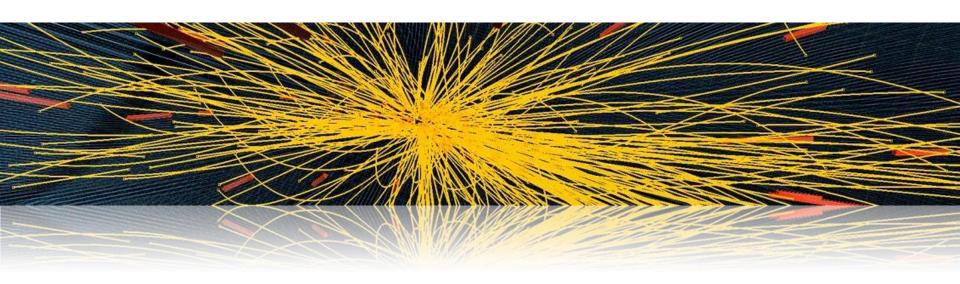


Course on Physics at the LHC

LIP Lisbon, January - June 2012

The lectures will take place on Mondays, between 17:00 and 18:30 at LIP, Av. Elias Garcia, 14 r/c, 1000 Lisbon - Portugal


More info at

Course coordinator: Prof. João Varela (LIP, IST)

Lecture 3

- 1. Hadron interactions
- 2. QCD and parton densities
- 3. Monte Carlo generators
- 4. Luminosity and cross-section measurements
- 5. Minimum bias events
- 6. Jet physics
- 7. W and Z bosons
- 8. Electroweak theory (reminder)

Hadron Interactions

Natural units

$$\hbar = 1, \ c = 1$$

$$\hbar c = 197.3 \text{ MeV fm}$$

$$(\hbar c)^2 = 0.3894 \text{ GeV}^2 \text{ mb}$$

Four-vector kinematics

$$p = (E, \vec{p})$$

$$p^2 = E^2 - \vec{p}^2 = m^2$$

$$\beta = p/E, \ \gamma = E/m$$

Lorentz invariance

Cross-sections should be function of scalar products of 4-vectors

$$p_1 \cdot p_2 = E_1 E_2 - \vec{p_1} \cdot \vec{p_2}$$

4-vector scalar product I orentz invariant

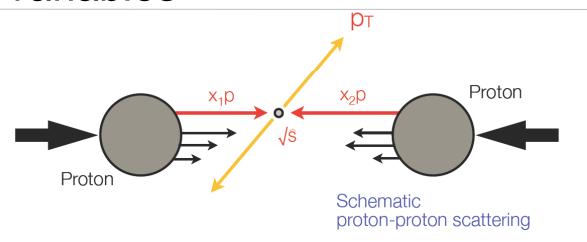
Reference frames

$$p = (E, \vec{p})$$

Particle momentum as seen in laboratory frame ...

$$p^* = (E^*, \vec{p}^*)$$

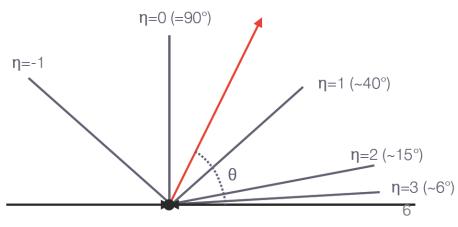
Particle momentum as viewed from a frame moving with velocity β_f ...


Lorentz transformation

Lorentz Transformation:

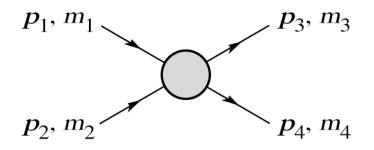
$$E^* = \gamma_f \cdot E - \gamma_f \beta_f \cdot p_{\parallel}$$
$$p_{\parallel}^* = \gamma_f \cdot p_{\parallel} - \gamma_f \beta_f \cdot E$$
$$p_T^* = p_T$$

with
$$\gamma_f=(1-\beta_f^2)^{-\frac{1}{2}}$$


Kinematical variables

Relevant kinematic variables:

- Transverse momentum: p_T
- Rapidity: $y = \frac{1}{2} \cdot \ln (E p_z) / (E + p_z)$
- Pseudorapidity: $\eta = -\ln \tan \frac{1}{2}\theta$
- Azimuthal angle: φ


Invariant mass

Invariant Mass:

$$M^{2} = (p_{1} + p_{2})^{2}$$

$$= (E_{1} + E_{2})^{2} - (\vec{p}_{1} + \vec{p}_{2})^{2}$$

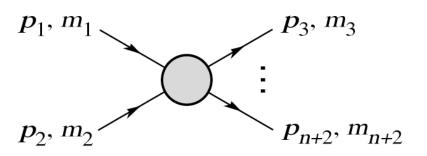
$$= m_{1}^{2} + m_{2}^{2} + 2E_{1}E_{2}(1 - \vec{\beta}_{1}\vec{\beta}_{2})$$

Center of mass energy

Center-of-mass Energy:

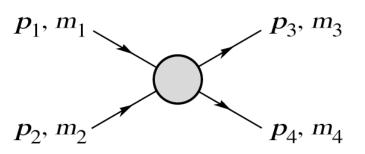
$$E_{\rm cm} = \left[(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2 \right]^{\frac{1}{2}}$$

Particle 2 at rest:


$$\sqrt{s} = E_{cm} = \left[m_1^2 + m_2^2 + 2E_1 m_2 \right]^{\frac{1}{2}}$$

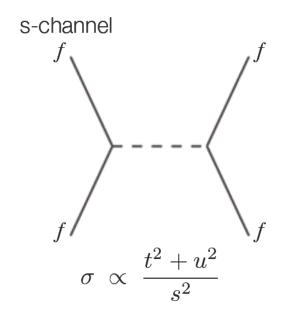
Particle Collider:

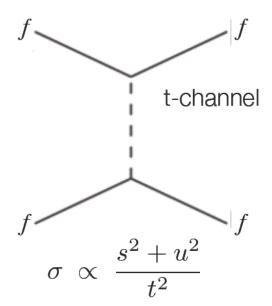
$$[E_1 = E_2; \ \vec{p_1} = -\vec{p_2}; \ m_1 = m_2 \approx 0]$$

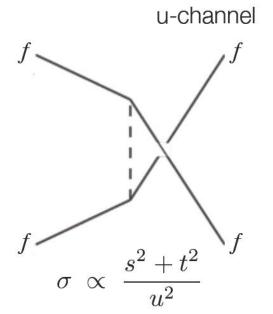

$$E_{\rm cm} = 2E$$

Cross section Matrix element Phase space

Differential Cross Section:
$$d\sigma = \frac{(2\pi)^4 |\mathscr{M}|^2}{4\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}} \times d\Phi_n(p_1 + p_2; \ p_3, \ldots, p_{n+2}) \\ \xrightarrow{\text{n-body phase space}} d\Phi_n = \ldots \\ \ldots = \delta^4 \left(P - \sum_{i=1}^n p_i\right) \prod_{i=1}^n \frac{d^3 p_i}{(2\pi)^3 2E_i} \\ \text{with } P = p_1 + p_2$$


Mandelstam variables Feynman diagrams




$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

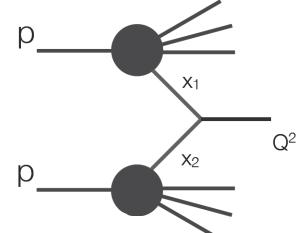
$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

$$u = (p_1 - p_4)^2 = (p_2 - p_3)^2$$

Particle decays

Partial Decay Rate:

$$p_n, m_n$$


$$p_1, m_1 \dots$$

$$P, M$$

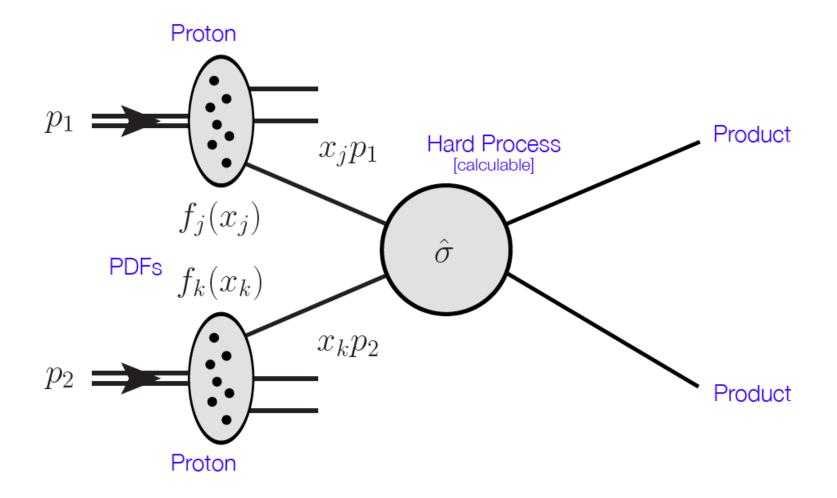
$$d\Gamma = \frac{(2\pi)^4}{2M} |\mathscr{M}|^2$$

$$\times d\Phi_n (P; p_1, \dots, p_n)$$

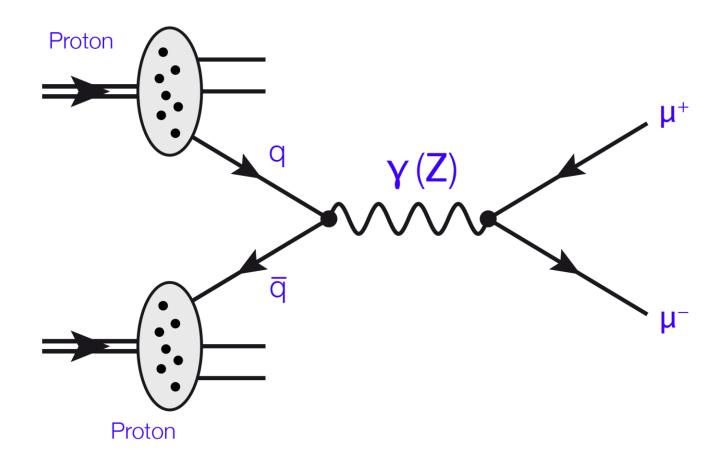
Parton distributions Bjorken-x

Proton-proton cross section

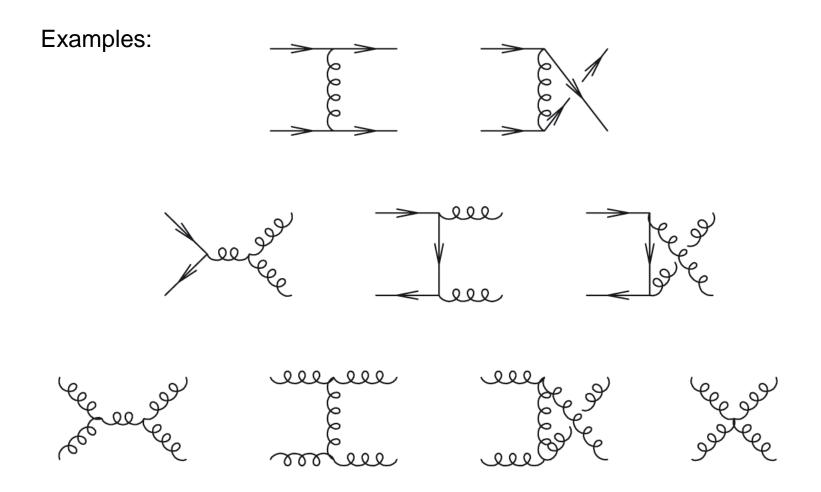
$$\sigma = \sum_{ij} \int dx_1 dx_2 \ f_i(x_1, Q^2) \ f_j(x, Q^2) \ \hat{\sigma}(Q^2)$$

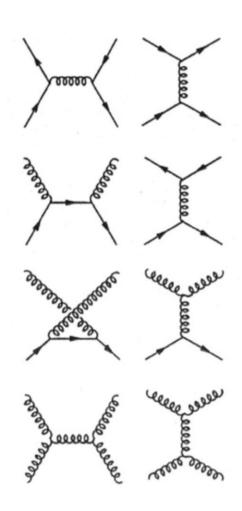

x_{1,2}: Bjorken-x fractional momentum of parton involve in hard process

Q²: scale; spacial resolution invariant parton-parton mass

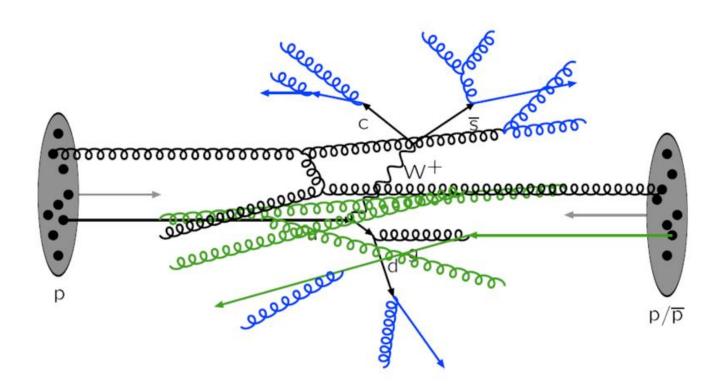

f: Parton Distribution function

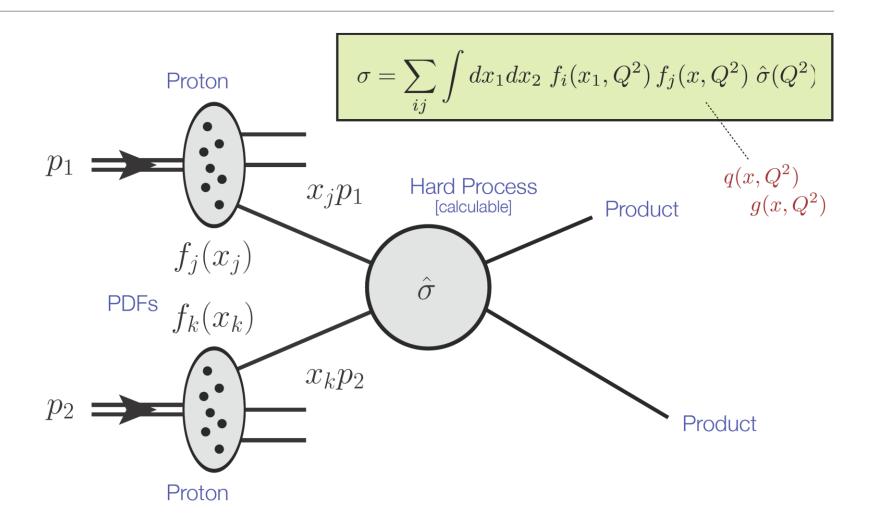
Parton content: $f(x,Q^2) = q(x,Q^2)$ or $g(x,Q^2)$


