18E+04	1.42E-16	5.43E-06	0.00	1.91E+07	4.69E-25	8.94E-12	0.00
Ar-39	269.0 y	3.30E+07 +/- 1.10 %	6.97E+01	3.82E-13	3.19E-05	0.00	4.18E+04	1.782E-21	7.45E-11	0.00
Ar-41	1.827 h	5.90E+08 +/- 0.40 %	1.13E+02	1.84E-10	2.49E-02	0.02	6.76E+04	2.338E-19	1.58E-08	0.00
K-38	7.636 m	6.30E+04 +/- 2.40 %	3.02E-55	1.19E-10	4.31E-59	0.00	1.81E-52	8.38E-19	1.52E-64	0.00
K-40	1.3E9 y	3.00E+05 +/- 2.90 %	1.35E-07	3.00E-09	4.85E-10	0.00	8.08E-05	4.09E-14	3.31E-12	0.00
				Total:	117.87	uSv/h	1.78E+08		0.010	uSv
			Integrated ((tot. Volume):	14.14	uSv		•		

dose conzersion coefficients (P. Vojtyna) Review - RP FLUKA Calculations

Envisaged Ventilation System Options

			Direc	t Exposu	re at "Pit'	1		Release to Critical Group					
Configuration	Maximum Dose Rate						Maximum	Total	tal Total Dose ease [uSv]				
Configuration	[uSv/h]						Total Dose	Release					
	Total	Be7 [%]	N13 [%]	015 [%]	P32 [%]	Ar41 [%]	[uSv]	[Bq]	Total	Be7 [%]	C11 [%]	N13 [%]	Ar41 [%]
No additional shielding Laminar Flow	327	0.0	44.0	44.6	0.0	5.4		5.79E+13	4.447	2.6	33.8	40.7	9.2
No additional shielding Enclosed	557	10.1	0.0	0.0	83.0	0.0	67	7.37E+08	0.049	90.3	0.0	0.0	0.0
Additional Shielding 1 Laminar Flow	86	0.0	44.1	39.9	0.0	11.0		1.48E+13	1.219	2.0	28.2	39.3	17.9
Additional Shielding 1 Enclosed	118	10.2	0.0	0.0	82.6	0.0	14	1.78E+08	0.010	89.0	0.0	0.0	0.0
Additional Shielding 2 Laminar Flow	66	0.0	43.8	38.4	0.0	13.1		1.11E+13	0.938	1.8	26.3	38.6	20.9
Additional Shielding 2 Enclosed	82	10.4	0.0	0.0	82.0	0.0	10	1.33E+08	0.007	88.4	0.0	0.0	0.0

Parameters for Laminar Flow						
A:		12	12	m2		
l:		60	200	m		
Active Length:		50	50	m		
Standard	Vtot:	720.0	720	m3		
	Vdecay:	120.0	120.0	m3		
Ventilation	Virr:	600.0	600	m3		
	v:	5000.00	150	m3/h		
	T_irr;	432.0	432	s		
	T_d:	86.4	86.4	s		
	Oper. Time:	4320.0	4320	h		
	A-Vrate:	1.2		m3/h		

Parameters for Enclosed Case								
A:		12		m2				
l:		200		m				
Active Length:		50		m				
	V:	2400.0	2400	m3				
	Virr:	600.0	600	m3				
	۷:	5000.00	500	m3/h				
	T_irr;	15552000.0	15552000	s				
	T_d:	86400.0	3600	S				
	Oper. Time:	0.1	4320	h				
	A-Vrate:	1.2		m3/h				

Dose to public: ~1 μSv (laminar), <0.1 μSv (enclosed)</p>

Dose to personnel:

- ~86 μSv/h (laminar flow, continuous ventilation)
- ~15 μSv (enclosed configuration, per flush) P³², Be⁷

Intro Waste New Target Ventil. & Cooling Maint. Conc Residual Dose Rate Maps

3D residual dose rate maps are available for various cooling times Can be performed in a specialized 2-step approach accounting for the target only Hotspots are located at the entry and exit point of the beam as well as around the stainless steel support

1.0e-003 3.7e-003 1.4e-002 5.2e-002 1.9e-001 7.2e-001 2.7e+000 1.0e+001 3.7e+001 1.4e+002 5.2e+002 1.9e-003 7.2e-003 2.7e-002 1.0e-001 3.7e-001 1.4e+000 5.2e+000 1.9e+001 7.2e+001 2.7e+002

June 15th 2007

Intro Waste New Target Ventil & Cooling Maint. Conci Target Removal Procedure

Intro Waste New Target Ventil & Cooling Maint. Conci Example: Removal of Sand

Specifications - Summary

Needed input for target disposal

- Specific and total activities
- PAlpha emitters
- Residual dose rates around the storage container

Target handling

- Residual dose rates around the existing target Procedures and dose
 - planning

New Target design

- Impact on radionuclide vector
 - Residual dose rates & handling

Ventilation requirements

- Radioisotope production Different operational
 - scenarios
- Dose to the critical group

Cooling System & Implications

- Contamination: facts/hypotheses
 - Inspection
 - Possible Repair
- Corrosion: facts/hypotheses
 - Inspection
 - Possible Repair
- Representation scenario
 - **Planning & Optimization**