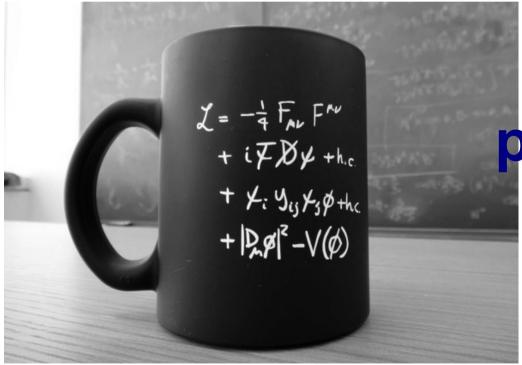
Electroweak symmetry breaking

Search for the missing piece of the Standard Model III

Pedro Ferreira da Silva – psilva@cern.ch

(CERN/LIP)



Plan for today

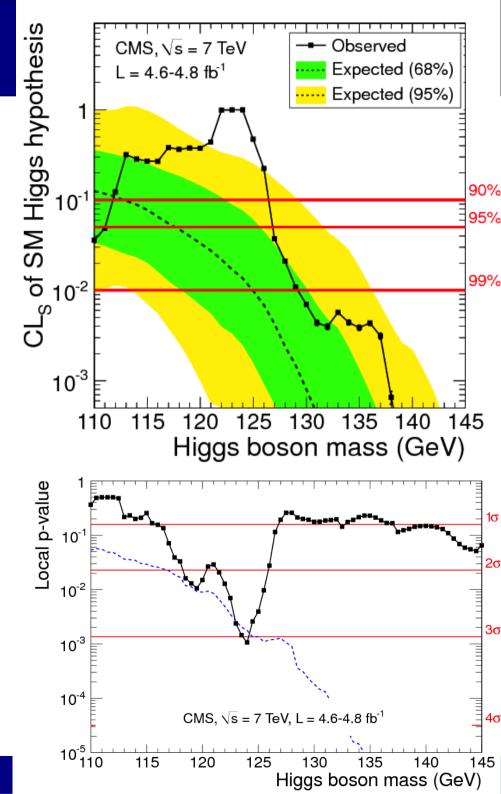
Summary of previous lectures

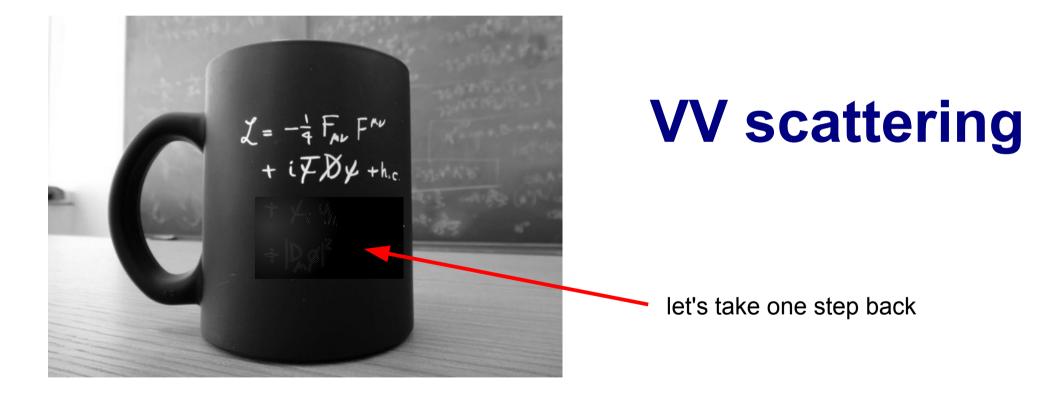
VV scattering

Searching for deviations in VV scattering

Summary of the previous lectures

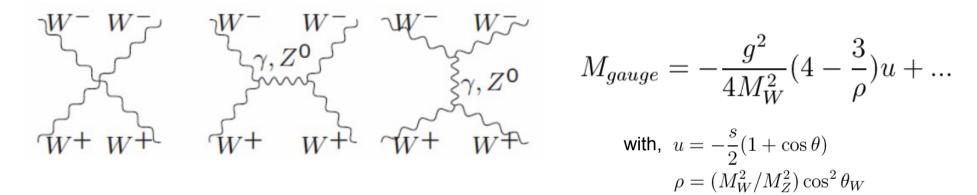
Close to conclusion?

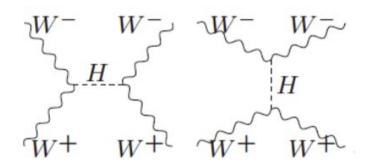

- With 2011 data we have excluded most of the Higgs mass range
- Except where it is most favored to be


found: m_{H} < 127 GeV/c²

- No combined limit between ATLAS and CMS until individual discovery or exclusion
- Observe an excess in the full mass range which as been searched:

ATLAS 10% probability (in 110-146 GeV)


CMS 2.10 local significance (in 110-145 GeV)



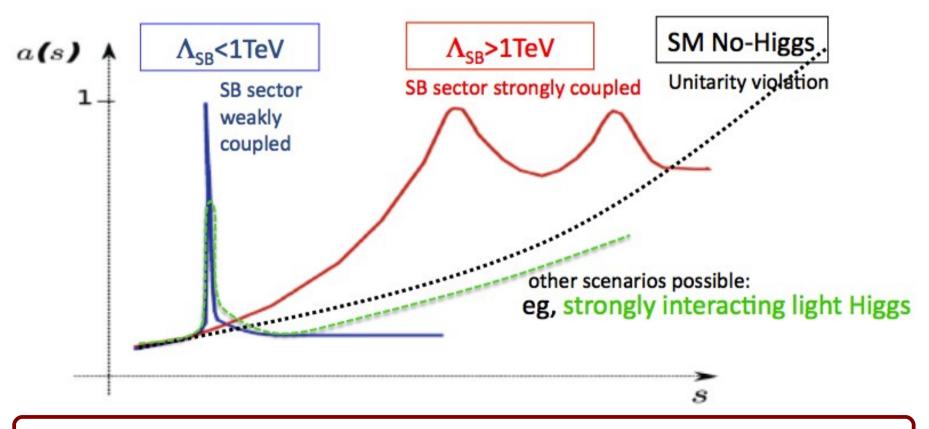
What's special about vector boson scattering

• It's the key process to understand the EWK symmetry breaking mechanism

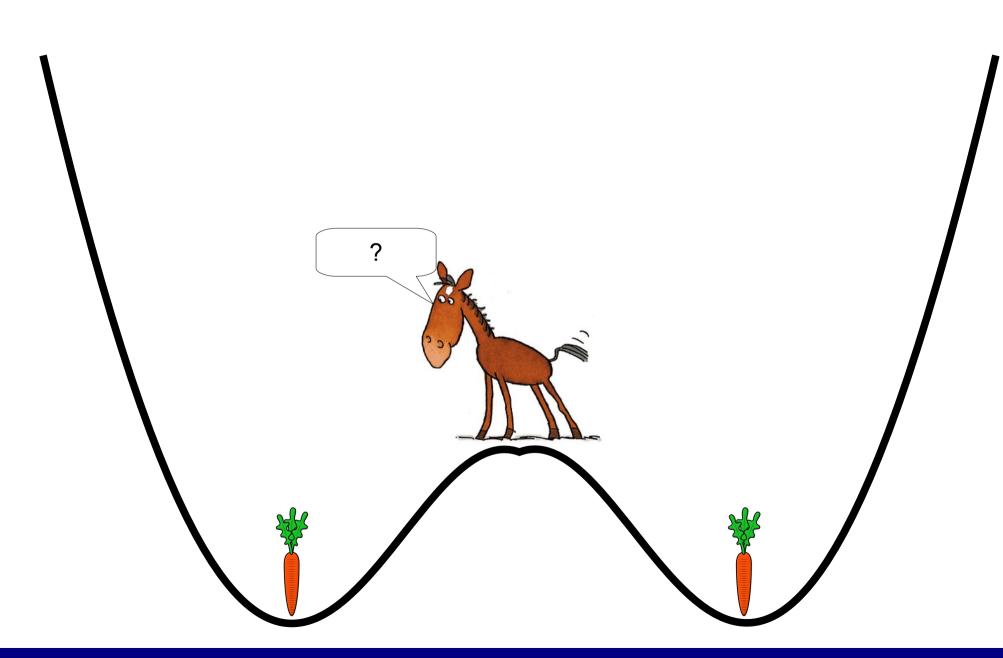
• Unitarity is restored by introducing a new scalar field:

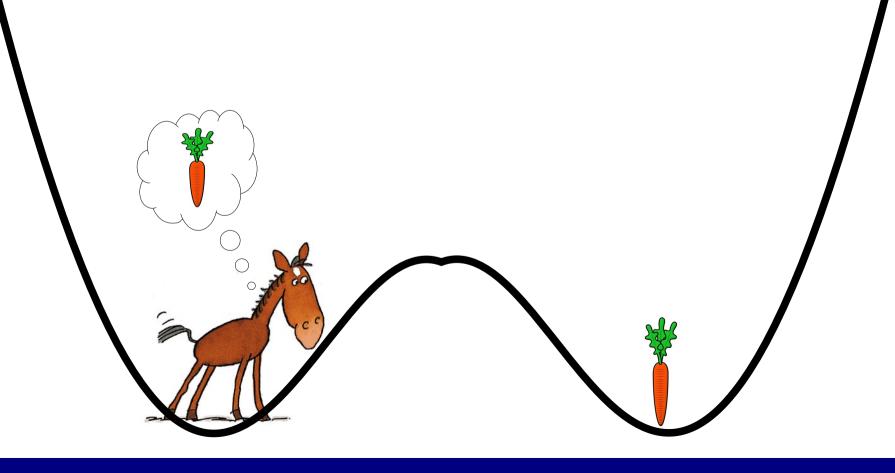
$$M_{Higgs} = \frac{g^2}{4M_W^2}u + \dots$$

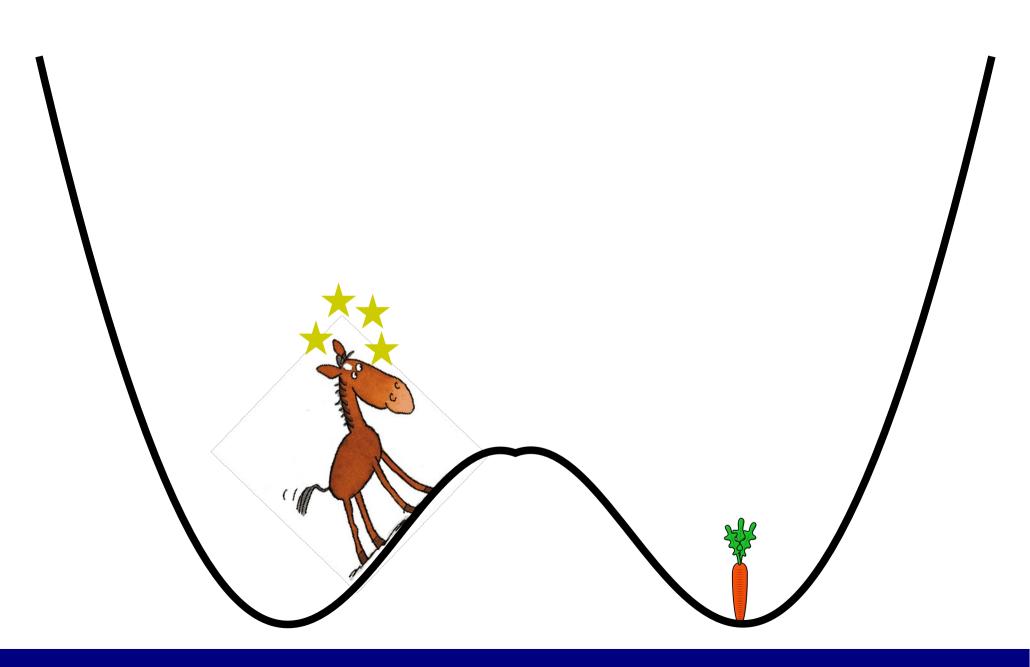
What's special about vector boson scattering - 2

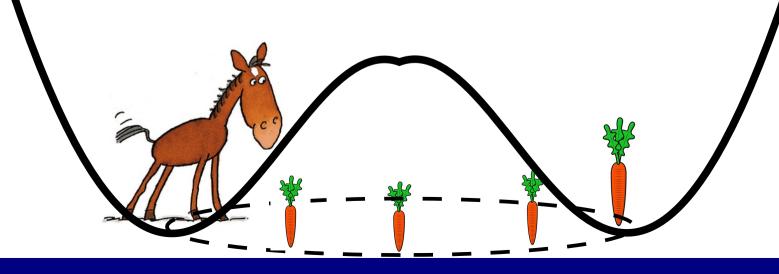

• If the SM Higgs is there

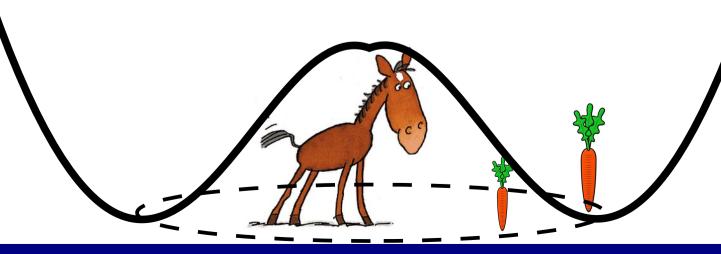
• If no Higgs is found:


- the VV spectrum will be resonant
- probe effectively the full mass range


- will interact strongly at $\Lambda \approx 1$ TeV
- observe deviation from SM prediction