Proton-proton scattering

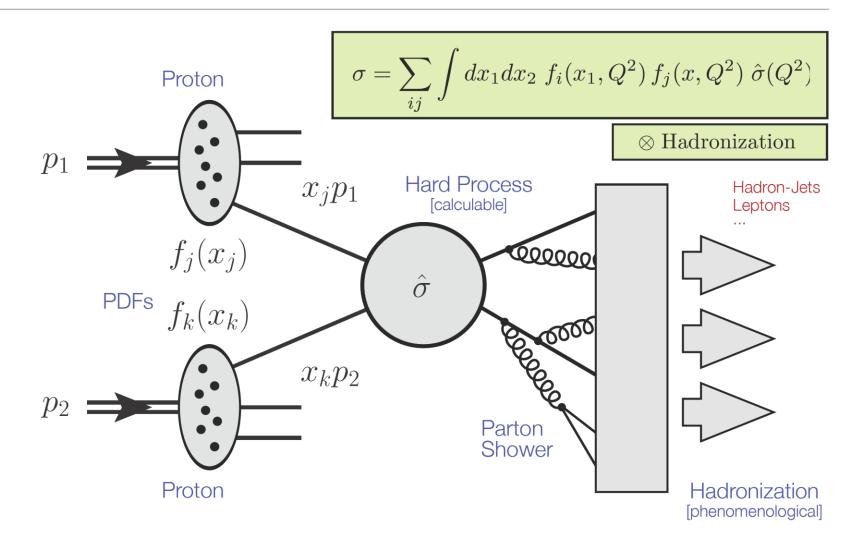

Example: Drell-Yan Process

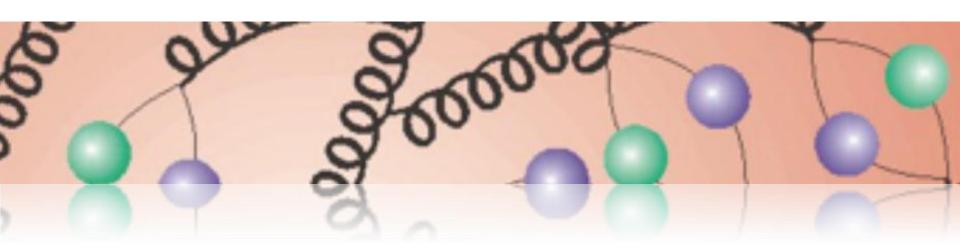
Hard processes with quarks and gluons

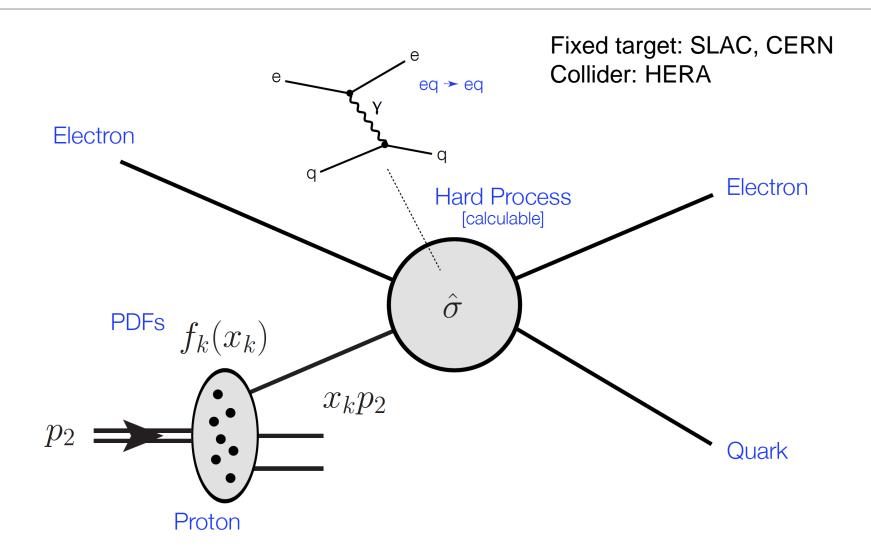

QCD Matrix Elements

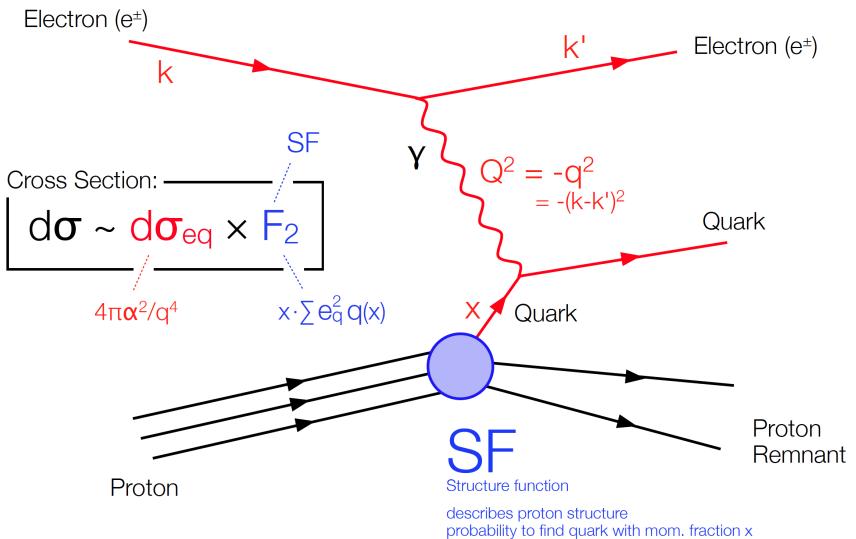

Subprocess		$ \mathcal{M} ^2/g_s^4$	$ \mathcal{M}(90^{\circ}) ^{2}/g_{s}^{4}$
$\left. egin{aligned} qq' & ightarrow qq' \ qar{q}' & ightarrow qar{q}' \end{aligned} ight\}$	$\frac{4}{9} \; \frac{\hat{s}^2 + \hat{u}^2}{\hat{t}^{\; 2}}$		2.2
$qq \to qq$	$\frac{4}{9}\left(\frac{\hat{s}^2+\hat{u}^2}{\hat{t}^{2}}\right.$	$+\left.rac{\hat{s}^2+\hat{t}^{2}}{\hat{u}^2} ight)-rac{8}{27}rac{\hat{s}^2}{\hat{u}\hat{t}}$	3.3
$q\bar{q} \rightarrow q'\bar{q}'$	$\frac{4}{9} \; \frac{\hat{t}^{2} + \hat{u}^{2}}{\hat{s}^{2}}$		0.2
$q \overline{q} \to q \overline{q}$	$\frac{4}{9}\left(\frac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}\right)$	$+\frac{\hat{t}^{2}+\hat{u}^{2}}{\hat{s}^{2}}igg)-rac{8}{27}rac{\hat{u}^{2}}{\hat{s}\hat{t}}$	2.6
$q \overline{q} o g g$	$\frac{32}{27} \; \frac{\hat{u}^2 + \hat{t}^2}{\hat{u}\hat{t}}$	$-\frac{8}{3} \; \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}$	1.0
$gg \to q \bar q$	$\frac{1}{6} \; \frac{\hat{u}^2 + \hat{t}^2}{\hat{u}\hat{t}} \; .$	$-\frac{3}{8} \frac{\hat{u}^2 + \hat{t}^2}{\hat{s}^2}$	0.1
$qg \to qg$	$\frac{\hat{s}^2+\hat{u}^2}{\hat{t}^2}-\frac{\hat{s}^2}{\hat{s}^2}$	$\frac{4}{9} \frac{\hat{s}^2 + \hat{u}^2}{\hat{u}\hat{s}}$	6.1
$gg \to gg$	$\frac{9}{4} \left(\frac{\hat{s}^2 + \hat{u}^2}{\hat{r}^2} \right)$	$+\frac{\hat{s}^2+\hat{t}^2}{\hat{u}^2}+\frac{\hat{u}^2+\hat{t}^2}{\hat{s}^2}+3$	30.4

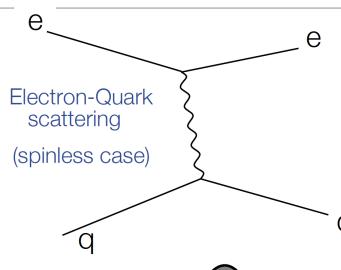
Proton-Proton Scattering @ LHC

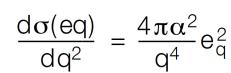

- Hard interaction: qq, gg, qg fusion
- Initial and final state radiation (ISR,FSR)
- Secondary interaction ["underlying event"]


Proton-Proton Scattering @ LHC

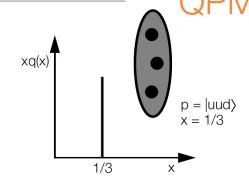

Proton-Proton Scattering @ LHC


QCD & parton densities

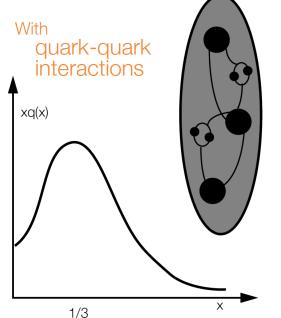

Lepton-proton scattering



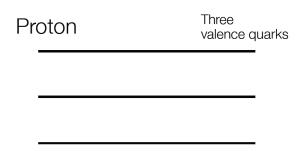
Lepton-proton scattering

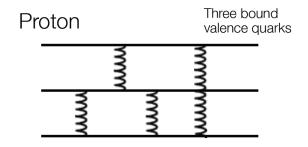


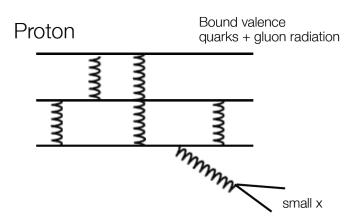
Structure Function F₂

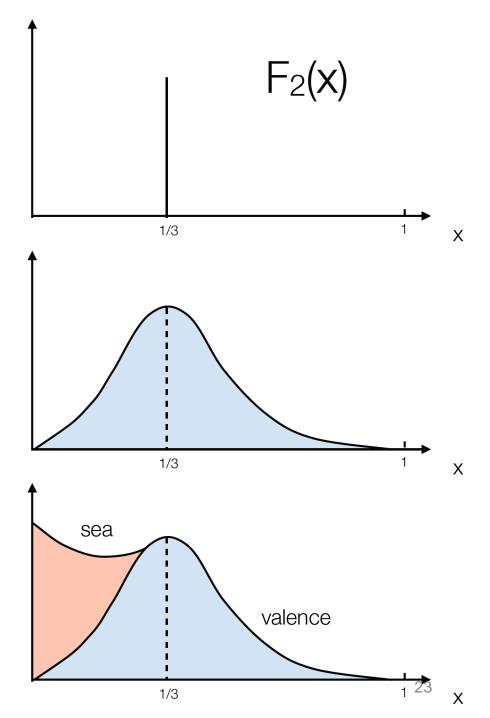


Rutherford scattering on pointlike target

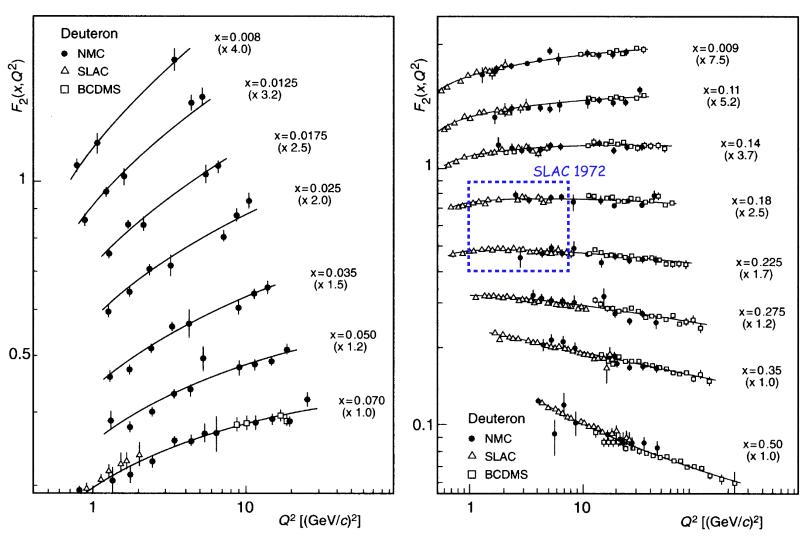

Naive


$$\frac{d\sigma(ep)}{dq^2} \; = \; \frac{4\pi\alpha^2}{q^4} [\; 2e_u^2 + e_d^2] \; = \; \frac{4\pi\alpha^2}{q^4}$$

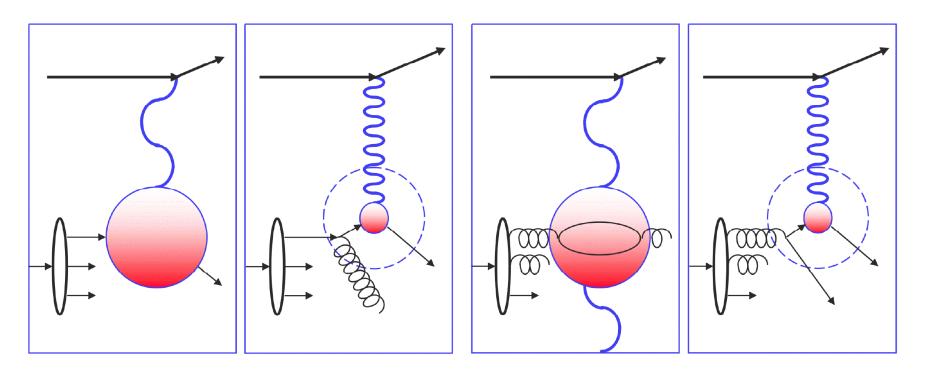



$$\begin{split} \frac{d\sigma(ep)}{dx\,dq^2} &= \frac{4\pi\alpha^2}{q^4} [e_u^2 u(x) + e_d^2 d(x) + \ldots] \\ &= \frac{4\pi\alpha^2}{q^4} \frac{F_2(x)}{x} \end{split}$$

QPM: Structure Functions F₂ independent of Q²

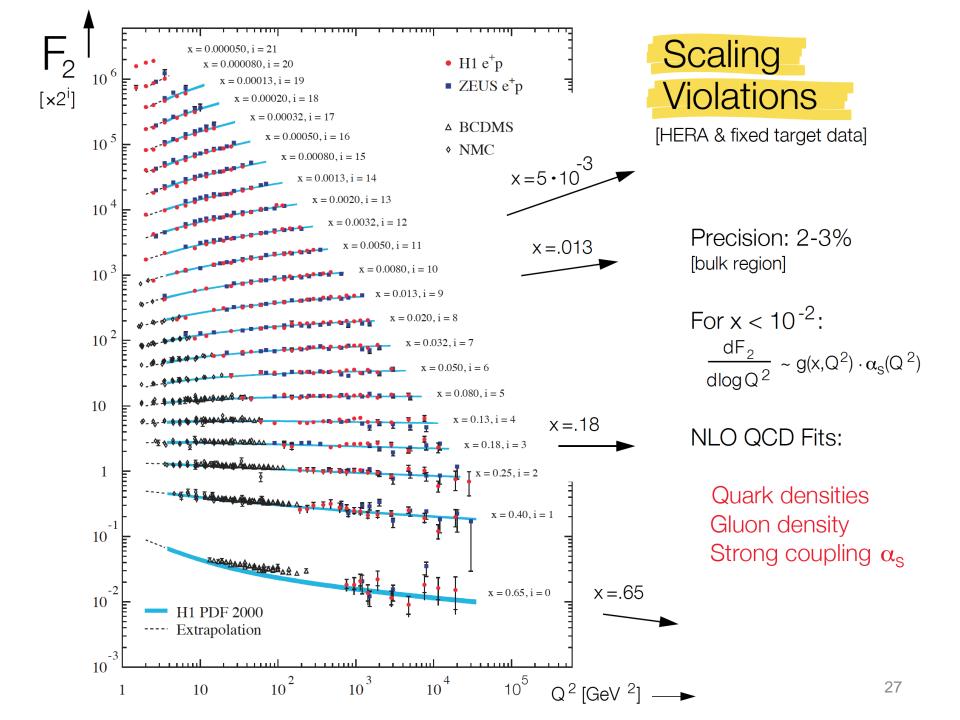


Scaling violation

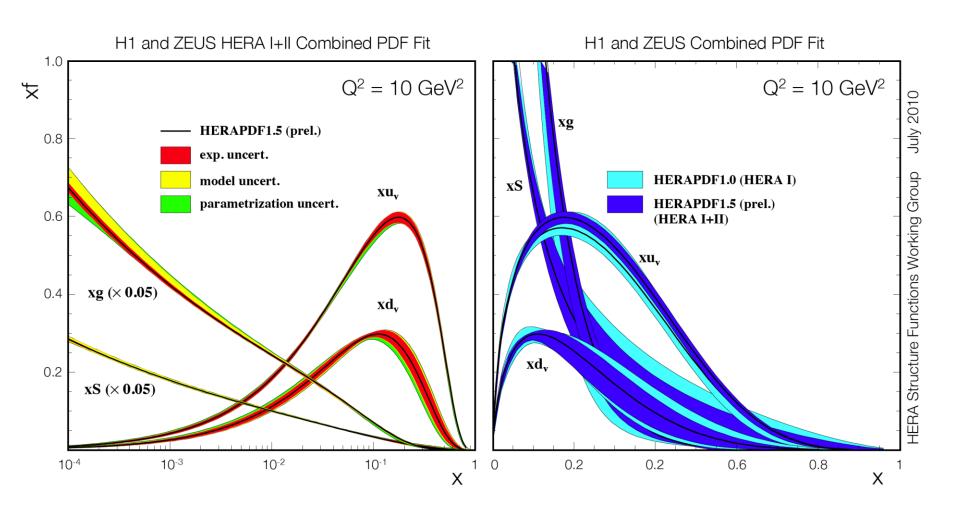


Scaling violation

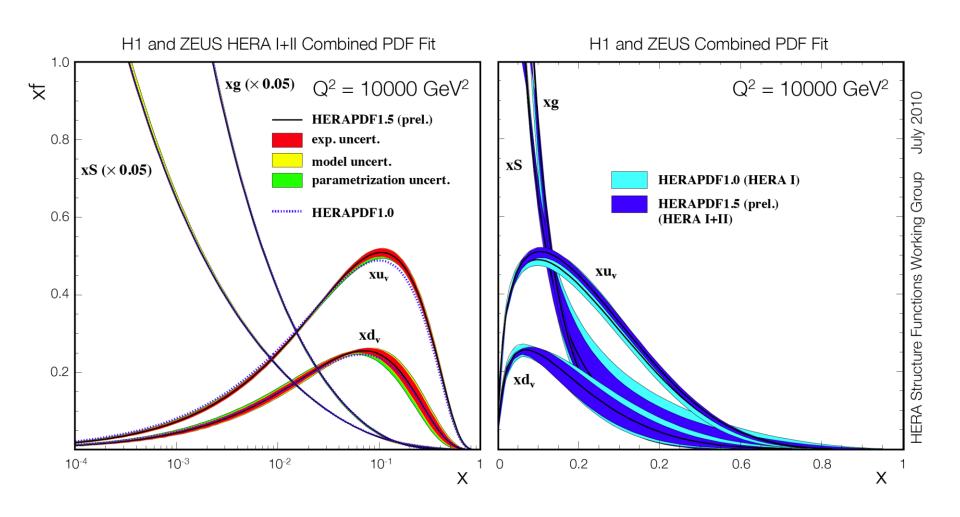
Proton quark dominated:

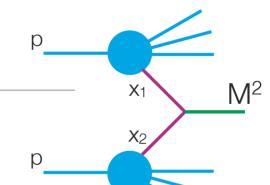

 $Q^2 \uparrow \Rightarrow F_2 \downarrow \text{ for fixed } x$

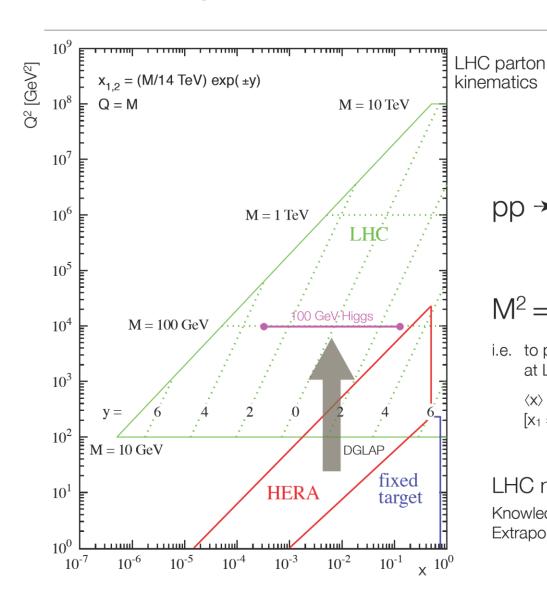
Proton gluon dominated: $Q^2 \uparrow \Rightarrow F_2 \uparrow$ for fixed x



Q²-evolution described by DGLAP Equations


$$\frac{\partial}{\partial \log Q^2} \begin{bmatrix} \mathbf{q}(\mathbf{x}, \mathbf{Q}^2) \\ \mathbf{q}(\mathbf{x}, \mathbf{Q}^2) \end{bmatrix} = \frac{\alpha_s}{2\pi} \begin{bmatrix} \mathbf{p} \\ \mathbf{q}(\mathbf{x}, \mathbf{Q}^2) \\ \mathbf{q}(\mathbf{x}, \mathbf{Q}^2) \end{bmatrix} \begin{bmatrix} \mathbf{q}(\mathbf{x}, \mathbf{Q}) \\ \mathbf{q}(\mathbf{x}, \mathbf{Q}^2) \end{bmatrix} \begin{bmatrix} \mathbf{q}(\mathbf{x}, \mathbf{Q}) \\ \mathbf{q}(\mathbf{x}, \mathbf{Q}) \end{bmatrix} \begin{bmatrix} \mathbf{q}(\mathbf{x}, \mathbf{Q$$


Proton parton densities

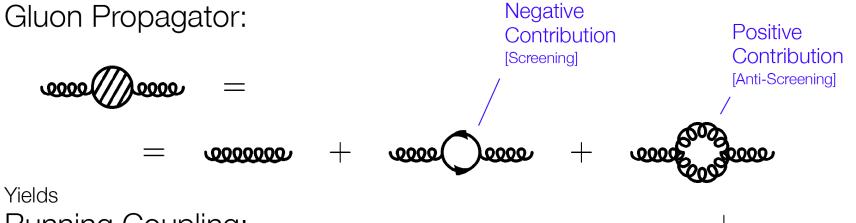


Proton parton densities

Particle production @ LHC

X_M: particle with mass M e.g. Higgs

$$M^2 = x_1 x_2 \cdot s$$


i.e. to produce a particle with mass M at LHC energies ($\sqrt{s} = 14 \text{ TeV}$)

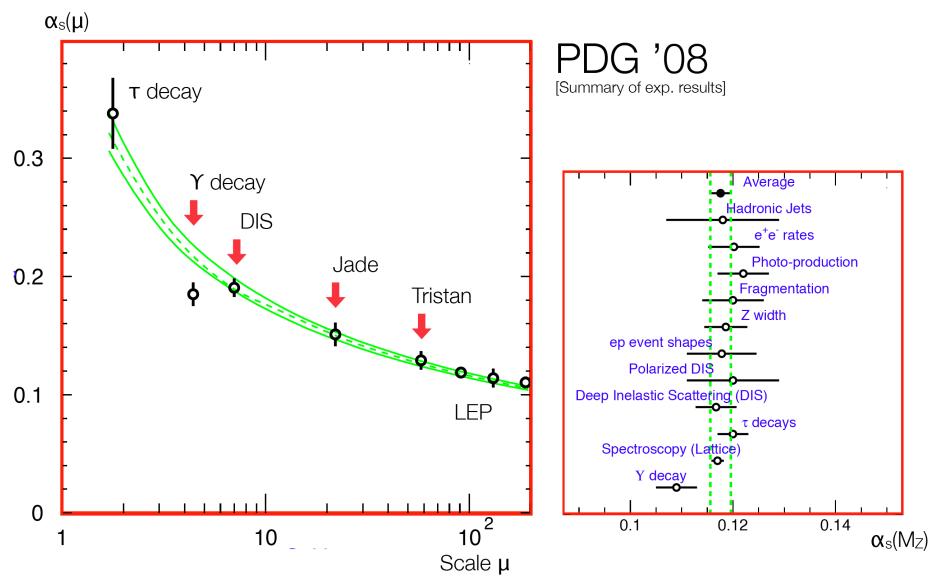
$$\langle x \rangle = \sqrt{x_1 x_2} = M/\sqrt{s}$$

[x₁ = x₂: mid-rapidity]

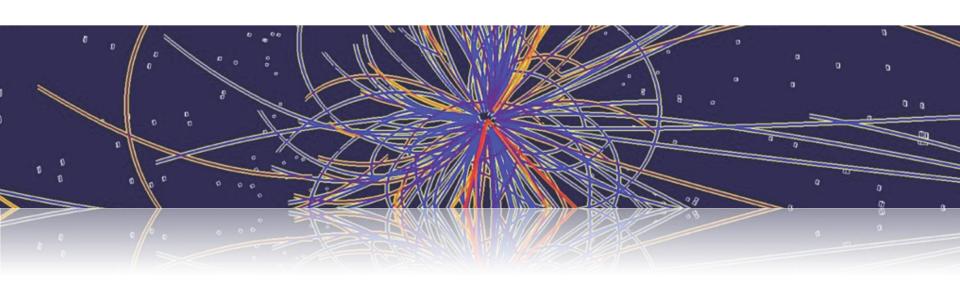
LHC needs:

Knowledge of parton densities Extrapolation over orders of magnitudes

Running Coupling α_s


Running Coupling:

$$\alpha_s(Q^2) = \frac{\alpha_s(\mu^2)}{1 + \alpha_s(\mu^2)\beta_0 \log \frac{Q^2}{\mu^2}}$$


$$\uparrow$$
Positive Sign!

QED:
$$\alpha(Q^2) = \frac{\alpha(\mu^2)}{1 - \frac{\alpha(\mu^2)}{3\pi} \log \frac{Q^2}{\mu^2}} \frac{1}{\log \frac{Q^2}{\mu^2}}$$

Running Coupling α_s

Monte Carlo Generators

Monte Carlo overview

Monte Carlo simulation ...

Numerical process generation based on random numbers

Method very powerful in particle physics

Event generation programs:

Pythia, Herwig, Isajet Sherpa ...

Hard partonic subprocess + fragmentation & hadronization ...

Detector simulation:

Geant ...

interaction & response of all produced particles ...

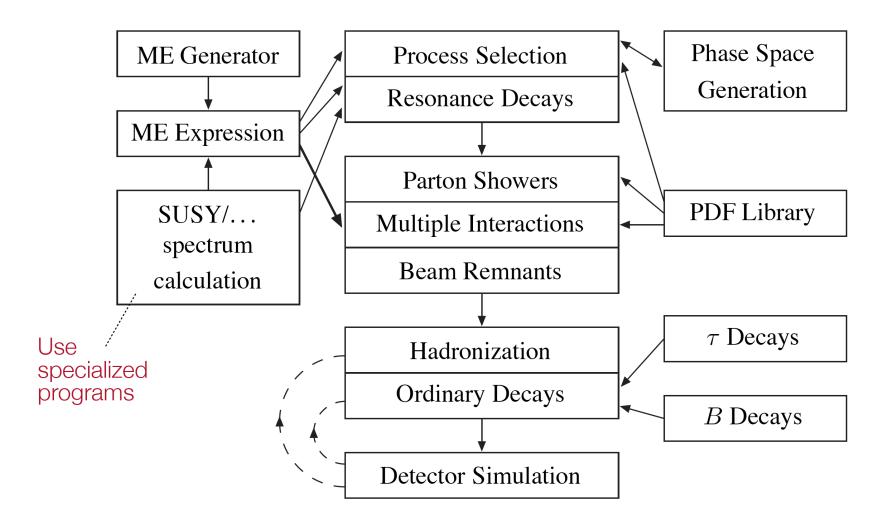
MC simulations in particle physics

Event Generator

simulate physics process (quantum mechanics: probabilities!)

