
Core summary

Mike Kenyon

Ivan Dzhunov

Prepare method for Ganga applications

Changes in the release tool and testing framework

Unifying Ganga output

A prepare method for Ganga applications

The purpose of the prepared state is to allow users to 'freeze' an application in a
known state, such that the exact same analysis job can be executed in the future
(optionally over different input data). During the prepare phase, files that are
integral to the applications execution (such as custom binaries or experiment-
specific software areas) are copied to the user's Shared Directory (ShareDir) which
is by default <gangadir>/shared/<user>.

This functionality already existed in the Athena backend, as exposed by the
prepare() method, but the resulting configuration files were stored in the /tmp
directory, the persistence of which cannot be predicted. Similar underlying
techniques are now applied to Executable and Root applications, as well as to
experiment specific ones.

Demonstration - Executable() application

Attribute attached to the application indicating whether it has been prepared

The is_prepared attribute will hold a ShareDir object, which is generated with a
random name in the users gangadir/shared directory:

As an example, we can configure the default Ganga job, which has the above
Executable() application attached to it:

Note that it is equivalent to prepare the job, or the application associated with the
job. In other words job.prepare() and job.application.prepare() are equivalent

Demonstration - Executable() application 2
submitting a job also automatically calls the prepare method behind-the-scenes.
The result of running the prepare phase is a job with the following application
attributes

The contents of the ShareDir depend on the type of application that was prepared.
In the basic example above, the application would attempt to execute the command
'echo' on the backend/workernode, so we don't need to copy anything to the
ShareDir. In a more realistic case, though, we might have a custom script that we
wish to run on the worker node. This would then be copied to the ShareDir during
the prepare phase.

Once an application has been prepared, it gains a reference counter which is
stored in the Ganga metadata system, and can be checked by calling shareref:

Demonstration - Executable() application 3

If an application is later associated with another job (j.copy()), or place in the box,
the reference counter is incremented. Likewise, it's decremented when a job or box
object is removed. ShareDirs with a reference count of 0 will be removed when
Ganga next closes down. In the event that an application's ShareDir cannot be
found during Ganga closedown, the application will be unprepared.

The contents of the shared directories can be viewed:

Applications not associated with a persisted Ganga object (such as a job or the
box) can be prepared, but they, and their associated ShareDir, will not persist
beyond the current Ganga session.

Copying a (prepared) application

Copying a prepared application/job object results in an identical copy of that object
(i.e. referencing the same ShareDir) which will therefore have some of its attributes
set read-only. It is possible that the user may wish to modify these attributes. This
can be achieved by passing the unprepare argument to the copy method:

Note that by default (i.e. without the unprepare argument), calling copy() will not
unprepare the application. It is possible to modify the default behaviour of the copy
method such that an application will be unprepared when copied. This can be set
either temporarily from the Ganga command line:

or permanently, by adding the following to ~/.gangarc:

Unpreparing an application

Once an application has been prepared, some of its attributes (as determined by
that application's developers) will become read-only. This is to prevent the user
accidentally changing an attribute on a prepared application (and hence violating
the sense of a prepared application). In the event that the user really does want to
modify a proteced attribute, they should either unprepare the application/job

or copy the application/job to a new instance in the following manner:

Applications can also be unprepared by resetting their is_prepared attribute to
None:

Prepared Executable class

9

Changes in the testing framework

Created another HTML page with top 25 tests (from all packages) that took longest
time to execute

made GangaPanda and GangaAtlas tests run in parallel , this way tests finish twice
faster

Fixed the IndexError at the end of step 5 of the release tool (running the tests),
from which we used to recognize the tests are finished.

10

Changes in the release tool

steps 3 (generation of config files) and 5 (running tests) - combining of all
commands that needed to be executed (setting environment, update from SVN,
running the actual command) in single script; release tool is printing the one line
command that have to be executed on each of the accounts (ge, at, lb)

automatic sending of emails to the Ganga email groups or to the release manager
on different steps – pre-release ready, tests completed running, test reports ready,
release ready;

release tool is asking before sending the emails because the release
manager could be just playing/testing the tool

release manager doesn't need to modify (release version) and send the
emails manually

automatically clear some of the oldest pre-releases (if the number of pre-releases
is above given threshold) to prevent running out of disk space when creating the
new pre- and release

document the changes on the twiki for the release procedure

11

Unifying Ganga output

Separate presentation for it -> ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