7/46

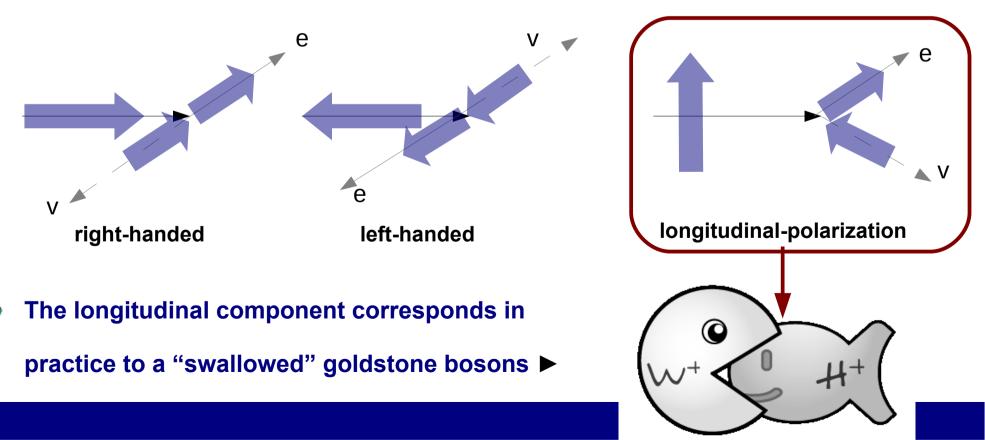



Whether the Higgs exists or not, VV scattering deserves dedicated study

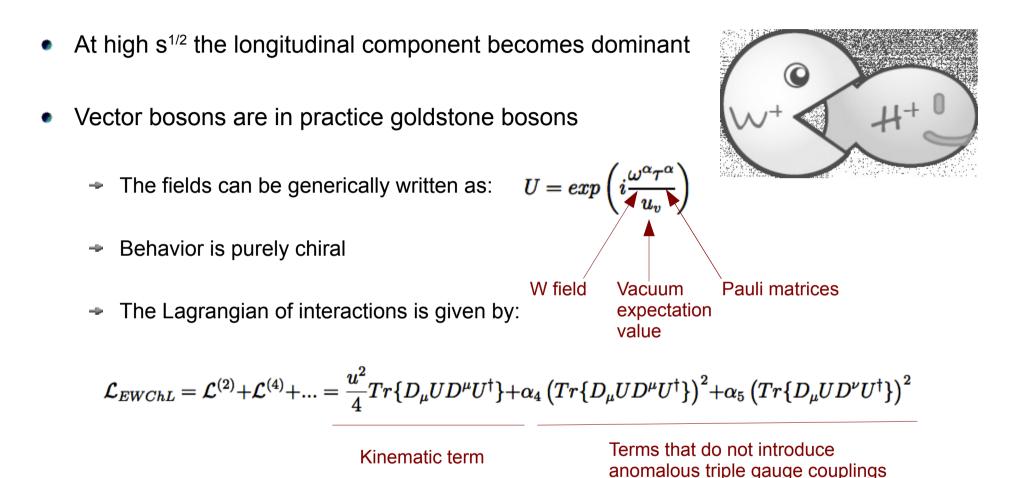
Goldstone bosons

13/46

- **Picture an infinite straight rope** (it has translation invariance)
 - break its translational invariance in directions perpendicular to it
- the transverse waves are the Goldstone modes
- Waves can propagate with arbitrary frequency


 \rightarrow after quantization will generate massless particles

- EWK ground state / the vacuum is said to be "spontaneously broken"
 - A spontaneously broken symmetry always produces a massless scalar particle.
 - If the symmetry is approximate, the particle won't be massless, but can be very light.


- - $\frac{1}{c^2}\frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2} \longrightarrow \mathsf{W}^2 = \mathsf{C}^2 \,\mathsf{k}^2$

Vector bosons at high energy

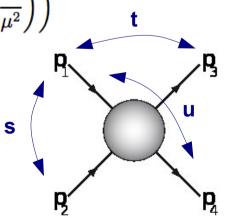
- In the limit $m_w/s^{1/2} \rightarrow 0$ and $m_z/s1^{/2} \rightarrow 0$
 - the mass can be neglected, vector bosons acquire large boost
 - W/Z become effectively goldstone bosons because longitudinal polarization dominates
- Pictorially:

Vector bosons at high energy

Different choices of α_4 and α_5 correspond to different models of the strongly

interacting electroweak breaking sector

Electroweak Chiral Formalism


- In this approximation the global symmetry is now SU(2)_{L+R}
- The scattering amplitude is generically written as:

$$\mathcal{M}(V_L^a V_L^b \to V_L^c V_L^d) \equiv A(s,t,u) \delta^{ab} \delta^{cd} + A(t,s,u) \delta^{ac} \delta^{bd} + A(u,t,s) \delta^{ad} \delta^{bc}$$

with the amplitude given generically by:

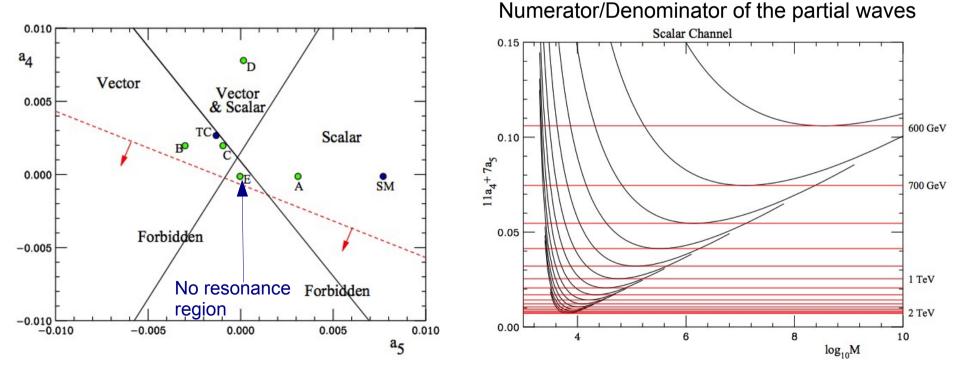
$$\begin{aligned} A(s,t,u) &= \frac{s}{u^2} + \frac{1}{4\pi u^4} \left(2\alpha_4(\mu)s^2 + \alpha_5(\mu)(t^2 + u^2) \right) + \\ &+ \frac{1}{16\pi^2 u^4} \left(-\frac{t}{6}(s+2t)\log\left(-\frac{t}{\mu^2}\right) \right) - \\ &- \frac{1}{16\pi^2 u^4} \left(\frac{u}{6}(s+2u)\log\left(-\frac{u}{\mu^2}\right) - \frac{s^2}{2}\log\left(-\frac{s}{\mu^2}\right) \right) \end{aligned}$$

- Note: s,t,u are the classic Mandelstam variables ►
 - \rightarrow for WW scattering s+t+u=4M_W²

WW scattering in EWKchL formalism

The amplitude is now given by:

 $\mathcal{M}(W_L^{\pm}W_L^{\pm} \to W_L^{\pm}W_L^{\pm}) = A(t,s,u) + A(u,t,s)$


N/D protocol: besides ensuring partial wave

computation. Constraints are imposed in the

unitarity and matching 1-loop EWKchL

- A unitarization procedure has to be performed otherwise it will diverge
- Two approaches followed (see details in Butterworth et al aXiv:hep-ph/0201098)

Pade protocol: Im A = $|A|^2$ is implied by elastic untiarisation for s>0.

Partial waves may lead to resonances (scalar, vectorial, tensorial) \rightarrow play similar role to Higgs

Examples in the Padé protocol

• Parameterize the scalar and vectorial resonances in terms of simple combinations of

 $\alpha_{_{5}}$ and $\alpha_{_{4}}$ parameters.