Detector Simulation

simulate interaction with detector material


Digitization

translate interactions with detector into realistic signals

Reconstruction/Analysis as for real data

Monte Carlo overview

Pythia sub-processes

No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess	No. Subprocess
Hard QCD processes:	$36 f_i \gamma \to f_k W^{\pm}$	New gauge bosons:	Higgs pairs:	Compositeness:	$\frac{210 f_i \overline{f}_j \to \tilde{\ell}_L \tilde{\nu}_\ell^* +}{}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ccc} 11 & f_i f_j \rightarrow f_i f_j \end{array}$	$69 \gamma\gamma \to W^+W^-$	141 $f_i \overline{f}_i \rightarrow \gamma/Z^0/Z'^0$	$297 ext{ } ext{ } $	$146 \text{e}\gamma \rightarrow \text{e}^*$	$\begin{array}{c c} 210 & f_i \overline{f}_j \rightarrow \tilde{c}_L \tilde{\nu}_\ell + \\ 211 & f_i \overline{f}_j \rightarrow \tilde{\tau}_1 \tilde{\nu}_\tau^* + \end{array}$	$\begin{array}{c c} 255 & \text{fig} & \text{qi}_{L\chi3} \\ 251 & \text{fig} \rightarrow \tilde{q}_{iR}\tilde{\chi}_3 \end{array}$
$\begin{array}{ccc} & & & & & \\ 12 & & & & \\ & & & & \\ \end{array}$	$70 \gamma W^{\pm} \rightarrow Z^{0}W^{\pm}$	$\begin{array}{ccc} 141 & f_i \overline{f}_i & //L / L \\ 142 & f_i \overline{f}_j \rightarrow W'^+ \end{array}$	$\begin{array}{ccc} 298 & f_i \overline{f}_j \rightarrow H^{\pm} H^0 \\ \end{array}$	$\begin{array}{ccc} 147 & \mathrm{dg} \to \mathrm{d}^* \end{array}$	$\begin{array}{ccc} 211 & f_{i}f_{j} \rightarrow \tau_{1}\nu_{\tau} + \\ 212 & f_{i}\overline{f}_{j} \rightarrow \tilde{\tau}_{2}\tilde{\nu}_{\tau}^{*} + \end{array}$	$\begin{array}{c c} 251 & \text{fig} & \text{qih}\chi_3 \\ 252 & \text{fig} \rightarrow \tilde{\text{q}}_{iL}\tilde{\chi}_4 \end{array}$
$13 f_i \overline{f}_i \rightarrow gg$	Prompt photons:	$ \begin{array}{ccc} 142 & f_i \overline{f}_j \to VV \\ 144 & f_i \overline{f}_j \to R \end{array} $	$\begin{array}{ccc} 290 & \text{f}_i \overline{\text{f}}_i \rightarrow \text{A}^0 \text{h}^0 \\ 299 & \text{f}_i \overline{\text{f}}_i \rightarrow \text{A}^0 \text{h}^0 \end{array}$	$148 \text{ug} \rightarrow \text{u}^*$	$\begin{array}{ccc} 212 & f_{i}f_{j} \rightarrow f_{2}\nu_{\tau} + \\ 213 & f_{i}\overline{f}_{i} \rightarrow \tilde{\nu}_{\ell}\tilde{\nu}_{\ell}^{*} \end{array}$	$\begin{array}{ccc} & & \text{fig} & \text{qib}\chi_4 \\ 253 & & \text{fig} & \rightarrow \tilde{\text{q}}_{iR}\tilde{\chi}_4 \end{array}$
$ \begin{array}{ccc} 13 & f_{i}f_{i} & f_{i}g \\ 28 & f_{i}g \rightarrow f_{i}g \end{array} $	$14 \mathrm{f}_i \overline{\mathrm{f}}_i o \mathrm{g} \gamma$	Heavy SM Higgs:	$300 f_i \overline{f}_i \to A^0 H^0$	$167 \mathbf{q}_i \mathbf{q}_j \to \mathbf{d}^* \mathbf{q}_k$	$\begin{array}{ccc} 213 & 1_{i}1_{i} \to \nu_{\ell}\nu_{\ell} \\ 214 & \mathbf{f}_{i}\mathbf{\overline{f}}_{i} \to \tilde{\nu}_{\tau}\tilde{\nu}_{\tau}^{*} \end{array}$	$\begin{array}{ccc} & 1.6 & 1.11 \chi_1^2 \\ 254 & f_i g \rightarrow \tilde{q}_{jL} \tilde{\chi}_1^{\pm} \end{array}$
$53 gg \rightarrow f_k \overline{f}_k$	$18 f_i \overline{f}_i \to \gamma \gamma$	$\begin{array}{c c} \text{Heavy SM Higgs.} \\ 5 & \text{Z}^{0}\text{Z}^{0} \rightarrow \text{h}^{0} \end{array}$	$301 f_i \overline{f}_i \rightarrow H^+ H^-$	$168 \mathbf{q}_i \mathbf{q}_j \to \mathbf{u}^* \mathbf{q}_k$	$ \begin{array}{ccc} 214 & \mathbf{f}_{i}\mathbf{f}_{i} \to \nu_{\tau}\nu_{\tau} \\ 216 & \mathbf{f}_{i}\mathbf{f}_{i} \to \tilde{\chi}_{1}\tilde{\chi}_{1} \end{array} $	$1 256 f_i g \rightarrow \tilde{q}_{jL} \tilde{\chi}_2^{\pm}$
$68 gg \rightarrow gg$	$29 f_i g \rightarrow f_i \gamma$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Leptoquarks:	$169 \mathbf{q}_i \overline{\mathbf{q}}_i \to \mathbf{e}^{\pm} \mathbf{e}^{*\mp}$	$\begin{array}{ccc} 210 & \mathbf{i}_{i}\mathbf{i}_{i} \to \chi_{1}\chi_{1} \\ 217 & \mathbf{f}_{i}\mathbf{f}_{i} \to \tilde{\chi}_{2}\tilde{\chi}_{2} \end{array}$	$\begin{array}{ccc} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $
Soft QCD processes:	$114 gg \rightarrow \gamma\gamma$	$71 Z_L^0 Z_L^0 \to Z_L^0 Z_L^0$	145 $q_i \ell_i \rightarrow L_Q$	165 $f_i \overline{f}_i (\to \gamma^*/Z^0) \to f_k \overline{f}_k$	$\begin{array}{ccc} 217 & 1_{i}1_{i} \to \chi_{2}\chi_{2} \\ 218 & \mathbf{f}_{i}\overline{\mathbf{f}}_{i} \to \tilde{\chi}_{3}\tilde{\chi}_{3} \end{array}$	$259 f_{ig} \rightarrow \tilde{q}_{iR}\tilde{g}$
91 elastic scattering	115 $gg \rightarrow g\gamma$	$72 Z_{\mathbf{L}}^{0}Z_{\mathbf{L}}^{0} \to W_{\mathbf{L}}^{+}W_{\mathbf{L}}^{-}$	$\begin{array}{ccc} 143 & q_i e_j \rightarrow LQ \\ 162 & qg \rightarrow \ell L_Q \end{array}$	166 $f_i \overline{f}_i (\rightarrow W^{\pm}) \rightarrow f_k \overline{f}_i$		$\begin{array}{ccc} & 261 & \mathbf{f}_i \overline{\mathbf{f}}_i \rightarrow \hat{\mathbf{t}}_1 \hat{\mathbf{t}}_1^* \end{array}$
92 single diffraction (XB)	Deeply Inel. Scatt.:	$\begin{array}{c c} 73 & Z_L^0 W_L^{\pm} \rightarrow Z_L^0 W_L^{\pm} \end{array}$	$\begin{array}{ccc} 162 & \text{qg} & \text{FLQ} \\ 163 & \text{gg} \rightarrow \text{L}_{\text{Q}} \overline{\text{L}}_{\text{Q}} \end{array}$	Extra Dimensions:		$262 f_i \overline{f}_i \rightarrow \tilde{\mathfrak{t}}_2 \tilde{\mathfrak{t}}_2^*$
93 single diffraction (AX)	$10 f_i f_j \to f_k f_l$	$76 W_L^+W_L^- \to Z_L^0Z_L^0$	$ \begin{array}{ccc} 163 & \text{gg} \to LQLQ \\ 164 & q_i\overline{q}_i \to L_Q\overline{L}_Q \end{array} $	$391 f\overline{f} \rightarrow G^*$	$\begin{array}{ccc} 220 & f_i \overline{f}_i \to \tilde{\chi}_1 \tilde{\chi}_2 \\ & \tilde{\xi} & \tilde{\chi}_1 & \tilde{\chi}_2 \end{array}$	$263 f_i \overline{f}_i \to \tilde{t}_1 \tilde{t}_2^* +$
94 double diffraction	99 $\gamma^* q \rightarrow q$	$\begin{array}{c c} 77 & W_{\mathbf{L}}^{\pm}W_{\mathbf{L}}^{\pm} \to W_{\mathbf{L}}^{\pm}W_{\mathbf{L}}^{\pm} \end{array}$	Technicolor:	$392 gg \rightarrow G^*$	$\begin{array}{ccc} 221 & f_i \overline{f}_i \to \tilde{\chi}_1 \tilde{\chi}_3 \\ & \tilde{\epsilon} & \tilde{\epsilon} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
95 low- p_{\perp} production	Photon-induced:	BSM Neutral Higgs:	149 $gg \rightarrow \eta_{tc}$	$393 q\overline{q} \rightarrow gG^*$	222 $f_i \overline{f}_i \rightarrow \tilde{\chi}_1 \tilde{\chi}_4$	$265 \text{gg} \rightarrow \tilde{\text{t}}_2 \tilde{\text{t}}_2^*$
Open heavy flavour:	$33 f_i \gamma \rightarrow f_i g$	151 $f_i \overline{f}_i \rightarrow H^0$	$\begin{array}{c c} 149 & gg \rightarrow \eta_{tc} \\ 191 & f_i \overline{f}_i \rightarrow \rho_{tc}^0 \end{array}$	$394 qg \rightarrow qG^*$	223 $f_i \overline{f}_i \to \tilde{\chi}_2 \tilde{\chi}_3$	$271 f_i f_j \to \tilde{q}_{iL} \tilde{q}_{jL}$
(also fourth generation)	$34 f_i \gamma \rightarrow f_i \gamma$	$\begin{array}{ccc} 151 & l_i l_i \rightarrow 11 \\ 152 & \mathrm{gg} \rightarrow \mathrm{H}^0 \end{array}$	$ \begin{array}{ccc} 191 & 1_{i}1_{i} \to \rho_{\mathrm{tc}} \\ 192 & \mathbf{f}_{i}\mathbf{\overline{f}}_{j} \to \rho_{\mathrm{tc}}^{+} \end{array} $	$395 gg \rightarrow gG^*$	224 $f_i \overline{f}_i \rightarrow \tilde{\chi}_2 \tilde{\chi}_4$	$272 f_i f_j \to \tilde{q}_{iR} \tilde{q}_{jR}$
$81 f_i \overline{f}_i \to Q_k \overline{Q}_k$	$54 g\gamma \rightarrow f_k \overline{f}_k$	$\begin{array}{ccc} 152 & gg & H \\ 153 & \gamma\gamma \rightarrow H^0 \end{array}$	$ \begin{array}{ccc} 192 & 1_{i}1_{j} \to \rho_{\mathrm{tc}} \\ 193 & \mathbf{f}_{i}\mathbf{\bar{f}}_{i} \to \omega_{\mathrm{tc}}^{0} \end{array} $	Left-right symmetry:	225 $f_i \overline{f}_i \rightarrow \tilde{\chi}_3 \tilde{\chi}_4$	$273 \mathbf{f}_i \mathbf{f}_j \to \tilde{\mathbf{q}}_{iL} \tilde{\mathbf{q}}_{jR} +$
$82 gg \rightarrow Q_k \overline{Q}_k$	$58 \gamma\gamma \to f_k \overline{f}_k$	$\begin{array}{ccc} 133 & 77 & 11 \\ 171 & f_i \overline{f}_i \rightarrow Z^0 H^0 \end{array}$	$ \begin{array}{ccc} 193 & \mathbf{f}_i \mathbf{f}_i \to \omega_{\mathrm{tc}} \\ 194 & \mathbf{f}_i \overline{\mathbf{f}}_i \to \mathbf{f}_k \overline{\mathbf{f}}_k \end{array} $	$341 \ell_i \ell_i \rightarrow H_{\tau}^{\pm \pm}$	226 $f_i \overline{f}_i \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	131 $f_i \gamma_T^* \to f_i g$	$\begin{array}{ccc} 171 & f_i \overline{f}_i & 2 & 11 \\ 172 & f_i \overline{f}_j & \rightarrow W^{\pm} H^0 \end{array}$		$ \begin{array}{ccc} 342 & \ell_i \ell_j \rightarrow H_R^{\pm\pm} \\ 343 & \ell_i^{\pm} \gamma \rightarrow H_L^{\pm\pm} e^{\mp} \\ 344 & \ell_i^{\pm} \gamma \rightarrow H_R^{\pm\pm} e^{\mp} \\ \end{array} $	$227 f_i \overline{f}_i \to \tilde{\chi}_2^{\pm} \tilde{\chi}_2^{\mp}$	$275 f_i \overline{f}_j \to \tilde{q}_{iR} \tilde{q}_{jR}^*$
$84 g\gamma \to Q_k \overline{Q}_k$	$132 f_i \gamma_L^* \to f_i g$	$\begin{array}{c c} 172 & f_i f_j \rightarrow VV & 11 \\ 173 & f_i f_j \rightarrow f_i f_j H^0 \end{array}$	195 $f_i \overline{f}_j \rightarrow f_k \overline{f}_l$	$343 \ell_i^{\pm} \gamma \to H_i^{\pm \pm} e^{\mp}$	228 $f_i \overline{f}_i \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\mp}$	$\begin{array}{ccc} & & & & & & & & \\ 276 & & & & & & & \\ & & & & & & \\ & & & & $
$85 \gamma\gamma \to F_k \overline{F}_k$	133 $f_i \gamma_T^* \to f_i \gamma$	$\begin{array}{c c} 173 & f_i f_j \rightarrow f_k f_l H^0 \\ 174 & f_i f_i \rightarrow f_k f_l H^0 \end{array}$	361 $f_i \overline{f}_i \rightarrow W_L^+ W_L^-$	$1 344 \ell_i^{\pm \gamma} \rightarrow H_B^{\pm \pm} e^{\mp}$	229 $f_i \overline{f}_j \to \tilde{\chi}_1 \tilde{\chi}_1^{\pm}$	$\begin{array}{ccc} & & & & & & \\ 277 & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
Closed heavy flavour:	$134 f_i \gamma_L^* \to f_i \gamma$	$\begin{array}{c c} 111 & q_1 q & q_k q_1 \\ 181 & gg \rightarrow Q_k \overline{Q}_k H^0 \end{array}$	$362 f_i \overline{f}_i \to W_L^{\pm} \pi_{tc}^{\mp}$	345 $\ell_i^{\pm} \gamma \to H_{L_i}^{\pm \pm} \mu_{-}^{\mp}$	230 $f_i \overline{f}_j \to \tilde{\chi}_2 \tilde{\chi}_1^{\pm}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$86 gg \rightarrow J/\psi g$	135 $g\gamma_{\rm T}^* \rightarrow f_i \overline{f}_i$	$ \begin{array}{c c} 181 & gg \rightarrow Q_k Q_k \Pi \\ 182 & q_i \overline{q}_i \rightarrow Q_k \overline{Q}_k \Pi^0 \end{array} $	363 $f_i \overline{f}_i \rightarrow \pi_{tc}^+ \pi_{tc}^-$	$\ell_i^{\pm} \gamma \to H_R^{\pm} \mu^{\mp}$	231 $f_i \overline{f}_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_1^{\pm}$	
$87 gg \rightarrow \chi_{0c}g$	$136 g\gamma_{\rm L}^* \to f_i \overline{f}_i$	$ \begin{array}{ccc} 162 & \mathbf{q}_i \mathbf{q}_i \to \mathbf{Q}_k \mathbf{Q}_k \mathbf{\Pi} \\ 183 & \mathbf{f}_i \overline{\mathbf{f}}_i \to \mathbf{g} \mathbf{H}^0 \end{array} $	$364 f_i \overline{f}_i \rightarrow \gamma \pi_{tc}^0$	347 $\ell_i^{\pm} \gamma \to H_L^{\pm \pm} \tau^{\mp}$	232 $f_i \overline{f}_j \to \tilde{\chi}_4 \tilde{\chi}_1^{\pm}$	
$88 gg \rightarrow \chi_{1c}g$	137 $\gamma_{\mathrm{T}}^* \gamma_{\mathrm{T}}^* \to f_i \overline{f}_i$	$ \begin{array}{ccc} 183 & f_i f_i \rightarrow g f_i \\ 184 & f_i g \rightarrow f_i H^0 \end{array} $	$365 f_i \overline{f}_i \to \gamma \pi^{\prime 0}_{tc}$	348 $\ell_i^{\pm} \gamma \to H_R^{\Xi\pm} \tau^{\mp}$	233 $f_i \overline{f}_j \rightarrow \tilde{\chi}_1 \tilde{\chi}_2^{\pm}$	$\begin{vmatrix} 281 & \text{bq}_i \to \tilde{b}_1 \tilde{q}_{iL} \end{vmatrix}$
$89 gg \rightarrow \chi_{2c}g$	$\begin{array}{c c} 131 & \gamma_{\mathrm{T}}^{*} \gamma_{\mathrm{L}}^{*} \rightarrow f_{i} \overline{f}_{i} \\ 138 & \gamma_{\mathrm{T}}^{*} \gamma_{\mathrm{L}}^{*} \rightarrow f_{i} \overline{f}_{i} \end{array}$	$ \begin{array}{ccc} 164 & i_i g \rightarrow i_i H \\ 185 & gg \rightarrow gH^0 \end{array} $	$366 f_i \overline{f}_i \to Z^0 \pi_{tc}^0$	$349 f_i \overline{f}_i \rightarrow H_L^{++} H_L^{}$	234 $f_i \overline{f}_j \rightarrow \tilde{\chi}_2 \tilde{\chi}_2^{\pm}$	$\begin{vmatrix} 282 & \text{bq}_i & \text{5}_1 \text{q}_{iL} \\ 282 & \text{bq}_i \rightarrow \tilde{\text{b}}_2 \tilde{\text{q}}_{iR} \end{vmatrix}$
$104 \text{gg} \rightarrow \chi_{0c}$	$\begin{array}{ccc} 130 & \gamma_{\rm L}^{\rm T} \gamma_{\rm L}^{\rm L} & {\rm fi}_{\rm I}^{\rm T} \\ 139 & \gamma_{\rm L}^{\rm *} \gamma_{\rm T}^{\rm *} \rightarrow {\rm f}_{\rm i} \overline{{\rm f}}_{\rm i} \end{array}$	$\begin{array}{ccc} 155 & \text{gg} \rightarrow \text{gH} \\ 156 & f_i \overline{f}_i \rightarrow \text{A}^0 \end{array}$	$367 f_i \overline{f}_i \to Z^0 \pi'_{tc}^0$	$350 f_i \overline{f}_i \rightarrow H_R^{++} H_R^{}$	235 $f_i \overline{f}_j \rightarrow \tilde{\chi}_3 \tilde{\chi}_2^{\pm}$	$\begin{vmatrix} 282 & bq_i & b_2q_iR \\ 283 & bq_i \rightarrow \tilde{b}_1\tilde{q}_{iR} + \end{vmatrix}$
$105 gg \rightarrow \chi_{2c}$	$\begin{array}{c c} 135 & \gamma_{\rm L} \gamma_{\rm T} & f_i \overline{f}_i \\ 140 & \gamma_{\rm L}^* \gamma_{\rm L}^* \to f_i \overline{f}_i \end{array}$	$\begin{array}{ccc} 150 & l_i l_i \rightarrow A \\ 157 & gg \rightarrow A^0 \end{array}$	$368 f_i \overline{f}_i \to W^{\pm} \pi_{tc}^{\mp}$	$351 f_i f_j \rightarrow f_k f_l H_L^{\pm \frac{\alpha}{2}}$	236 $f_i \overline{f}_j \rightarrow \tilde{\chi}_4 \tilde{\chi}_2^{\pm}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$106 gg \rightarrow J/\psi \gamma$	$\begin{array}{c c} 140 & \gamma_L \gamma_L \rightarrow r_i r_i \\ 80 & q_i \gamma \rightarrow q_k \pi^{\pm} \end{array}$	$\begin{array}{ccc} 157 & \text{gg} \rightarrow \text{A} \\ 158 & \gamma\gamma \rightarrow \text{A}^0 \end{array}$	$370 f_i \overline{f}_j \to W_L^{\pm} Z_L^{0}$	$352 f_i f_j \rightarrow f_k f_l H_R^{\pm \pm}$	237 $f_i \overline{f}_i \rightarrow \tilde{g} \tilde{\chi}_1$	$\begin{vmatrix} 284 & bq_i \rightarrow b_1q_i L \\ 285 & b\overline{q}_i \rightarrow \tilde{b}_2\tilde{q}_{iR}^* \end{vmatrix}$
$107 g\gamma \rightarrow J/\psi g$	Light SM Higgs:	$\begin{array}{ccc} 136 & f_i \overline{f}_i \to Z^0 A^0 \end{array}$	$371 f_i \overline{f}_j \to W_L^{\pm} \pi_{tc}^0$	$353 f_i \overline{f}_i \rightarrow Z_B^0$	238 $f_i \overline{f}_i \rightarrow \tilde{g} \tilde{\chi}_2$	
108 $\gamma\gamma \to J/\psi\gamma$	$3 f_i \overline{f}_i \to h^0$	$\begin{array}{ccc} 170 & f_i \overline{f}_i \rightarrow Z & A \\ 177 & f_i \overline{f}_j \rightarrow W^{\pm} A^0 \end{array}$	$372 f_i \overline{f}_j \to \pi_{tc}^{\pm} Z_L^0$	$354 f_i \overline{f}_j \rightarrow W_R^{\pm}$	239 $f_i \overline{f}_i \rightarrow \tilde{g} \tilde{\chi}_3$	$ \begin{array}{ccc} 286 & b\overline{q}_i \to \tilde{b}_1 \tilde{q}_{iR}^* + \\ 287 & \tilde{\epsilon} & \tilde{\epsilon} & \tilde{\epsilon} \end{array} $
W/Z production:	$\begin{array}{ccc} 3 & f_i \overline{f}_i \to \Pi \\ 24 & f_i \overline{f}_i \to Z^0 h^0 \end{array}$	$\begin{array}{c c} 177 & f_i f_j \rightarrow VV & A \\ 178 & f_i f_j \rightarrow f_i f_j A^0 \end{array}$	373 $f_i \overline{f}_j \rightarrow \pi_{tc}^{\pm} \pi_{tc}^0$	SUSY:	240 $f_i \overline{f}_i \rightarrow \tilde{g} \tilde{\chi}_4$	$ \begin{array}{ccc} 287 & f_i \overline{f}_i \to \tilde{b}_1 \tilde{b}_1^* \\ 287 & \tilde{f}_i \overline{f}_i \to \tilde{b}_1 \tilde{b}_1^* \end{array} $
$1 f_i \overline{f}_i \rightarrow \gamma^*/Z^0$	$ \begin{array}{cccc} 24 & f_i \overline{f}_i \to Z & \Pi \\ 26 & f_i \overline{f}_i \to W^{\pm} h^0 \end{array} $	$\begin{array}{ccc} 178 & \mathbf{i}_{i}\mathbf{i}_{j} \to \mathbf{i}_{i}\mathbf{i}_{j}\mathbf{A} \\ 179 & \mathbf{f}_{i}\mathbf{f}_{j} \to \mathbf{f}_{k}\mathbf{f}_{l}\mathbf{A}^{0} \end{array}$	$374 f_i \overline{f}_j \rightarrow \gamma \pi_{tc}^{\pm}$	$201 \mathrm{f}_i \overline{\mathrm{f}}_i o \mathrm{\tilde{e}}_L \mathrm{\tilde{e}}_L^*$	$241 f_i \overline{f}_j \to \tilde{g} \tilde{\chi}_1^{\pm}$	$\begin{array}{ccc} 288 & \mathbf{f}_i \overline{\mathbf{f}}_i \to \tilde{\mathbf{b}}_2 \tilde{\mathbf{b}}_2^* \\ & \tilde{\mathbf{b}}_i \tilde{\mathbf{f}}_i^* \end{array}$
$2 f_i \overline{f}_j \rightarrow W^{\pm}$	$\begin{array}{ccc} 26 & f_i f_j \rightarrow W & f_i \\ 32 & f_i g \rightarrow f_i h^0 \end{array}$	$ \begin{array}{c c} 175 & I_i I_j \to I_k I_l A \\ 186 & gg \to Q_k \overline{Q}_k A^0 \end{array} $	$375 f_i \overline{f}_j \to Z^0 \pi_{tc}^{\pm}$	$\begin{array}{ccc} 201 & f_i \overline{f}_i & \circ E \circ E \\ 202 & f_i \overline{f}_i & \to \tilde{e}_R \tilde{e}_R^* \end{array}$	$\begin{array}{ccc} 242 & f_i \overline{f}_j \rightarrow \tilde{g} \tilde{\chi}_2^{\pm} \\ \end{array}$	$289 gg \to \tilde{b}_1 \tilde{b}_1^*$
$\begin{array}{ccc} 22 & f_i \overline{f}_i \rightarrow Z^0 Z^0 \end{array}$	$\begin{array}{ccc} 32 & {}^{1}ig \rightarrow {}^{1}in \\ 102 & {}^{}gg \rightarrow h^{0} \end{array}$	$\begin{vmatrix} 180 & gg \to Q_k Q_k A \\ 187 & q_i \overline{q}_i \to Q_k \overline{Q}_k A^0 \end{vmatrix}$	$376 f_i \overline{f}_j \to W^{\pm} \pi_{tc}^0$	$\begin{array}{ccc} 202 & f_i \overline{f}_i & e_R e_R \\ 203 & f_i \overline{f}_i \rightarrow \tilde{e}_L \tilde{e}_R^* + \end{array}$	$\begin{array}{ccc} 242 & f_i \overline{f}_i & g \chi_2 \\ 243 & f_i \overline{f}_i \rightarrow \tilde{g} \tilde{g} \end{array}$	$\begin{array}{ccc} 290 & gg \rightarrow \tilde{b}_2 \tilde{b}_2^* \\ & & & & & & & & & & & & & & & & & & $
$\begin{array}{ccc} 22 & i_1i_1 & 2 & 2 \\ 23 & f_i\overline{f}_j \rightarrow Z^0W^{\pm} & \end{array}$	$ \begin{vmatrix} 102 & gg \to h \\ 103 & \gamma\gamma \to h^0 \end{vmatrix} $	$ \begin{vmatrix} 187 & \mathbf{q}_i \mathbf{q}_i \to \mathbf{Q}_k \mathbf{Q}_k \mathbf{A} \\ 188 & \mathbf{f}_i \overline{\mathbf{f}}_i \to \mathbf{g} \mathbf{A}^0 \end{vmatrix} $	$377 f_i \overline{f}_j \rightarrow W^{\pm} \pi_{\text{tc}}^{0}$	$\begin{array}{ccc} 203 & f_i \bar{f}_i \rightarrow e_L e_R + \\ 204 & f_i \bar{f}_i \rightarrow \tilde{\mu}_L \tilde{\mu}_L^* \end{array}$	$\begin{array}{ccc} 243 & \eta_1 & gg \\ 244 & gg \rightarrow \tilde{g}\tilde{g} \end{array}$	$291 \text{bb} \to \tilde{b}_1 \tilde{b}_1$
$\begin{array}{ccc} 25 & f_i \overline{f}_i \rightarrow W^+W^- \\ 25 & f_i \overline{f}_i \rightarrow W^+W^- \end{array}$	$ \begin{vmatrix} 103 & \gamma \gamma \to \Pi \\ 110 & f_i \overline{f}_i \to \gamma h^0 \end{vmatrix} $	$ \begin{array}{ccc} 188 & f_i f_i \to g A \\ 189 & f_i g \to f_i A^0 \end{array} $	$381 q_i q_j \rightarrow q_i q_j$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccc} 244 & \text{gs} & \text{gs} \\ 246 & \text{f}_i\text{g} \rightarrow \tilde{q}_{iL}\tilde{\chi}_1 \end{array}$	$292 \text{bb} \rightarrow \tilde{b}_2 \tilde{b}_2$
$\begin{array}{ccc} 25 & f_i \overline{f}_i & & & \\ 15 & f_i \overline{f}_i & \rightarrow \text{gZ}^0 & & & \\ \end{array}$	$\begin{array}{c c} 110 & f_i \overline{f}_i \to \gamma f_i \\ 111 & f_i \overline{f}_i \to gh^0 \end{array}$	$ \begin{array}{ccc} 169 & _{1i}g \rightarrow _{1i}A \\ 190 & gg \rightarrow gA^{0} \end{array} $	$382 q_i \overline{q}_i \rightarrow q_k \overline{q}_k$	$ \begin{array}{ccc} 205 & f_i \overline{f}_i \to \mu_R \mu_R \\ 206 & f_i \overline{f}_i \to \tilde{\mu}_L \tilde{\mu}_R^* + \end{array} $	$\begin{array}{ccc} 215 & i_i g & q_i L \chi_1 \\ 247 & f_i g \rightarrow \tilde{q}_{iR} \tilde{\chi}_1 \end{array}$	$293 \text{bb} \rightarrow \tilde{b}_1 \tilde{b}_2$
$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & & \\ & 16 & & & & & & & \\ & & 16 & & & & & & \\ & & & & & & & \\ & & & & $	$\begin{array}{c c} 111 & 1_{i}1_{i} \to \mathbf{g}\mathbf{n} \\ 112 & \mathbf{f}_{i}\mathbf{g} \to \mathbf{f}_{i}\mathbf{h}^{0} \end{array}$	$\begin{array}{ccc} 190 & \text{gg} \rightarrow \text{gA} \\ \hline \text{Charged Higgs:} \end{array}$	$383 q_i \overline{q}_i \rightarrow gg$	$\begin{array}{ccc} 200 & \mathbf{f}_{i} \mathbf{\bar{f}}_{i} \rightarrow \mu_{L} \mu_{R} + \\ 207 & \mathbf{f}_{i} \mathbf{\bar{f}}_{i} \rightarrow \tilde{\tau}_{1} \tilde{\tau}_{1}^{*} \end{array}$	$\begin{array}{ccc} 248 & f_i g \rightarrow \tilde{q}_{iL} \tilde{\chi}_2 \end{array}$	$294 \text{bg} \rightarrow \tilde{b}_1 \tilde{g}$
$\begin{array}{ccc} & \text{16} & \text{16} & \text{16} & \text{16} & \text{16} \\ & 30 & \text{16} & \text{16} & \text{16} & \text{16} & \text{16} \\ & & & & & & & & & & & & & \\ & & & & $	$\begin{array}{ccc} 112 & 1_i g \rightarrow 1_i h \\ 113 & gg \rightarrow gh^0 \end{array}$	Charged Higgs: $143 f_i \overline{f}_j \to H^+$	$384 f_i g \rightarrow f_i g$	$ \begin{array}{c c} 207 & \mathbf{f}_{i}\mathbf{f}_{i} \rightarrow \tau_{1}\tau_{1} \\ 208 & \mathbf{f}_{i}\mathbf{\bar{f}}_{i} \rightarrow \tilde{\tau}_{2}\tilde{\tau}_{2}^{*} \end{array} $	$\begin{array}{ccc} 249 & \text{fig} & \tilde{q}_{iR}\tilde{\chi}_{2} \\ 249 & \text{fig} & \rightarrow \tilde{q}_{iR}\tilde{\chi}_{2} \end{array}$	$295 \text{bg} \rightarrow \tilde{\text{b}}_2 \tilde{\text{g}}$
$\begin{array}{ccc} 30 & f_i g \rightarrow f_i Z \\ 31 & f_i g \rightarrow f_k W^{\pm} \end{array}$	$ \begin{vmatrix} 113 & gg \to gh \\ 121 & gg \to Q_k \overline{Q}_k h^0 \end{vmatrix} $	$ \begin{array}{ccc} 143 & I_iI_j \to H \\ 161 & f_ig \to f_kH^+ \end{array} $	385 $gg \rightarrow q_k \overline{q}_k$	$ \begin{array}{ccc} 208 & \mathbf{f}_i \mathbf{f}_i \to \tau_2 \tau_2 \\ 209 & \mathbf{f}_i \overline{\mathbf{f}}_i \to \tilde{\tau}_1 \tilde{\tau}_2^* + \end{array} $	0 1-11/1/2	$296 b\overline{b} \to \tilde{b}_1 \tilde{b}_2^* +$
$\begin{array}{ccc} 31 & i_1 \underline{g} \rightarrow i_k \forall v \\ 19 & f_i \overline{f}_i \rightarrow \gamma Z^0 \end{array}$	$\begin{bmatrix} 121 & gg \to Q_kQ_k\Pi \\ 122 & q_i\overline{q}_i \to Q_k\overline{Q}_k\Pi^0 \end{bmatrix}$	$\begin{array}{ccc} 101 & 1_i g \to 1_k H \\ 401 & gg \to \overline{t} b H^+ \end{array}$	$386 gg \rightarrow gg$	$209 1_i 1_i \rightarrow 7_1 7_2 +$		•
$\begin{array}{ccc} 19 & f_i f_i \rightarrow \gamma Z \\ 20 & f_i \overline{f}_j \rightarrow \gamma W^{\pm} \end{array}$		$\begin{array}{ccc} 401 & \text{gg} \rightarrow \text{tbH} \\ 402 & \text{q}\overline{\text{q}} \rightarrow \overline{\text{tbH}}^{+} \end{array}$	$387 f_i \overline{f}_i \rightarrow Q_k \overline{Q}_k$			
$\begin{array}{ccc} 20 & f_i f_j \rightarrow \gamma \text{ VV} \\ 35 & f_i \gamma \rightarrow f_i Z^0 \end{array}$	$ \begin{vmatrix} 123 & f_i f_j \to f_i f_j h^0 \\ 124 & f_i f_j \to f_k f_l h^0 \end{vmatrix} $	402 qq → tb11	388 $gg \to Q_k \overline{\overline{Q}}_k$			
$1i^{\gamma} \rightarrow 1iL$	$124 1_i 1_j \rightarrow 1_k 1_l 11$			I		

