
Ganga LHCb Summary

Alexander Richards

Imperial College Sci., Tech. & Med. UK
(IC)

8th − 9th February 2012

Ganga Developer Days, Birmingham



Outline

Introduction

Recently added/current features

Prepared State
Tasks for LHCb
Splitting GangaLHCb/Gaudi/DIRAC ∼ 80 % 1st pass, ∼ 20 % 2nd pass
LHCb Re-submission Strategy - Discussion later
Miscellaneous

Upcoming features

DIRAC Bulk Submit
Gaudi XMLSummary
Ganga Checkers

Savannah items to discuss

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 2 / 22



Introduction

Under GangaLHCb currently we have 10 applications, 1 backend, 4
splitters, 1 task & 1 transform:

Applications:

Based on Gaudi

Gauss

Boole

Brunel

DaVinci

Moore

Vetra

Panoptes

Erasmus

Based on common base class

GaudiPython

Bender

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 3 / 22



Introduction

Backend:

Dirac ∼ WMS/DMS

Splitters:

SplitByFiles

OptionsFileSplitter

GaussSplitter

DiracSplitter (Smart splitting of datasets)

Tasks

LHCbAnalysisTask

Transforms

LHCbAnalysisTransform

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 4 / 22



Prepared State

Prepared state needs no introduction. It has already transitioned into Core
and most of us are aware of it and making preparable apps.
From LHCb side:

Implementation of the prepared state for all LHCb applications
complete.

None of our apps define attributes that are modifiable post-prepare.

Use the prepare to do many of the steps that used to be in
master configure which are data independent.

Taring up environment
Reading and pickling application options files.
Copying and local application configurations.
Attaching inputdata from the options files - Thorny issue!

All items stored in share dir (with appropriate directory structure) to
share between jobs.

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 5 / 22



Tasks for LHCb

Motivation for LHCb Tasks

Users have access to experiment specific tools that provide a list of
LFN(s) they are interested in

Accommodating changes to the dataset is currently not easy

Corrupted or lost data is sometimes removed from the Bookkeeping
New data can also appear in real time as the detector takes data and it
is processed

The Grid is an unstable environment to run jobs and failures will
occur, the process of recovering from job failures and achieving 100%
success requires manual effort

Tasks framework for LHCb provides users:

Ability to have many different analyses set up which monitor and keep
up to date with different datasets

Two levels of job resubmission (job level and partition level) to help
ensure all user jobs are submitted.

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 6 / 22



Tasks for LHCb

Tasks in LHCb maps the ideas of Task, Transform and partition objects as:

LHCbTask → container object holding and responsible for the running
of one or more transforms

LHCbTransform → essentially equivalent to a Ganga JobTemplate
with addition of a dataset query attribute. It manages the setting up
and re-running of actual jobs as the dataset catalog changes.

Partition → equivalent to a Ganga master job. New one submitted
when data catalog is updated.

Since LHCb probably not using Tasks for the purpose they were originally
invented (ATLAS), the syntax and nomenclature may be somewhat
laboured however this is what was inherited. In addition, since the user will
mainly interact with the LHCbAnalysisTask and LHCbAnalysisTransform
object this shouldn’t be too much of a problem (esp. given the similarity
of the transform to the jobs that they are used to).

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 7 / 22



Tasks for LHCb

By way of example...

In[0]: tr = LHCbAnalysisTransform()
In[1]: tr.application = DaVinci()
In[2]: tr.backend = Dirac()
In[3]: tr.splitter = DiracSplitter()
In[4]: tr.splitter.filesPerJob = 50
In[5]: tr.query = BKQuery(favourite dataset) - Only difference from
setting up a job
In[6]: t = LHCbAnalysisTask(float=10)
In[7]: t.appendTransform(tr)
In[8]: t.run()

From the user’s point of view, very little overhead from setting up a
regular job but with all the benefits.

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 8 / 22



Tasks for LHCb

Given the slightly tweaked idea of the LHCb tasks, the overview
printout was modified as below.

Note: All LHCb applications are now ‘taskified’

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 9 / 22



Splitting GangaLHCb/Gaudi/DIRAC

In previous meeting in Munich Mike W. raised issue of possible refactoring
of Dirac into core.
http://indico.cern.ch/conferenceOtherViews.py?view=
egee meeting&confId=94195
This is desirable because:

DIRAC is not LHCb specific but a general WMS/DMS so in some
sense belongs in Core.

Makes us (as a tool) more attractive/scaleable to new collaborations
who wish to use DIRAC without the LHCb overhead.

This however can also be extended to Gaudi, the analysis application
framework on which most of LHCb applications are based (and also
ATLAS’ Athena application).

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 10 / 22

http://indico.cern.ch/conferenceOtherViews.py?view=egee_meeting&confId=94195
http://indico.cern.ch/conferenceOtherViews.py?view=egee_meeting&confId=94195


Splitting GangaLHCb/Gaudi/DIRAC

To this end...