• Examples for µ=1 TeV

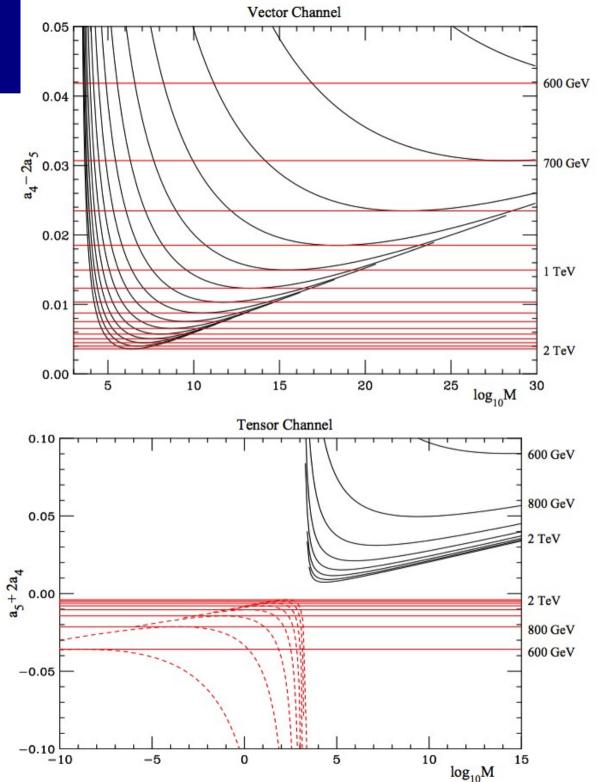
$$M_{S}^{2} = \frac{12u_{v}^{2}}{16[11\alpha_{5}(\mu) + 7\alpha_{4}(\mu)] + \frac{101-50\log(M_{S}^{2}/\mu^{2})}{48\pi^{2}}}, \qquad \Gamma_{S} = \frac{M_{S}^{3}}{16\pi u_{v}^{2}} \qquad M_{V}^{2} = \frac{u_{v}^{2}}{4[\alpha_{4}(\mu) - 2\alpha_{5}(\mu)] + \frac{1}{144\pi^{2}}}, \qquad \Gamma_{V} = \frac{M_{V}^{3}}{96\pi u_{v}^{2}}$$

Examples in the Padé protocol

• Parameterize the scalar and vectorial resonances in terms of simple combinations of

19/46

 $\alpha_{_5}$ and $\alpha_{_4}$ parameters.

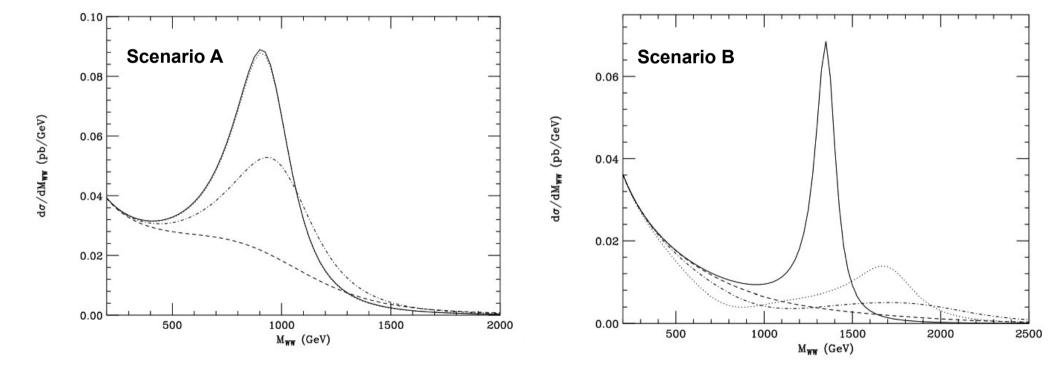

• Examples for µ=1 TeV

$$M_{S}^{2} = \frac{12u_{v}^{2}}{16[11\alpha_{5}(\mu) + 7\alpha_{4}(\mu)] + \frac{101 - 50\log(M_{S}^{2}/\mu^{2})}{48\pi^{2}}}, \qquad \Gamma_{S} = \frac{M_{S}^{3}}{16\pi u_{v}^{2}} \qquad M_{V}^{2} = \frac{u_{v}^{2}}{4[\alpha_{4}(\mu) - 2\alpha_{5}(\mu)] + \frac{1}{144\pi^{2}}}, \qquad \Gamma_{V} = \frac{M_{V}^{3}}{96\pi u_{v}^{2}}$$

M_{ww} (GeV)

Examples for N/D

- The mass of the resonance in the N/D protocol depends as well on
 - $\alpha_4^{}$, $\alpha_5^{}$ and in the µ=M (cut-off parameter)
- Contours for physical solutions are given for different resonanc (predictions for scalars are in slide 12)


M_{ww} spectrum

• Prediction can be compared for both models in

different scenarios and lead to broad/narrow resonance

or a continuum spectrum

Shown: Padé – solid N/D – dashed (shown for different μ)

Scenario	$a_4(1 \text{ TeV})$	a ₅ (1 TeV)
А	0.0	0.003
В	0.002	-0.003
С	0.002	-0.001
D	0.008	0
Ε	0	0

M_{ww} spectrum – cont.

• Prediction can be compared for both models in

different scenarios and lead to broad/narrow resonance

or a continuum spectrum

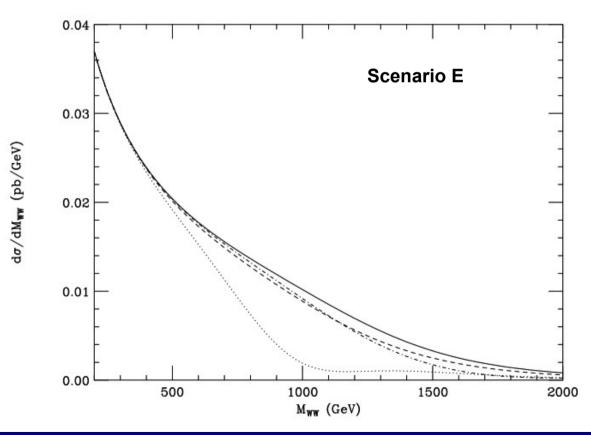
do/dMww (pb/GeV)

Shown: Padé – solid N/D – dashed (shown for different μ)

0.04 0.3 Scenario C Scenario D 0.03 0.2 0.02 0.1 0.01 1212121-1 0.0 0.00 500 1000 1500 2000 2500 500 1000 1500 2000 2500 M_{ww} (GeV) Mww (GeV)

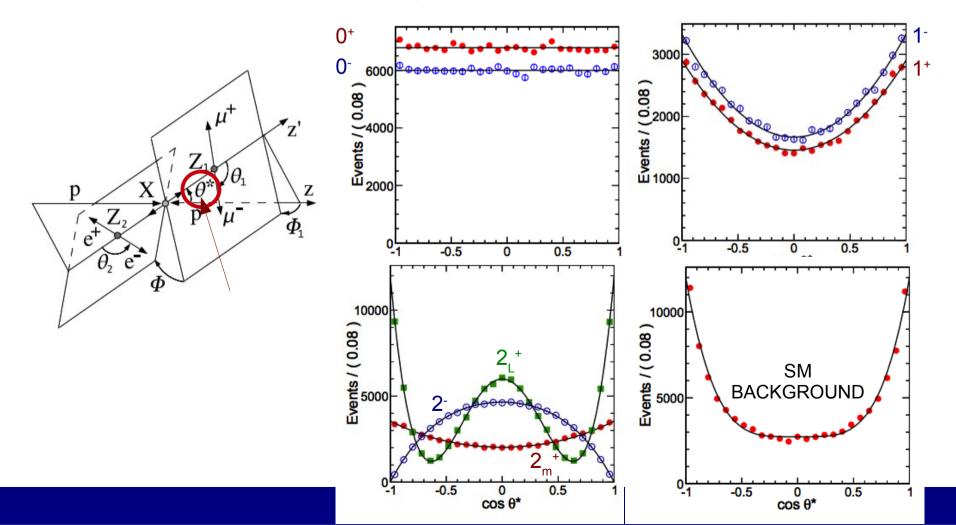
 $a_5(1 \text{ TeV})$ Scenario $a_4(1 \text{ TeV})$ 0.0030.0А В 0.002-0.003С 0.002-0.001D 0.0080 Е 0 0

M_{ww} spectrum – cont.