Monte Carlo interfacing

Many specialized processes already available in Pythia ... but, processes usually only implemented in lowest non-trivial order ...

Need external programs that ...

include higher order loop corrections or, alternatively, do kinematic dependent rescaling

allow matching of higher order ME generators [otherwise need to trust parton shower description ...]

provide correct spin correlations often absent in Pythia ... [e.g. top produced unpolarized, while t > bW > blv decay correct]

simulate newly available physics scenarios ... [appear at rapid pace; need for many specialized generators]

Les Houches Accord ...

Specifies how parton-level information about the hard process and sequential decays can be encoded and passed on to a general-purpose generator.

Les Houches generator files

Specialized Generator [→ Hard Process]

Les Houches Interface

Herwig, Pythia

[Resonance Decays]

Parton Showers

Underlying Event

Hadronization

Ordinary Decays

Specialized Generators: [some examples]

AcerMC: ttbb, ...

ALPGEN : $W/Z + \leq 6j$,

 $nW + mZ + kH + \leq 3i$, ...

AMEGIC++: generic LO

CompHEP: generic LO

GRACE: generic LO

[+Bases/Spring] [+ some NLO loops]

GR@PPA : bbbb

MadCUP : $W/Z+ \le 3j$, ttbb

HELAS & : generic LO

MadGraph

MCFM : NLO W/Z+ \leq 2j,

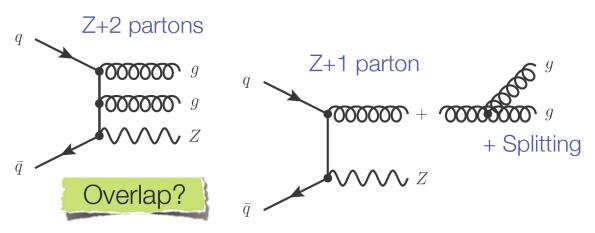
WZ, WH, $H+ \leq 1i$

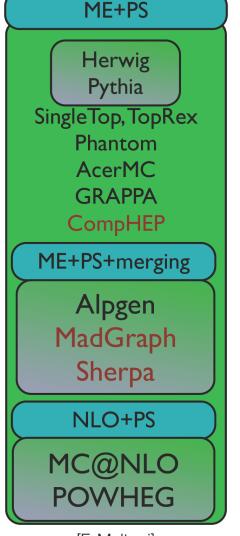
O'Mega & : generic LO WHI7ARD

VECBOS : $W/Z+ \le 4j$

Event Generator types

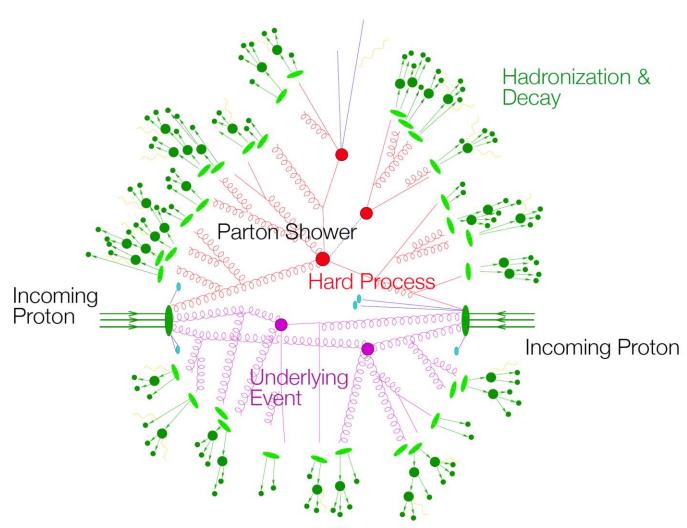
Type II: Leading order matrix element, parton shower & merging


i.e.: MEs for 2 → n processes (e.g. W/Z + jets)
PS with LO generator [Pythia or Herwig]


Examples: ALPGEN, MadGraph, Sherpa

Challenge: Remove overlap between jets

from ME and jets from parton shower


[MLM matching, CKKW]

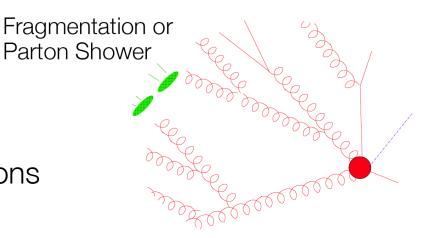
[F. Maltoni]

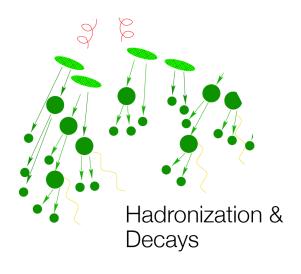
From Partons to Jets

[T. Gleisberg et al., JHEP02 (2004) 056]

From Partons to Jets

From partons to color neutral hadrons:


Fragmentation:


Parton splitting into other partons [QCD: re-summation of leading-logs] ["Parton shower"]

Hadronization:

Parton shower forms hadrons [non-perturbative, only models]

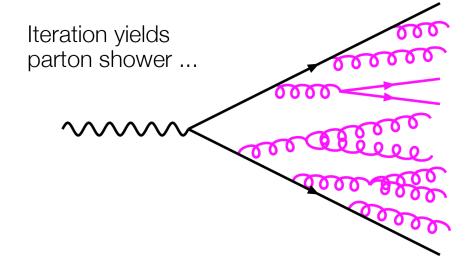
Decay of unstable hadrons [perturbative QCD, electroweak theory]

Parton splitting

$$d\mathcal{P}_{a\to bc} = \frac{\alpha_s}{2\pi} \frac{dQ^2}{Q^2} P_{a\to bc}(z) dz$$

$$P_{q \to qg} = \frac{4}{3} \frac{1+z^2}{1-z}$$

$$P_{g \to gg} = 3 \frac{(1-z(1-z))^2}{z(1-z)}$$


$$P_{g \to q\bar{q}} = \frac{n_f}{2} (z^2 + (1-z)^2)$$

Splitting probability determined by splitting functions P_{q→qg}

Same splitting functions as used for PDF evolution

z: fractional momentum of radiated parton

nf: number of quark flavours

Need soft/collinear cut-offs to avoid non-perturbative regions ... [divergencies!]