Begun refactoring GangaLHCb code into three Packages:

GangaGaudi
GangaDirac
GangaLHCb

This was started ∼ 3 months or so ago just as the prepared state was
in transition from branch → trunk.

∼ 80% was refactored but since 5.7.X many fixes and changes have
had to be put in to trunk to correct bugs introduced which has meant
keeping branch up to date has been tricky.

Since these changes have gone in I have learned a lot more about the
LHCb code base. Merging these changes in is tricky to make sure it is
done correctly so having to check every major file and also with better
understanding I have been able to make further re-factorisations.

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 11 / 22



LHCb Re-submission Stratagy

In LHCb we have an issue surrounding re-submission.

Our LFN → PFN Catalog is generated upon job submission (run time
handler)

Standard job re-submission re-sends job straight to backend.

LFN → PFN Catalog out of date if job resubmitted some time later

Might be possible to move the LFN → PFN catalog generation into
backend. (Haven’t looked at possibility of doing this). This however ties
the backend into some knowledge of the application that it is submitting.
This seems to contradict the splitting and refactoring philosophy from
before.

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 12 / 22



LHCb re-submission stratagy

With the advent of the prepared state we can guarentee that the
application is in a given pre-prepared state at resubmission so we can
simply call job.submit(). By default this is stopped however, by the block
on submission of jobs not in the new state.

Job.resubmit() solution implemented so far...

revert job to status ‘new’

call job.submit()

This is intended to kick-start a more general discussion about whether our
re-submission strategy makes sense/needs to change in the context of the
new prepared states.

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 13 / 22



Miscellaneous

Numerous minor changes & fixes

Hard coding limit number of DiracSplitter datasets

ROOT version taken from LHCb setup environment ∼ P.Owen (IC)

Fixed ‘A’ conflict between monitoring and user thread in the LHCb
Tasks framework

SLC 6 became default supported version as of 1st February 2012, this
includes as standard python 2.6.6. I have run a quick test of
GangaLHCb under python 2.7 and nothing major broke and jumped
out at me... ∼ more later

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 14 / 22



http://blog.bufferapp.com/tweet-cafe-what-is-the-future-of-twitter-discussed-with-tweetsmarter



DIRAC Bulk Submit

Currently large (split) job submission in LHCb is quite slow.

The main reason for this is the time taken to individually submit each
sub job to DIRAC. ∼ 1 sec/job

This quickly adds up e.g. to submit 300 jobs ∼ 5 mins.

During this time user may not exit Ganga else causes problems.

Clearly solution is some form of bulk submission. DIRAC now has this in
the form of a Parameterised Job.

Must consider

Way to make this either obvious or invisible to the user.
Implementation detail

What safeguards are necessary in order to stop silly users.
Submitting 1M jobs in same time as 1!

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 16 / 22



Gaudi XMLSummary

The Gaudi software framework on which LHCb applications are based
can return an XML summary object with specific information in it
such as run luminosity, number of events processed etc.

At present there is a mechanism in place for parsing this summary
and allowing the user to retreive the information

It is suffering from performance issues as it is old and hasn’t been
touched in ages.
New faster implementations exist now
It is not readily used by many people.
Possibly due to lack of knowledge/ease of use

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 17 / 22



Gaudi XMLSummary

Ways forward...

We wish to re-factor this code and integrate it more closely with the
existing user experience, eg could imagine:

job.application.luminosity
job.application.run events

We will as much as possible draw from the newer faster
implementations.

This solution would mean changing the application after a prepare
(ATLAS do it).

Maybe there is a cleverer way. ∼ Would love job.run events

Could consider an LHCbJob subclass of Job but might catch users
offguard and take them a while to switch.
Maybe add them into job. dict ?

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 18 / 22



Ganga Checkers ∼ R. Lambert

In general, basing the determination of a job’s success or failure on its exit
status alone:

is inflexible

can lead to false positives

R.Lambert suggests the idea of checkers.

The idea...

Define some new category of Ganga object called checker

Checkers could then be defined as predicates that indicate a job’s
completed status in addition to the exit code.

Have some logic like:
if job.checker and (exit code is 0): job.updateStatus(’complete’)
else: job.updateStatus(’failed’)

Could envisage some sort of MultiChecker object which could chain
multiple checker objects in a logical AND

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 19 / 22



Savannah

http://gna.org/projects/savane



Savannah Tickets

For LHCb we have 10 outstanding tickets:

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 21 / 22



Issues

Combining splitters

python 2.6.6 as of 1st Feb in SLC6

POSIX compliance.

General configuration

Conflicts!

Alexander Richards (IC) Ganga LHCb Summary 8th − 9th February 2012 22 / 22