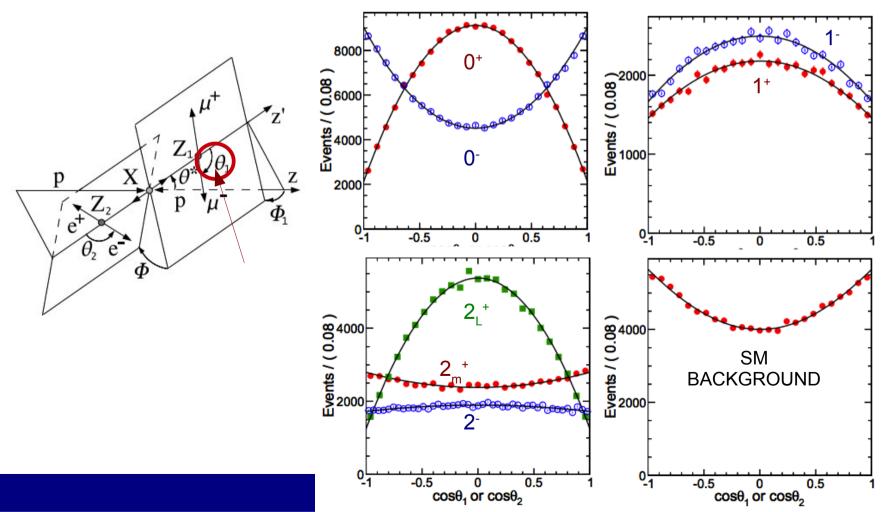

• Prediction can be compared for both models in

different scenarios and lead to broad/narrow resonance

or a continuum spectrum


Scenario	$a_4(1 \text{ TeV})$	a ₅ (1 TeV)
А	0.0	0.003
В	0.002	-0.003
С	0.002	-0.001
D	0.008	0
Ε	0	0

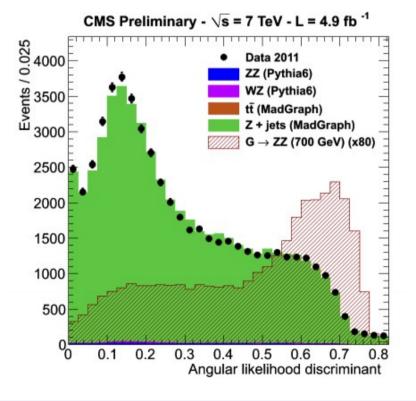
Shown: Padé – solid N/D – dashed (shown for different μ)


Example: how to discriminate nature of resonance

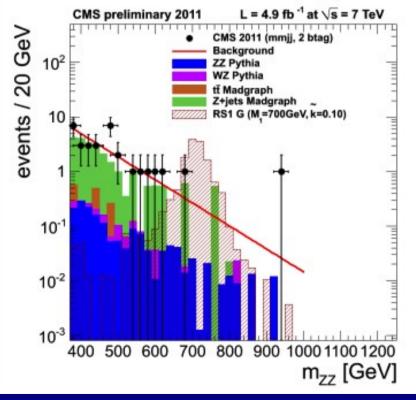
- As an example consider ZZ production after one of these generic resonances
- For θ^* (Z angle with respect to beam-line) in the ZZ rest-frame:
 - Distribution depends on spin and parity of the resonance

Example: how to discriminate nature of resonance

- As an example consider ZZ production after one of these generic resonances
- For θ_i (lepton angle with respect to Z direction) in the ZZ rest-frame:
 - Distribution depends on spin and parity of the resonance

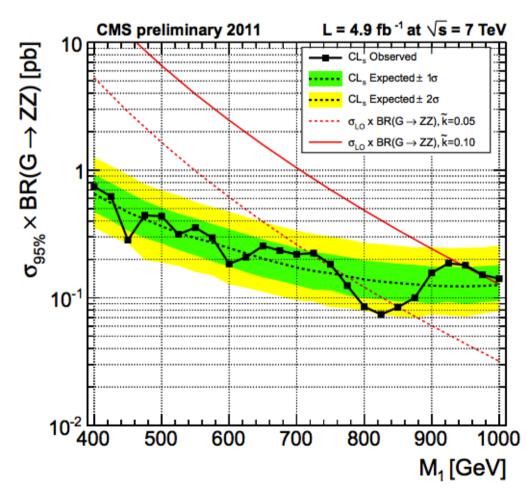


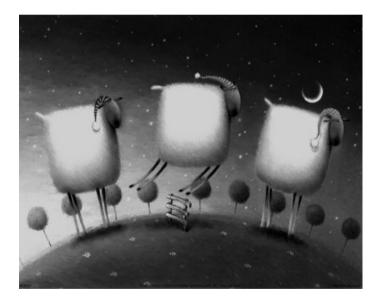
Example in practice: $G \rightarrow ZZ \rightarrow 2I2q_{26/46}$


- A graviton can be an example of a spin 2 particle
- Couplings to bosons suppressed in Randall-Sundrum original model but enhanced if SM

fields propagate in the extra-dimension

Use likelihood ratio discriminator to select signal -like events




Search for resonance in the ZZ spectrum (background taken from sidebands)

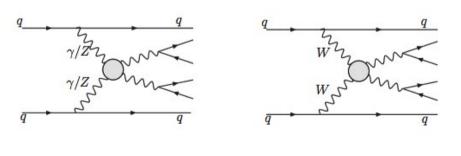
Limits on G mass

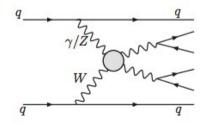
- The model is specified by the curvature of the extra dimension k
- Usually measured in units of Planck mass (2.435x10¹⁸ GeV/c²): $\tilde{k} = k/M_{Pl}$
- Excluded up to 1 TeV (Note: RS1 searches excluded up to)

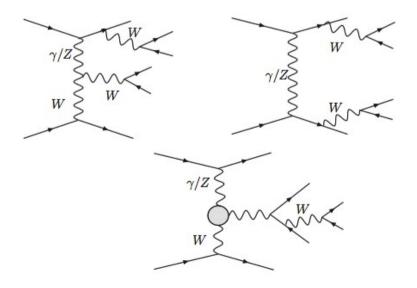
Searching for deviations in VV scattering

First step: scatter di-bosons

29/46

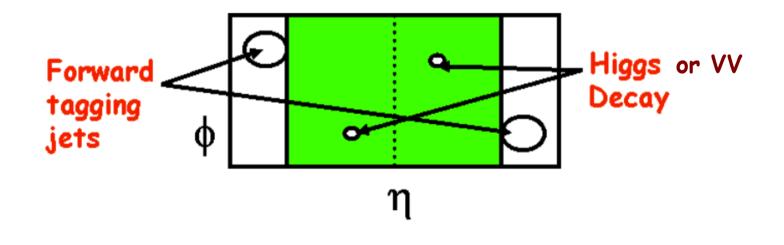

We don't have (yet) the technology to collide WW bosons. But we can collide protons