Details model-dependent

e.g.
$$Q > m_0 = min(m_{ij}) \approx 1$$
 GeV, $z_{min}(E,Q) < z < z_{max}(E,Q)$ or $p_{\perp} > p_{\perp min} \approx 0.5$ GeV

Hadronization models

Non-perturbative transition from partons to hadrons ... [Modeling relies on phenomenological models available]

Models based on MC simulations very successful:

Generation of complete final states ... [Needed by experimentalists in detector simulation]

Caveat: tunable ad-hoc parameters

Most popular MC models:

Pythia: Lund string model

Herwig: Cluster model

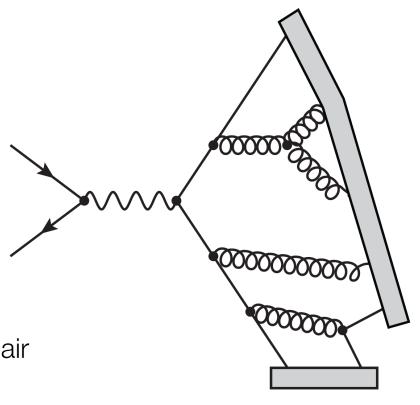
Lund String Model

Lund String Model

[Andersson et al., Phys. Rep. 97 (1983) 31]

QCD potential:

$$V(r) = -\frac{4}{3} \frac{\alpha_s(1/r^2)}{r} + kr$$


String formation between initial quark-antiquark pair

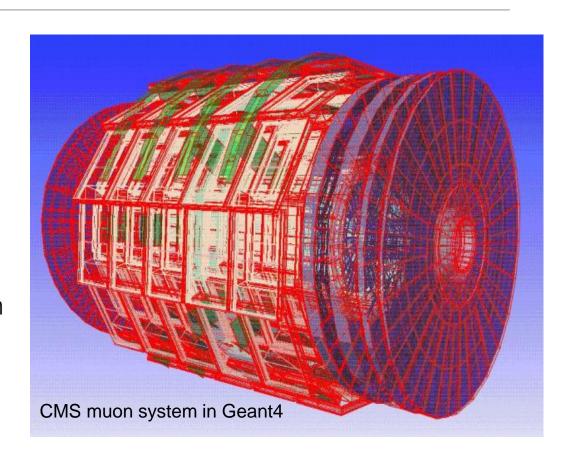
String breaks up if potential energy large enough new quark-antiquark pair

Gluons = 'kinks' in string

At low energy: hadron formation

Very widely used ... [default in Pythia]

After: Ellis et al., QCD and Collider Physics


Detector simulation

GEANT
Geometry And Tracking

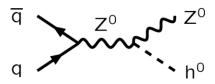
Detailed description of detector geometry [sensitive & insensitive volumes]

Tracking of all particles through detector material ...

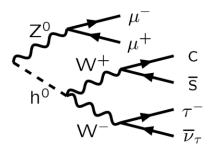
→ Detector response

Developed at CERN since 1974 (FORTRAN)

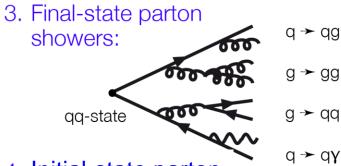
[Today: Geant4; programmed in C++]

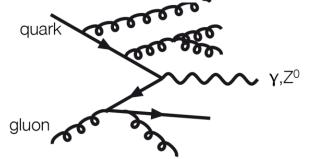

Overview of MC generators

Structure of basic generator process [by order of consideration]


From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modeled; at small

Matrix elements (ME)

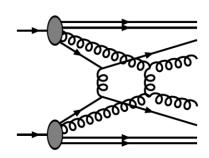

1. Hard subprocess: |M|², Breit Wigners, PDFs


2. Resonance decays: Includes particle correlations

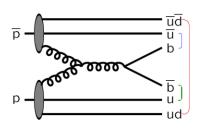
Parton Shower (PS)

4. Initial-state parton showers:

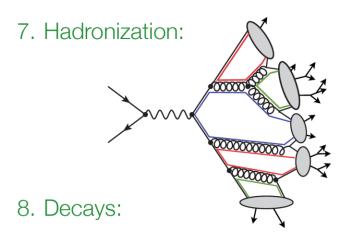
[from G.Herten]

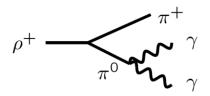

Overview of MC generators

Structure of basic generator process [by order of consideration]

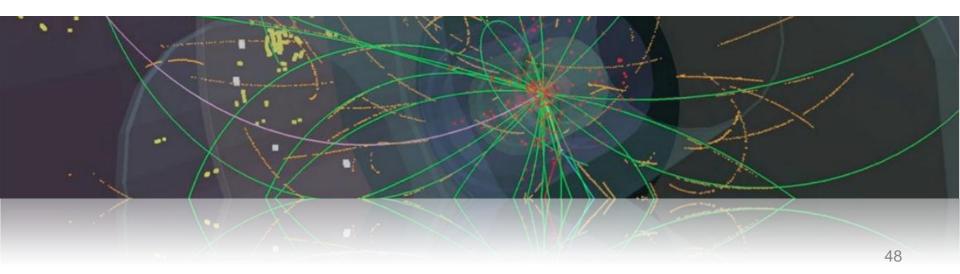

From the 'simple' to the 'complex' or from 'calculable' at large scales to 'modeled; at small

Underlying Event (UE)

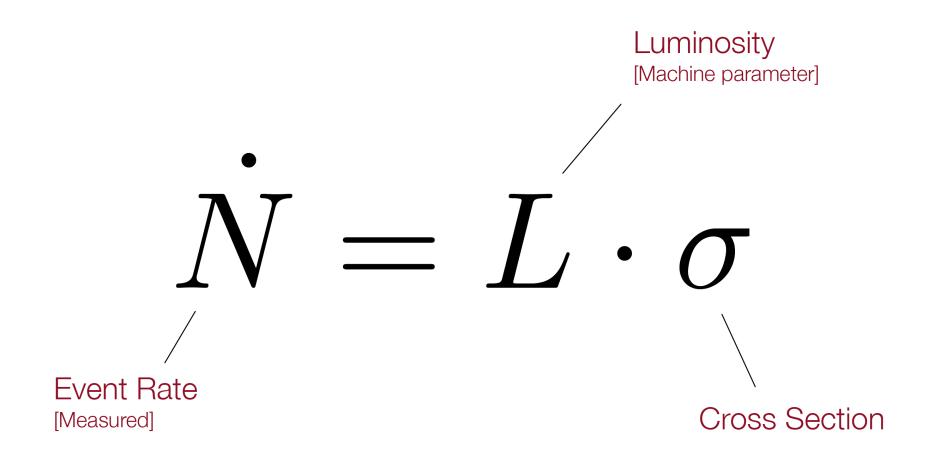

5. Multi-parton interaction:



6. Beam remnants:



Stable Particle State



Luminosity and cross-section measurements

Cross section & Luminosity

Cross section & Luminosity

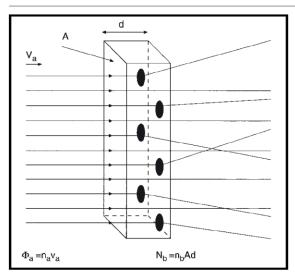
Number of observed events

just count ...

Background

measured from data or calculated from theory

$$\sigma = \frac{\mathsf{N}^{\mathsf{obs}} - \mathsf{N}^{\mathsf{bkg}}}{\int \mathcal{L} \, \mathsf{d}t \cdot \varepsilon}$$


Luminosity

determined by accelerator, triggers, ...

Efficiency

many factors, optimized by experimentalist

Cross section & Luminosity

$$\Phi_a = \frac{\dot{N}_a}{A} = n_a v_a$$

 Φ_a : flux

na: density of particle beam va: velocity of beam particles

$$\dot{N} = \Phi_a \cdot N_b \cdot \sigma_b$$

N: reaction rate

N_b: target particles within beam area

 σ_a : effective area of single scattering center

$$L = \Phi_a \cdot N_b$$

L: luminosity

$$\dot{N} \equiv L \cdot \sigma$$
 $N = \sigma \cdot \int \!\!\!\! L \, dt$ $\sigma = N/L$ integrated luminosity

Collider experiment:

$$\Phi_a = \frac{\dot{N}_a}{A} = \frac{N_a \cdot n \cdot v/U}{A} = \frac{N_a \cdot n \cdot f}{A}$$

$$L = f \frac{nN_a N_b}{A} = f \frac{nN_a N_b}{4\pi\sigma_x \sigma_y}$$

N_a: number of particles per bunch (beam A)

N_b: number of particles per bunch (beam B)

U: circumference of ring

n: number of bunches per beam v: velocity of beam particles f: revolution frequency

A: beam cross-section

 σ_x : standard deviation of beam profile in x standard deviation of beam profile in y

Luminosity determination @ LHC

Elastic scattering in Coulomb region ...

Absolute Methods: Determination from LHC parameters; van-der-Meer separation scans ... Rate measurement for standard candle processes ... LHC Examples: Rate of pp \rightarrow Z/W \rightarrow $\ell\ell/\ell_V$ [needs: electroweak cross sections] Rate of pp \rightarrow $\gamma\gamma$ \rightarrow $\mu\mu$, ee [needs: QED & photon flux] Accuracy: 10/8 Accuracy: 10/8

Accuracy: 2-3%

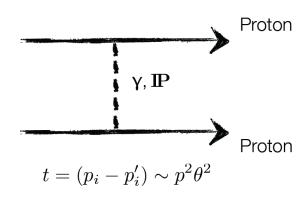
Optical theorem: $\sigma_{tot} \sim \text{Im } f(0)$ [needs: forward elastic and total inel. x-sec]

Combination of the above ...

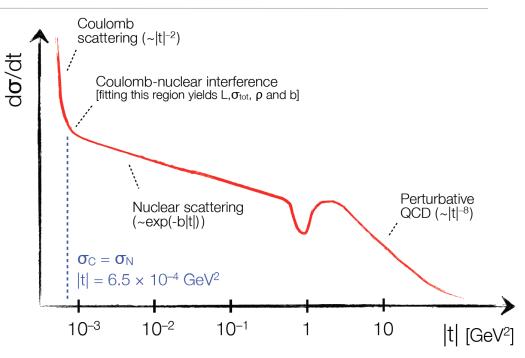
Accuracy: 5-10% [needs σ_{tot} ; needs forw. instrumentation] TOTEM

Accuracy: 10%

[TDR; needs forw. tagging]


Relative Methods:

Particle counting; LUCID @ ATLAS; HF, Pixels @ CMS [needs to be calibrated for absolute luminosity]


Aim: Luminosity accuracy of 2-3% ...

Luminosity and elastic scattering

Elastic Scattering:

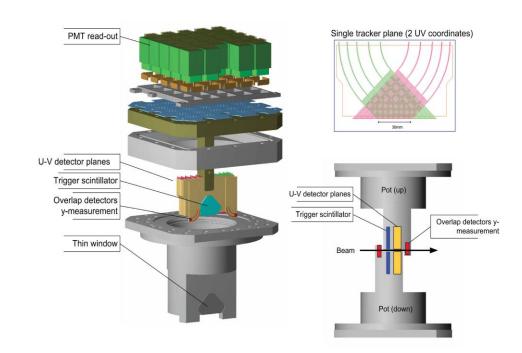
Elastic Scattering at low t is sensitive to exactly known Coulomb amplitude ...

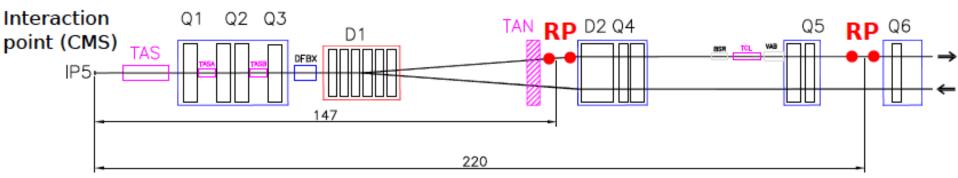
Shape of elastic scattering distribution can also be used to determine total cross section, σ_{tot} , and the parameters ρ and b ...

Perform fit to:

$$\frac{dN}{dt} = L \left(\frac{4\pi\alpha^2}{|t|^2} - \frac{\alpha\rho\sigma_{\rm tot}e^{\frac{-b|t|}{2}}}{|t|} + \frac{\sigma_{\rm tot}^2(1+\rho^2)e^{-b|t|}}{16\pi} \right)$$
Coulomb Scattering
Coulomb/nuclear Interference
Scattering

with:

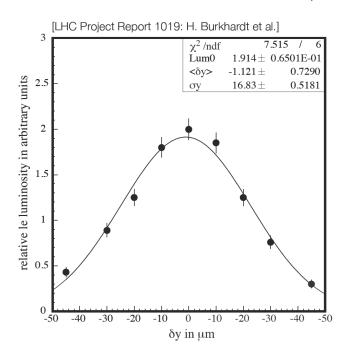

ratio of the real to imaginary part of the elastic forward amplitude

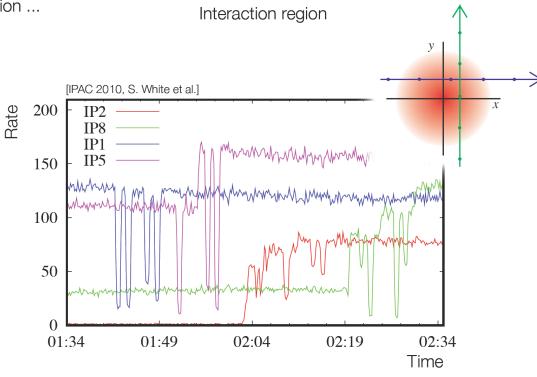

b : nuclear slope

 σ_{tot} : total pp \rightarrow X cross section

Roman Pots (Totem and Alfa)

- Measurement of p-p elastic scattering
- Roman Pots used to move detectors near to stable beam.




Van-der-Meer separation scan

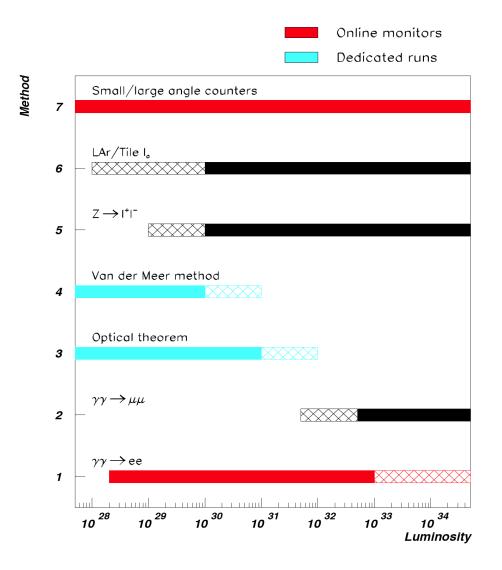
Determine beam size ...

measuring size and shape of the interaction region by recording relative interaction rates as a function of transverse beam separation ...

$$\frac{L}{L_0} = \exp\left[-\left(\frac{\delta_x}{2\sigma_x}\right)^2 - \left(\frac{\delta_y}{2\sigma_y}\right)^2\right]$$

Bunch 1

 N_1


First optimization scans at LHC performed for squeezed optics in all IPs [November 2009].

Bunch 2

Effective area Aeff

 N_2

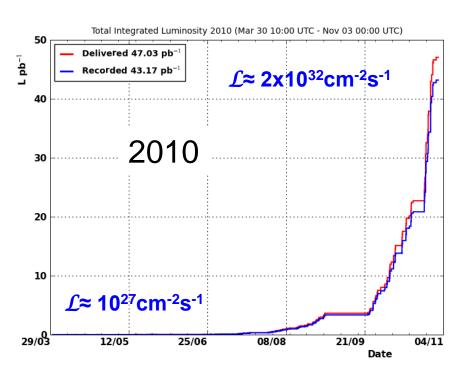
Luminosity determination @ LHC

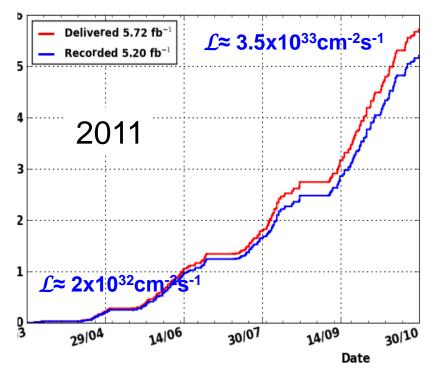
Methods as summarized in ATLAS TDR

[ATLAS Technical Design Report, Vol. I]

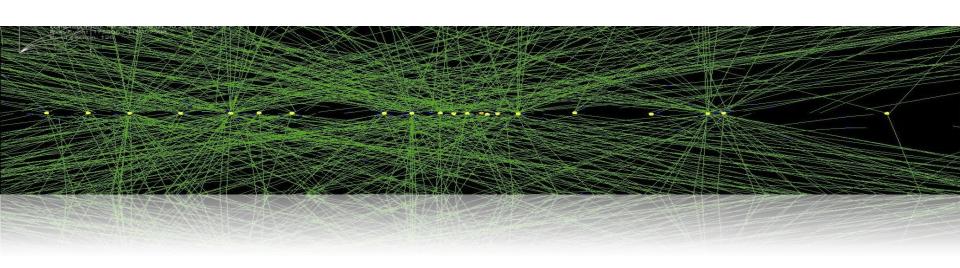
Instantaneous and integrated Luminosity

Instantaneous (max)