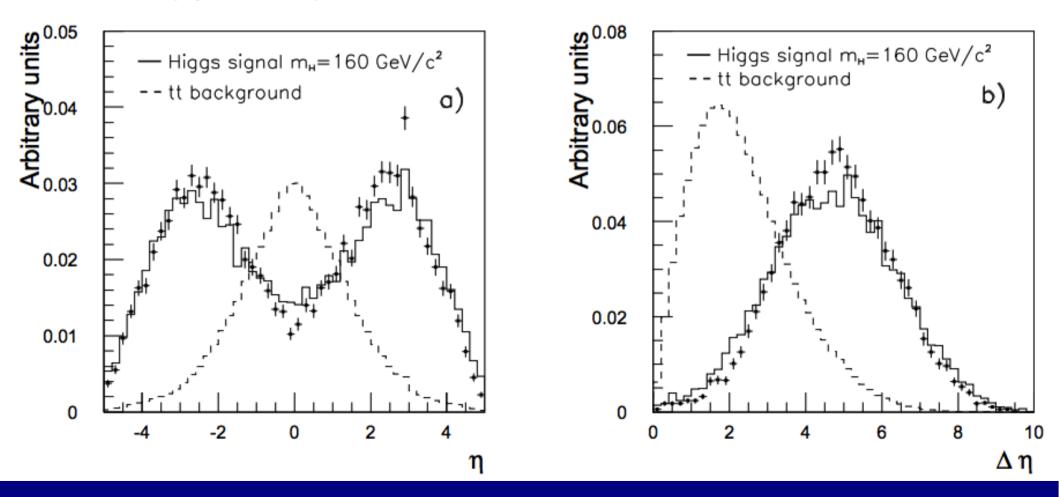

• Pros


- s^{1/2} is not fixed depends on the partons colliding → can probe the full spectrum
- VV fusion has distinctive signature

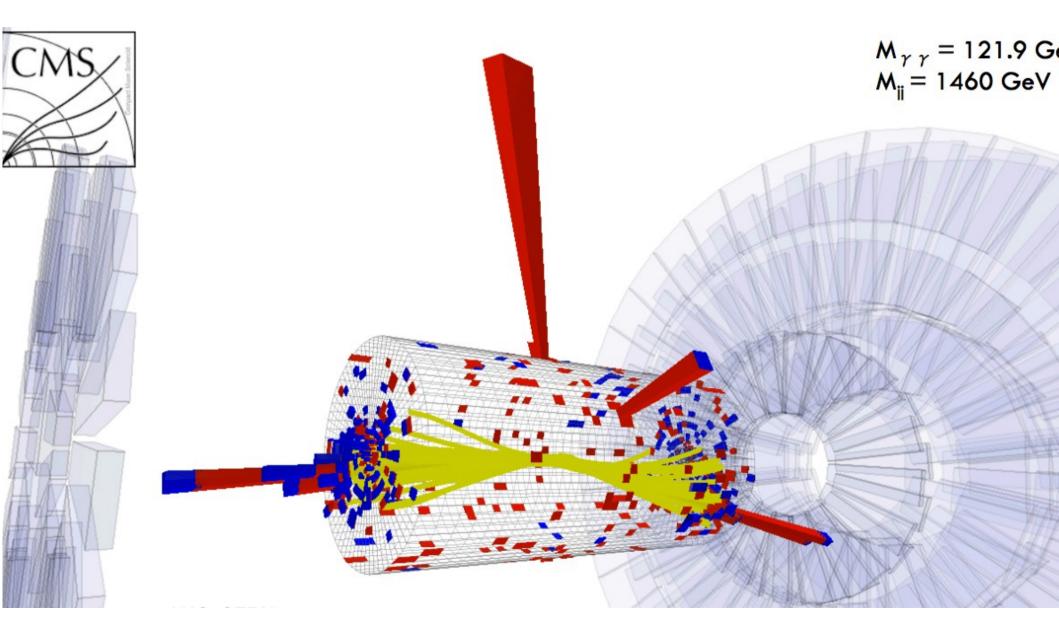
Cons

- It's a rare process: will take large
 luminosity acquired (typically >50fb⁻¹ at
 14 TeV)
- Competes with non-VBF production



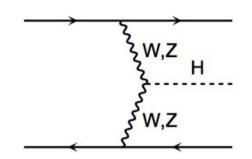

Signature for vector boson fusion

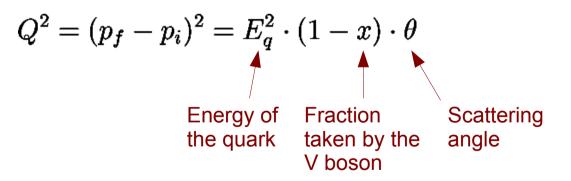
- We expect two high p_{τ} jets with a large rapidity gap \rightarrow large M_{μ}
- These are called the VBF tag jets



VBF tag jets

- Found mostly at large η : region instrumented only by calorimeters, poorer resolution, prone to pileup contamination
- Rapidity gap is totally distinct from QCD production

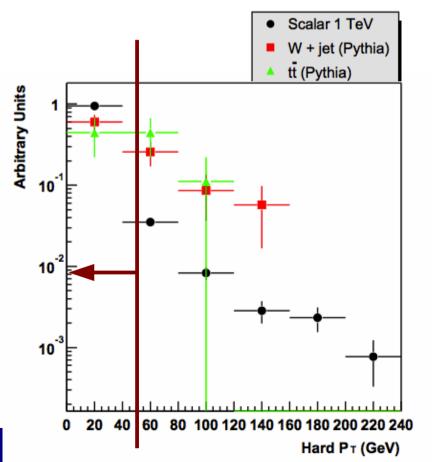

Example in real data: $H \rightarrow \gamma \gamma$

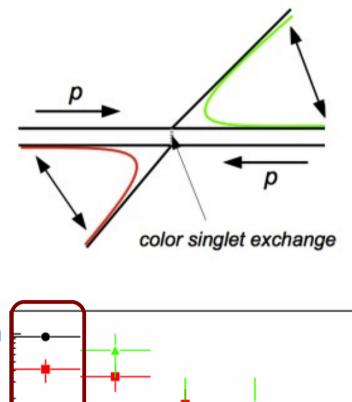

More on rapidity gap

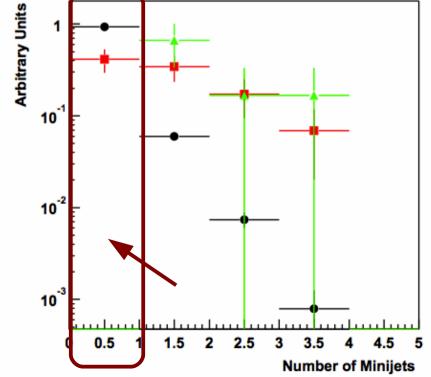
- In the t-channel Q²=(p_f-p_i)² is always negative
- Consequences on the vector boson propagator

$$\underbrace{-i}{k^2 + M^2} \left\{ g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{M^2} \right\}$$

- \rightarrow is highly suppressed, except if Q²~0
- In this limit:

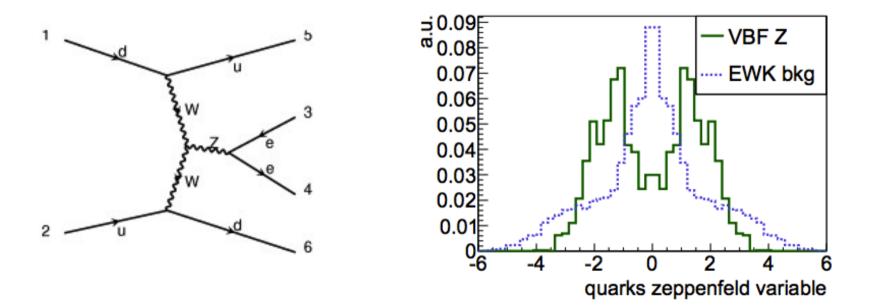



 θ is necessarily small leading to large rapidities of the tag jets


More on rapidity gap

- Scattering of approx. collinear partons leads to well
 balanced event
- Due to EWK nature of the interaction no hadronic

activity is expected in the central region

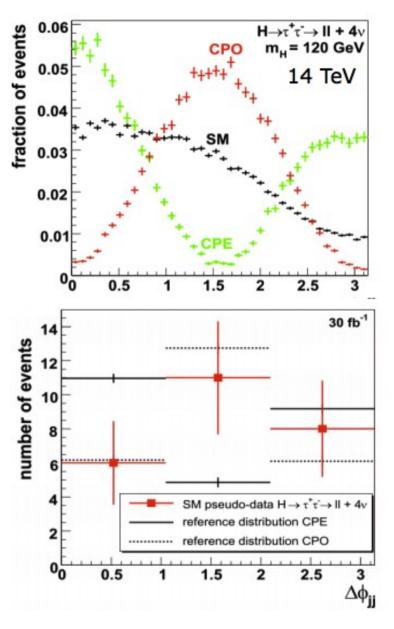


The Zeppenfeld variable

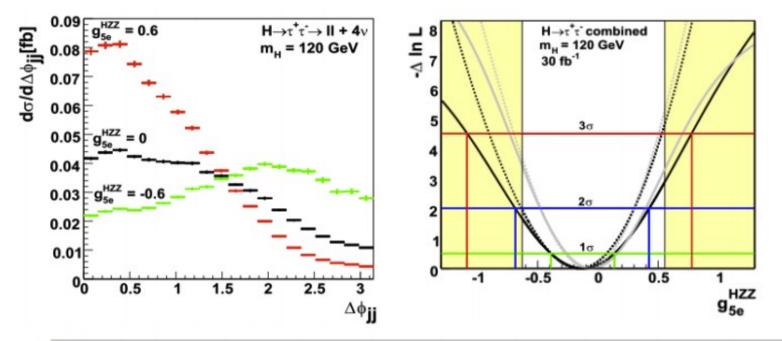
• Another distinctive variable is defined as:

it translates and measures the rapidity relatively

to the reference defined by the two tag jets


$$z_i^* = rac{z_i}{\Delta\eta} = rac{\eta_i - \langle\eta
angle}{\Delta\eta}$$

Resonance properties from VBF tags


- The azimuthal angle between the tag jets carries a distinctive hallmark
- Can be used to probe anomalous couplings

(Notice the integrated luminosity, and $_{Ecm}$ considered)

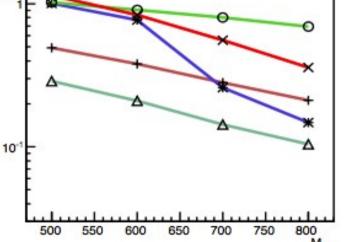
integrated luminosity, hypothesis tested $H \rightarrow W^+W^- \rightarrow ll\nu\nu$ 10 fb ⁻¹ CPE		probab	ility for	median		
		> 50	< 5%	χ^2 -prob.	dev. in σ	
10 fb ⁻¹	CPE	59%	100%	1.3×10^{-7}	5.30	
	CPO	35%	98%	6.0×10^{-6}	4.50	
30 fb ⁻¹	CPE	100%	100%	_	_	
	CPO	100%	100%	-	-	
$H \rightarrow \tau^+ \tau^- c$	ombined					
30 fb ⁻¹	CPE	2%	68%	1.2×10^{-2}	2.50	
	CPO	0%	52%	4.3×10^{-2}	2.00	

Resonance properties from VBF tags – cont.

backgroun	nd included:	minimum				
		$-\Delta \ln L$	1σ interval	2σ interval	3σ interval	σ estimate
	$W^- \rightarrow ll \nu \nu$					
10fb^{-1}	non-extended	-0.09	[-0.30, 0.11]	[-0.50, 0.31]	[-0.73, 0.54]	0.20
	extended	-0.07	[-0.26, 0.12]	[-0.44, 0.31]	[-0.64, 0.51]	0.19
$30 {\rm fb}^{-1}$	non-extended	-0.11	[-0.22, 0.00]	[-0.34, 0.12]	[-0.45, 0.23]	0.11
	extended	-0.10	[-0.21, 0.01]	[-0.31, 0.12]	[-0.42, 0.23]	0.11
	$- \rightarrow ll + 4\nu$					
30fb^{-1}	non-extended	-0.25	[-0.64, 0.12]	[-1.23, 0.53]	-	0.38
	extended	-0.25	[-0.59, 0.07]	[-0.97, 0.40]	[-1.38, 0.74]	0.33
$H \rightarrow \tau^+ \tau$	- combined					
$30 {\rm fb}^{-1}$	non-extended	-0.13	[-0.40, 0.13]	[-0.69, 0.42]	[-1.08, 0.78]	0.27
	extended	-0.16	[-0.40, 0.06]	[-0.64, 0.40]	[-0.90, 0, 53]	0.23

Looking forward for high s^{1/2}

- Search for VV scattering at high s^{1/2} has to combine different channels to gain in sensitivity
- Example from Ballestrero et al (arXiv:1203.2771)

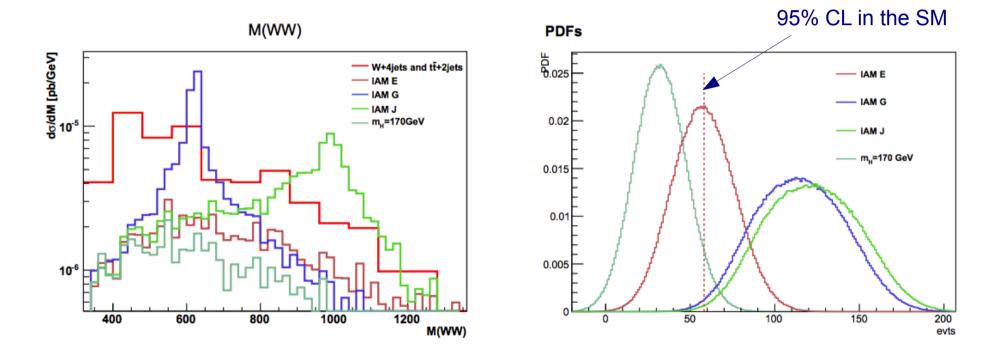

(in the following IAM – Inverse Amplitude Method

is equivalent to the Padé protocol)

Cuts for: lv+4j / 2l2v+2j / 3lv+2j final states


$p_T(j) > 30 \text{ GeV}$	$p_T(\ell) > 70/70/20 { m GeV}$
$p_T^{miss} > 70/20 ~{\rm GeV}$	$p_T(j_c) > 70 { m GeV}$
$\eta(j) < 6.5$	$\eta(\ell) < 2/2/3$
$\Delta \eta(j_f j_b) > 4/4/3$	$\Delta\eta(V_{rec}j)>0.6$
$\Delta R(jj) > 0.3$	$M(\ell\ell) > 20 { m ~GeV}$
$M(jj) > 60 { m ~GeV}$	$M(j_f j_b) > 700/600/100 {\rm ~GeV}$
$p_T(V_{rec}) > 70/100 \mathrm{GeV}$	$ M(V_{rec}j) - M_{TOP} > 15 { m ~GeV}$
$M(j\ell) > 180 { m ~GeV}$	$ p_T(\ell^+) - p_T(\ell^-) > 100 { m GeV}$