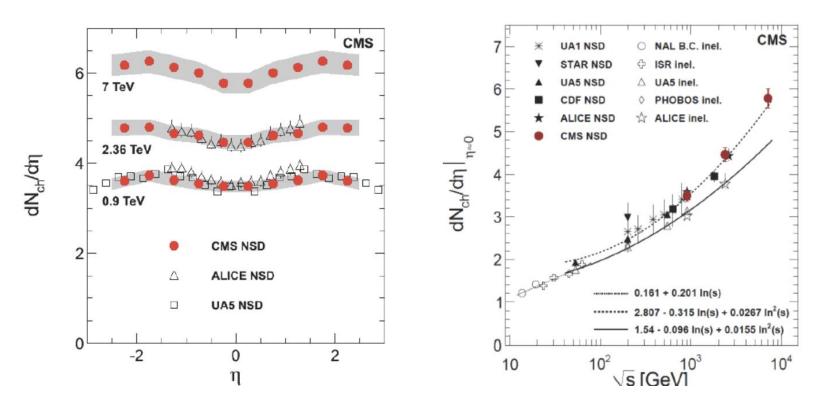

2010: $2.x10^{32} \text{ cm}^{-2}\text{s}^{-1}$


2011: $3.5 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Integrated

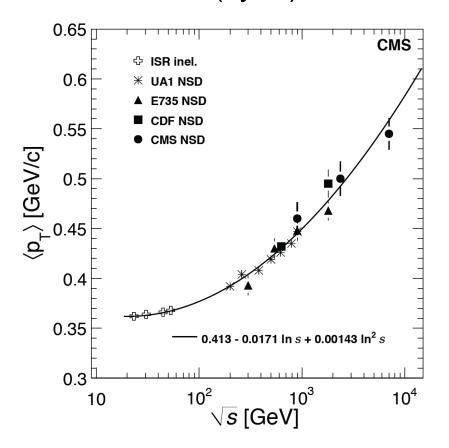

47 pb⁻¹

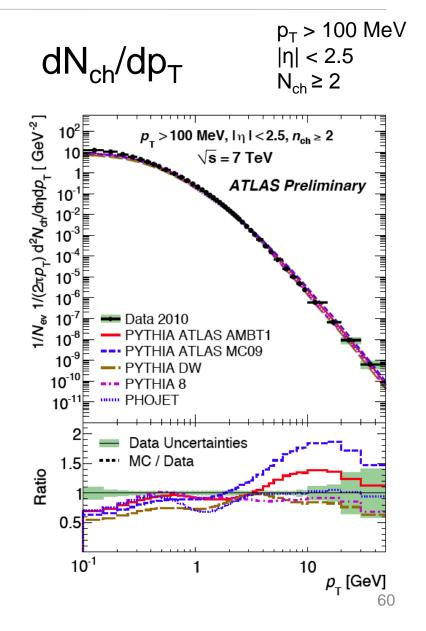
5.7 fb-1


Minimum bias events

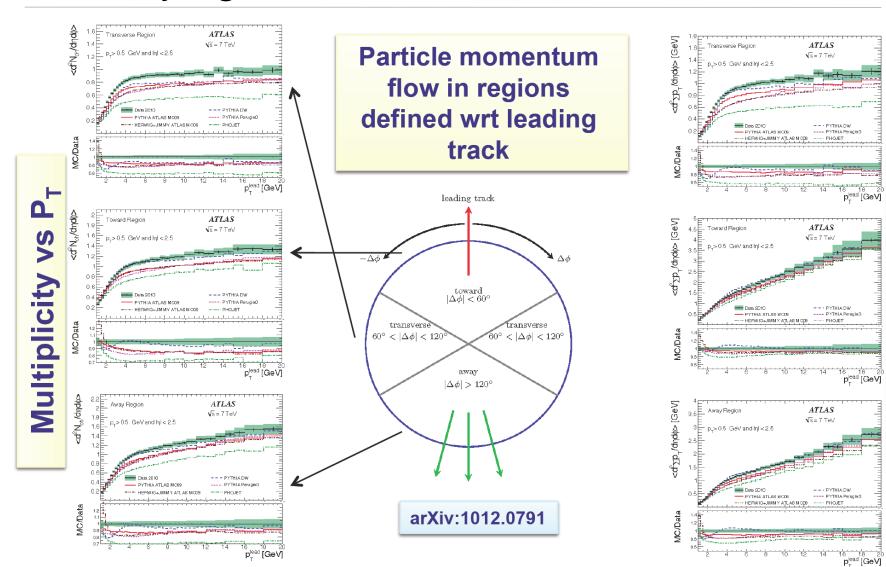
Characteristics of inelastic p-p collisions

Particle density in minimum bias events

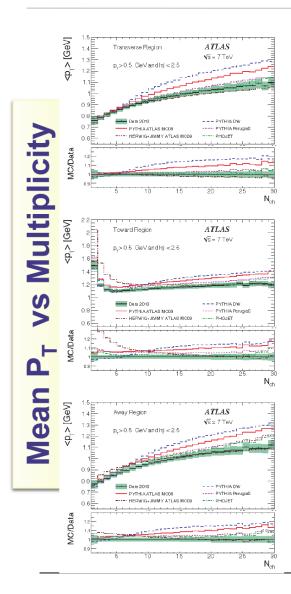

Soft QCD (PT threshold on tracks: 50 MeV)



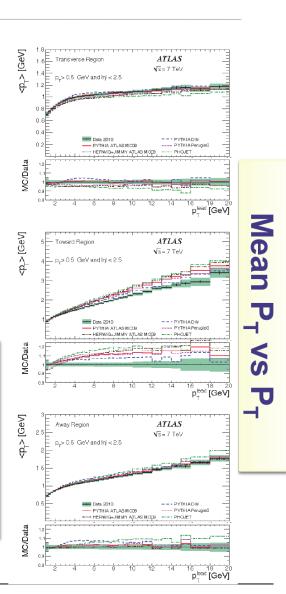
Particle density in data rises faster than in model predictions. Tuning of MC generators was needed.


Charged particle p_⊤ spectrum

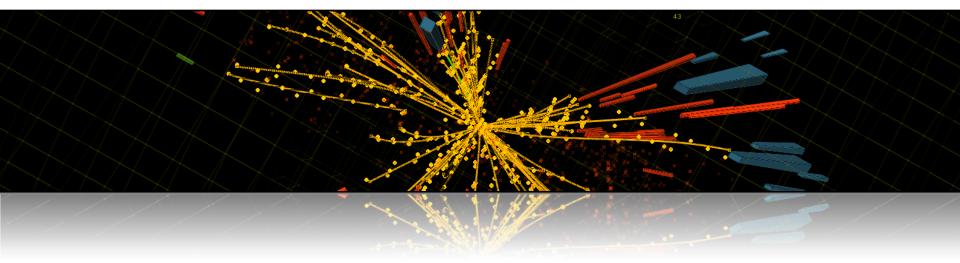
 $< p_T > = 0.545$ ± 0.005 (stat.) ± 0.015 (syst.) GeV/c



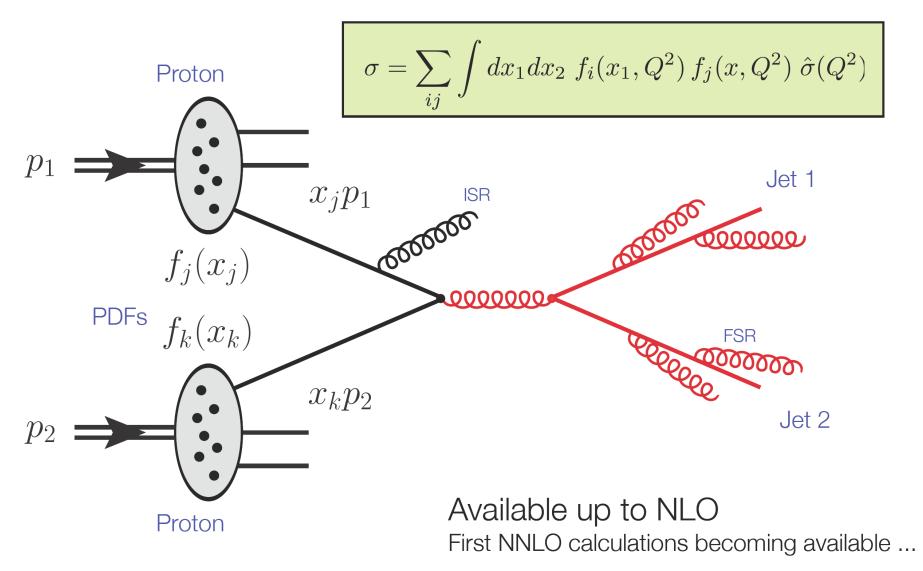
Underlying event



Underlying event



From these comparisons: determine best "tunes" for underlying event. In practice: tuning of soft QCD model in PYTHIA

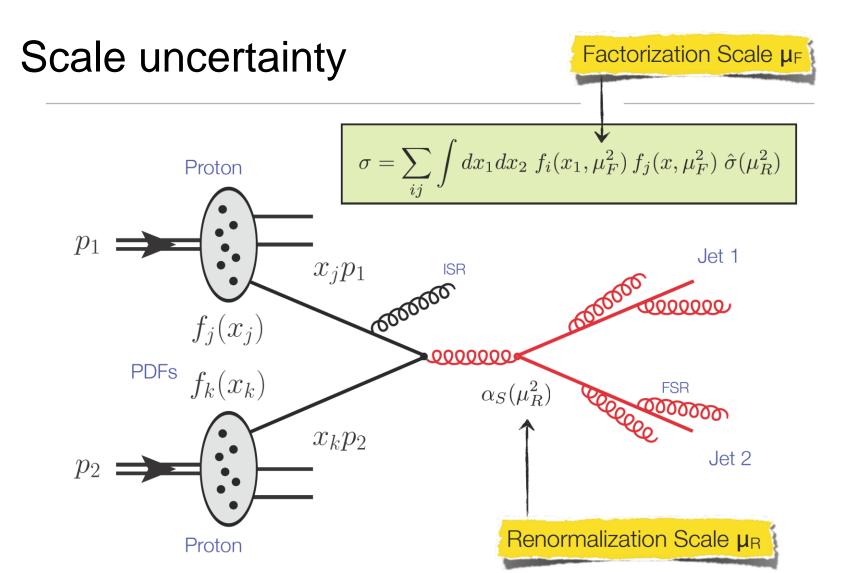

Tuning is important for data-MC agreement further down; particle isolation (e.g. in lepton identification) and missing energy (ME_T)

Jet physics

Jet production @ LHC

Higher orders

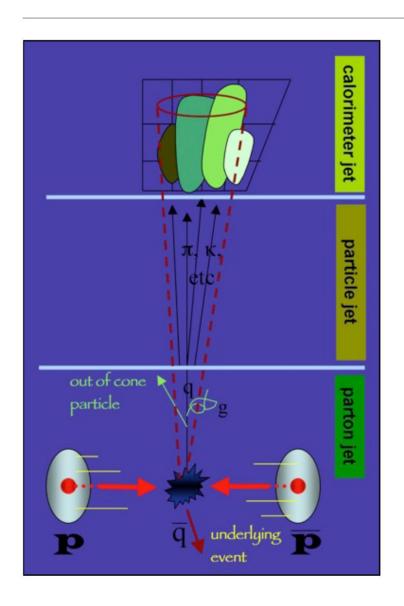
At least next-to-leading order (NLO) required to compare to precision measurements


[First NNLO calculations becoming available ...]

Various divergencies; artifacts of perturbation theory; the full theory gives finite results ...

[But we don't know how to solve it]

Ultraviolet (UV) divergences, i.e. at very large momenta Solution: renormalization; choice of correct scale ... ["Status of peaceful coexistence with divergences", S.D. Drell]


Infrared (IR) divergences, i.e. at very small momenta Solution: cancellations, factorization, IR-safe observables

The default renormalization and factorization scales (μ_R and μ_F respectively) are defined to be equal to the p_T of the leading jet in the event

Scale uncertainty estimation: vary μ_R , μ_F within $[\mu_R/2, 2\mu_R]$ and $[\mu_F/2, 2\mu_F]$

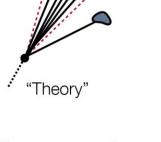
Jet properties measurement

Calorimeter Jet

[extracted from calorimeter clusters]

Understanding of detector response Knowledge about dead material Correct signal calibration Potentially include tracks

Hadron Jet


[might include electrons, muons ...]

Hadronization Fragmentation Parton shower Particle decays

Parton Jet

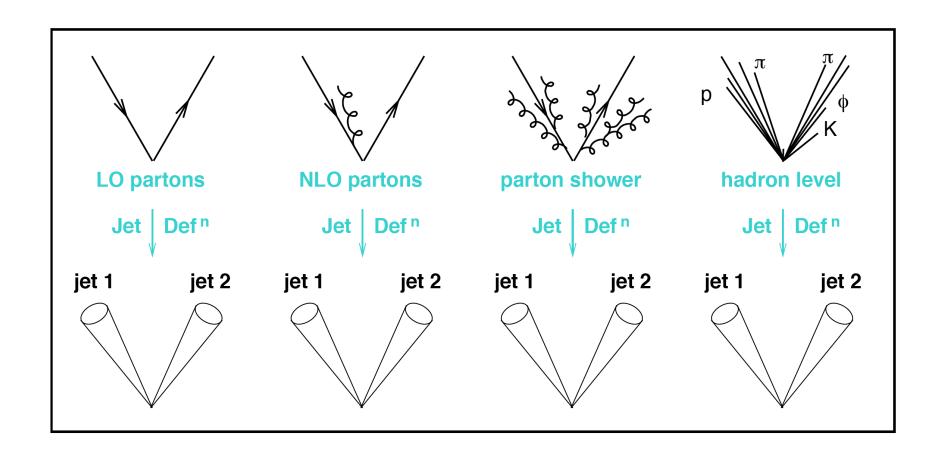
[quarks and gluons]

Proton-proton interactions Initial and final state radiation Underlying event

Jet

From measured energy to particle energy

Compensate energy loss due to neutrinos, nuclear excitation ...


From particle energy to original parton energy

"Measurement"

Compensate hadronization; energy in/outside jet cone

Needs Calibration

Jet properties measurement

Jets may look different at different levels
Robust jet definition → stable on all jet levels

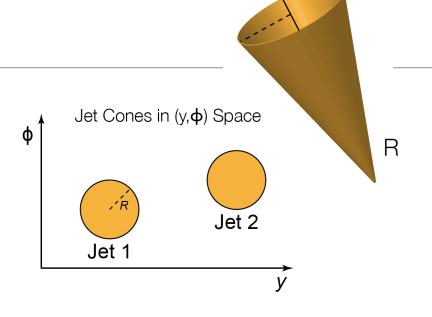
Jet reconstruction

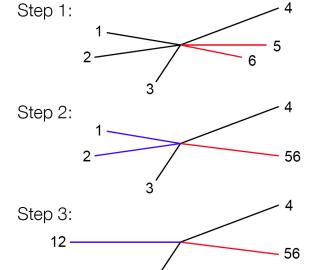
Iterative cone algorithms:

Jet defined as energy flow within a cone of radius R in (y, ϕ) or (η, ϕ) space:

$$R = \sqrt{(y - y_0)^2 + (\phi - \phi_0)^2}$$

Sequential recombination algorithms:


Define distance measure d_{ij} ... Calculate d_{ij} for all pairs of objects ...


Combine particles with minimum d_{ii} below cut ...

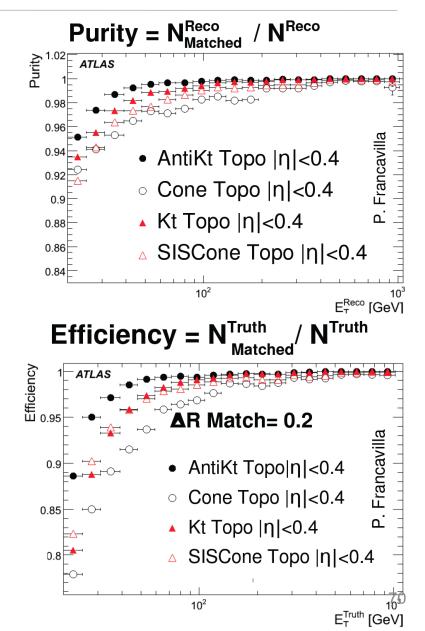
Stop if minimum dij above cut ...