... and for high luminosity


After the selection cuts we're expecting to select ~5 event / 10 fb⁻¹

Expected mass distributions

• The expected spectrum (right) and the probability to observe a given number of

events with M_{yy} >500 GeV/c² for L= 50 fb⁻¹

• Within the reach of the LHC experiments after the upgrade: with this year's data we can at most exercise these searches

Probability BSM @ 95% CL

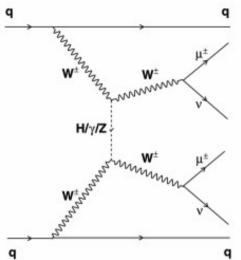
	IAM E			IAM G			IAM J		
L\E	7	8	10	7	8	10	7	8	10
25	16.06 ^a	19.03 ^a	35.37 ^b	71.10 ^a	75.48 ^a	93.80 ^a	73.32 ^d	81.77 ^d	99.32 ^d
50	22.70 ^a	27.88 ^a	51.56 ^b	89.14 ^a	91.68 ^a	99.12 ^a	91.55 d	95.62 d	99.99 ^d
100	33.51 ^a	41.08 ^a	69.28 c	97.85 ^a	98.54 ^a	99.97 ^a	98.89 ^d	99.66 ^e	100 d
200	48.25 ^b	57.08 ^a	83.44 c	99.87 ^a	99.93 ^a	100 ^a	99.97 ^d	100 ^d	$100^{\ d}$

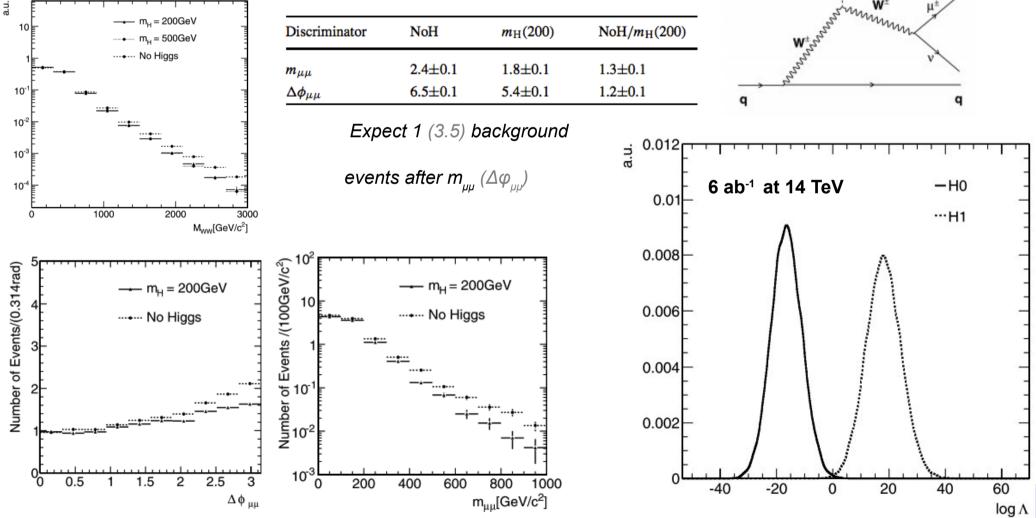
Table 2. PBSM@95%CL in the $\ell\nu + 4$ jets channel with 25, 50, 100 and 200 fb⁻¹ of integrated luminosity, L. For each luminosity and model we have used the mass cut which gives the best probability. They are specified by the superscript according to the following scheme: ^a, ^b, ^c, ^d, ^e for 500, 600, 700, 800, 900 GeV respectively

	IAM E			IAM G		IAM J			
L\E	7	8	10	7	8	10	7	8	10
25	8.47 ^a	10.44 ^b	14.23 ^a	24.41 ^a	36.49 ^a	51.83 ^a	27.17 ^b	42.69 ^b	65.68 ^a
50	10.02 ^a	13.06 °	18.94 ^a	35.83 ^a	53.23 ^a	70.07 ^a	37.90 ^b	61.95 ^b	84.73 ^b
100	12.63 ^a	17.34 ^b	26.37 ^b	52.81 ^a	72.07 ^a	84.59 ^a	56.76 ^b	81.94 ^b	95.97 ^b
200	16.49 ^a	24.08 ^b	36.35 ^b	71.87 ^a	86.74 ^a	93.23 ^a	76.92 ^b	94.91 ^b	99.50 ^b

Table 3. PBSM@95%CL in the $(WW)\ell\nu\ell\nu + 2j$ channel with 25, 50, 100 and 200 fb⁻¹ of integrated luminosity, L. For each luminosity and model we have used the mass cut which gives the best probability. They are specified by the superscript according to the following scheme: ^a, ^b for 300, 400 GeV respectively.

Probability BSM @ 95% CL – cont.


		IAM G		IAM J		
L\E	7	8	10	7	8	10
25	50.53 ^a	63.18 ^a	82.05 ^a	21.74 ^d	29.28 ^d	48.50 ^e
50	71.93 ^a	82.12 ^a	93.99 ^a	$31.02 \ ^{d}$	43.24 ^e	68.63 ^e
100	88.13 ^a	94.08 ^a	98.97 ^b	43.83 ^e	63.71 ^e	86.42 ^e
200	97.09 ^b	98.94 ^b	99.95 ^b	63.63 ^e	82.62 ^e	96.56 ^e


Table 4. PBSM@95%CL in the $3\ell\nu + 2$ jets channel with 25, 50, 100 and 200 fb⁻¹ of integrated luminosity, L. For each luminosity and model we have used the mass cut which gives the best probability. They are specified by the superscript according to the following scheme: a, b, c, d, e for 500, 600, 700, 800, 900 GeV respectively

Same sign WW scattering

- Process has good separation for different scenarios
- Optimize selection from ratios:

$$lpha = rac{N_{
m NoH} - N_{m_{
m H}(200)}}{\sqrt{N_{m_{
m H}(200)} + N_{
m Bkg}}},$$

Conclusions

- VV scattering at high s^{1/2} is a territory with many unknowns
 - Unique probe of the EWSB mechanism
 - Requires both high energy beams and high luminosity
 - many possibilities to explore
- Can start to exercise (rule out some models) already this year
 - EWKchL unitarized via two protocols: Padé or N/D
 - lead to resonance or continuum predictions for the VV invariant mass spectrum
 - combine different channels: <u>expect sensitivity to part of phase space with ~20fb⁻¹ and 8 TeV</u>
- Not covered today (but can be looked up in Michele's presentation)
 - Usage of boosted topologies (jet substructure) to reconstruct boosted $W/Z \rightarrow qq$

End of Lecture III on Higgs Physics

References

- Stefanidis, E., Study of the WW scattering in the absence of light Higgs boson using the ATLAS Detector at LHC, PhD Thesis 2007
- Rainwater, D. "Searching for the Higgs boson", arXiv:hep-ph/0702124
- Gao, Y et al, "Spin determination of single-produced resonances at hadron colliders", arXiv:1001.3396
- CMS Collaboration, "Search for a narrow spin-2 resonance decaying to Z vector bosons in the semileptonic final state", CMS PAS EXO-11-102
- Ballestrero, A., "Exploring alternative symmetry breaking mechanisms at the LHC with 7, 8 and 10 TeV total energy", arXiv:1203.2771