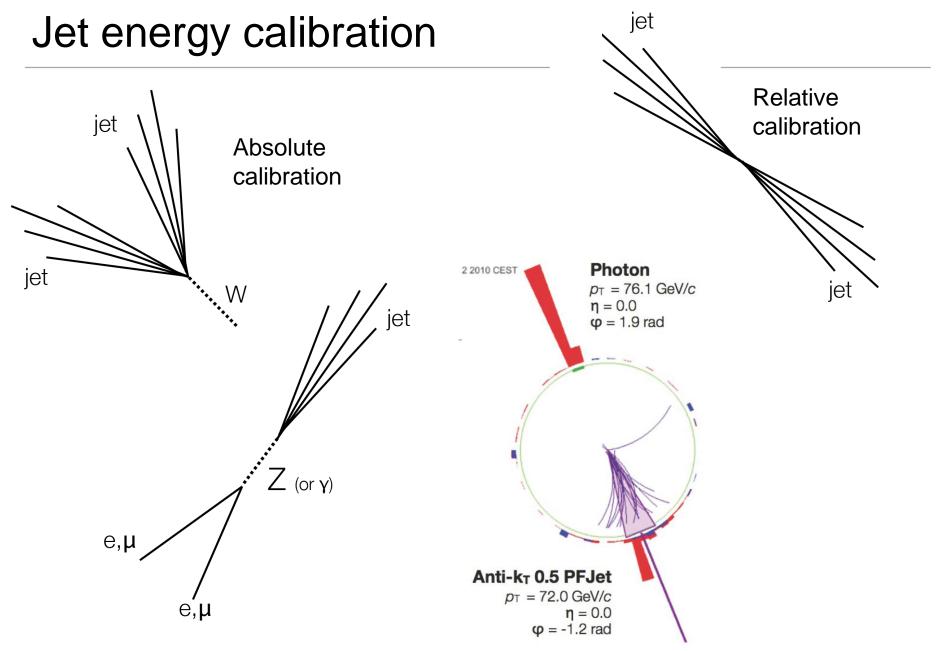
e.g. k_T-algorithm: [see later]

$$d_{ij} = \min\left(k_{\mathrm{T,i}}^2, k_{\mathrm{T,j}}^2\right) \frac{\Delta R_{ij}}{R}$$

Sequential recombination

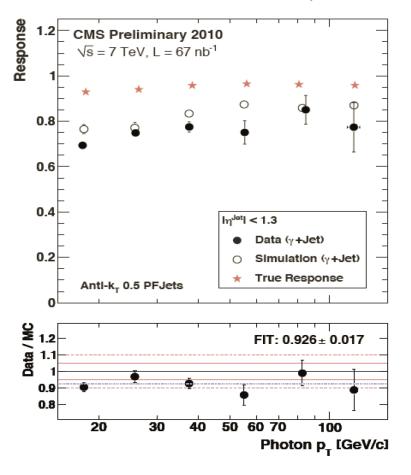
Jet algorithms performance

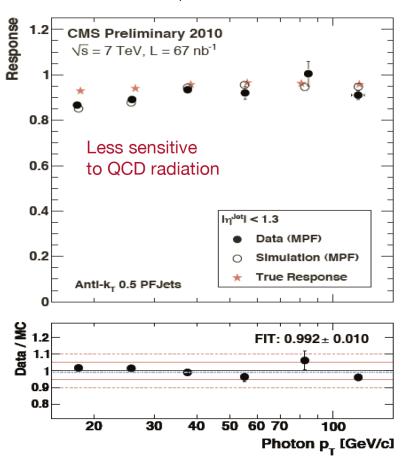

Anti-kt clustering algorithm:


in distance formula replace P_T² by P_T^{2p}

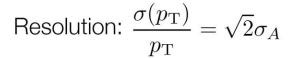
p=1: standard Kt

p=-1: anti-Kt

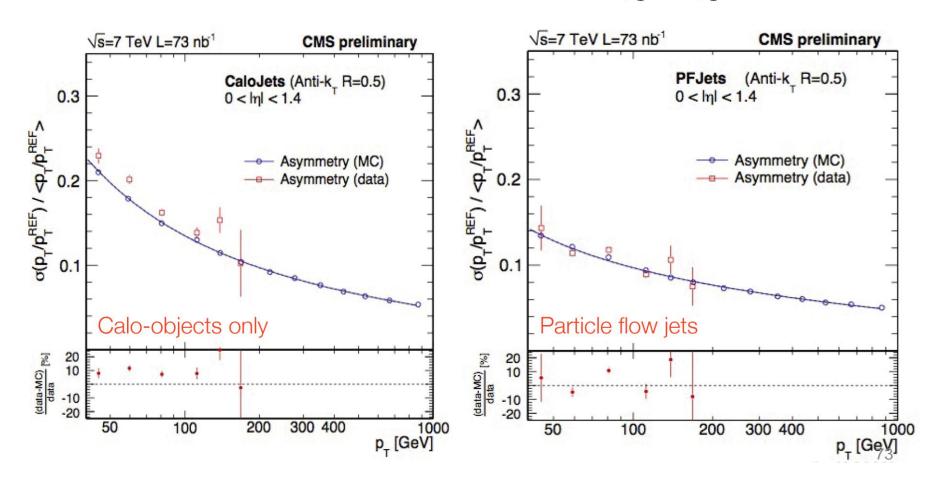

$$D_{ij} = \min(P_{Ti}^2, P_{Tj}^2) \frac{\Delta R_{ij}^2}{R^2}$$



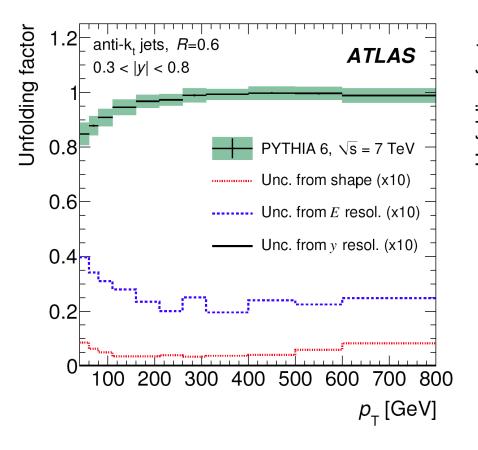
Jet energy calibration

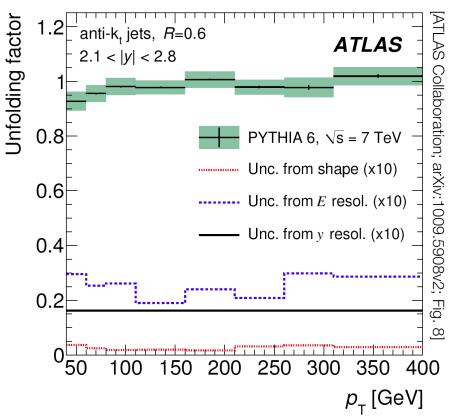

Simple Photon+jet balance Bias due to soft veto on second jet

MET projection fraction method Sums over non-photon E_T for balance



Resolution:
$$\frac{\sigma(p_{\mathrm{T}})}{p_{\mathrm{T}}} = \sqrt{2}\sigma_{A}$$
 using pt asymmetry: $A = \frac{p_{\mathrm{T}}^{\mathrm{jet \ 1}} - p_{\mathrm{T}}^{\mathrm{jet \ 2}}}{p_{\mathrm{T}}^{\mathrm{jet \ 1}} + p_{\mathrm{T}}^{\mathrm{jet \ 2}}}$


jet

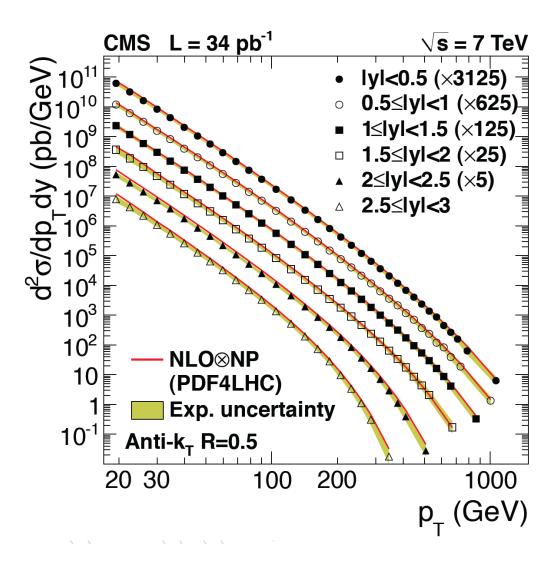


Resolution unfolding

 $N_{
m part} = N_{
m meas} \cdot rac{N_{
m part}^{
m MC}}{N_{
m meas}^{
m MC}}$

Measured spectrum = Real spectrum □ Experim. resolution

Inclusive jet cross-section

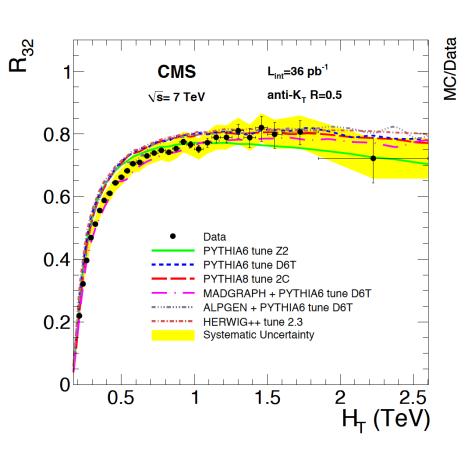

Cross section is huge (~ Tevatron x 100)

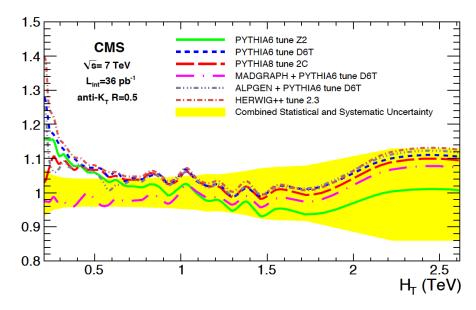
Very good agreement with NLO QCD over nine orders of magnitude

PT extending from 20 to 500 GeV

Main uncertainty:

Jet Energy Scale (3-4%)

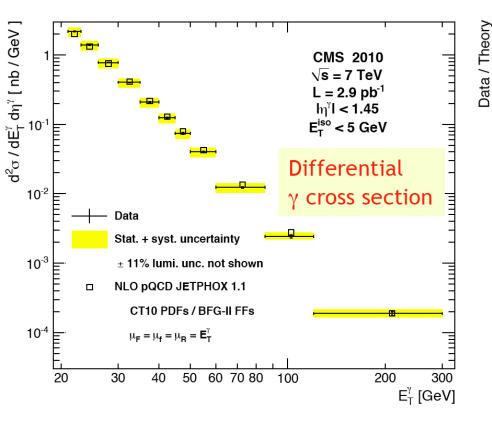

Inclusive jet cross-section

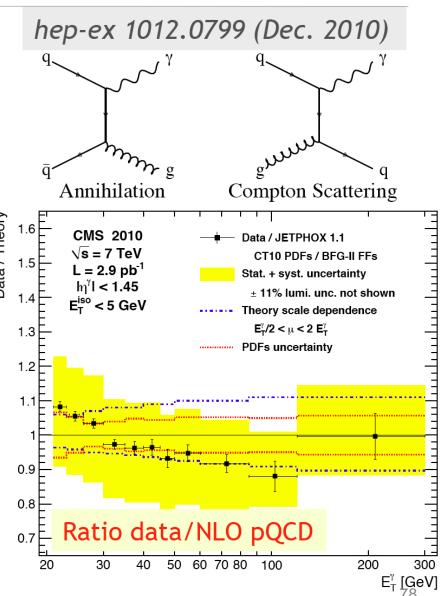

[ATLAS Collaboration; arXiv:1009.5908v2; Tab. 1]

0 < y < 0.3									
		$p_{\rm T} [{\rm GeV}]$ 60-80 80-110 110-160 160-210 21 Measured cross section [pb/GeV] 3.5e+04 7.9e+03 1.4e+03 2.7e+02	10-260	260-310	310-400		500-600		
NLO		Measured cross section Inh/GeVI 3 Se±1/4 / Ye±1/3 1 4e±1/3 9 7e±1/9	43			2.0	_		
,		0 < y < 0.3							
		$p_{\mathrm{T}} \; [\mathrm{GeV}]$					60-80		
		Measured cross section [pb/GeV]					3.5e + 04		
		NLO pQCD (CTEQ 6.6) × non-pert. corr.	V	4.1e+	04				
		Non-perturbative correction					2		
0.3 <		Statistical uncertainty					1		
NLO 1		Absolute JES uncertainty					5 2		
		Unfolding uncertainty				0.04			
		Total systematic uncertainty				$+0.3 \\ -0.2$			
		PDF uncertainty				0.02			
		Scale uncertainty				$+0.006 \\ -0.04$			
		α_s uncertainty				0.03			
Table		Non-perturbative correction uncertain	inty			+0.06			
pQCD the me where		Total theory uncertainty				+0.0' $-0.0!$			
	76								

Inclusive jet cross sections: 3-jet / 2-jet ratio

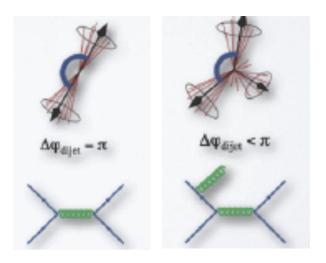
hep-ex 1106.0647, PLB 702 (2011) 336

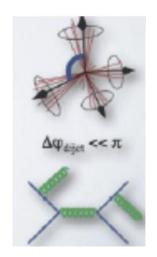


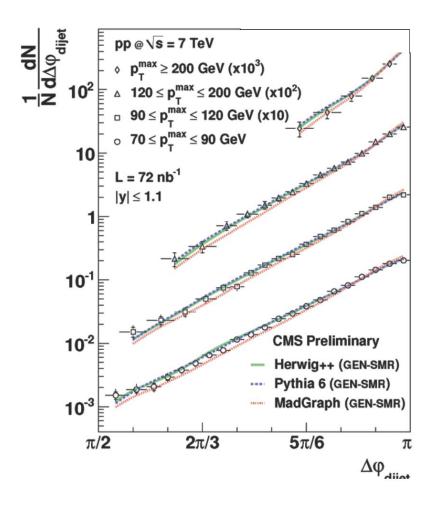


$$H_{\mathrm{T}} = \sum_{i=1}^{N} p_{\mathrm{T}_i}$$

Direct photon production

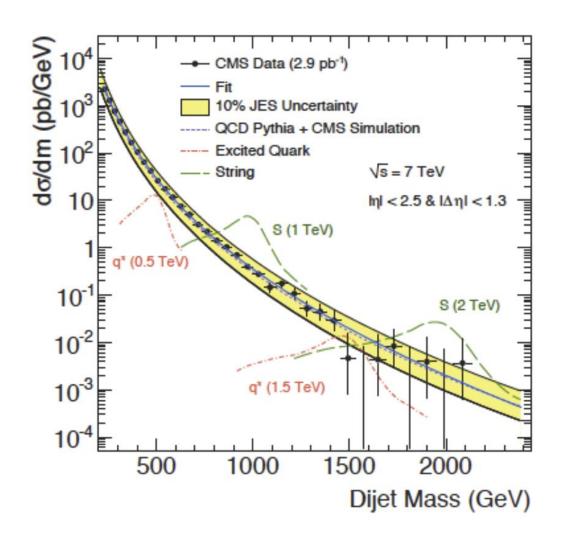

Precision test of perturbative QCD Constrain PDF in the proton Background for e.g. H→γγ



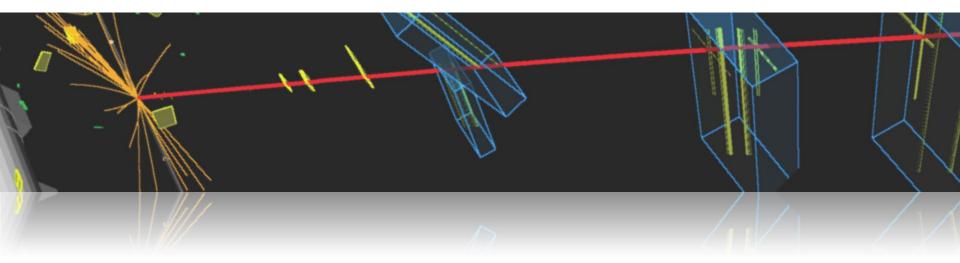


Jets: angular correlations

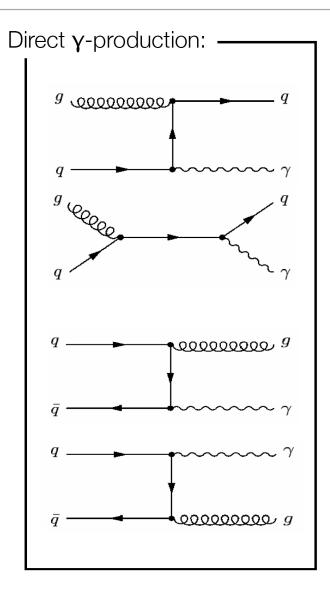
Difference in azimuth of the two leading jets Probe of QCD high-order processes Very slight dependence on JES No dependence on luminosity

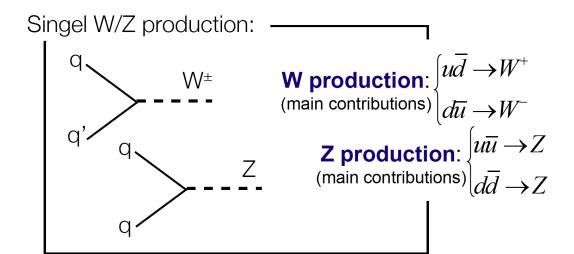

Dijet mass

Very early search for numerous resonances BSM: string resonance, excited quarks, axi-gluons, colorons, E6 diquarks, W' and Z', RS gravitons


Four-parameter fit to describe QCD shape:

$$\frac{d\sigma}{dm} = p_0 \frac{\left(1 - \frac{m}{\sqrt{s}}\right)^{p_1}}{\left(\frac{m}{\sqrt{s}}\right)^{B}};$$


$$B = p_2 + p_3 \left(m/\sqrt{s}\right)$$



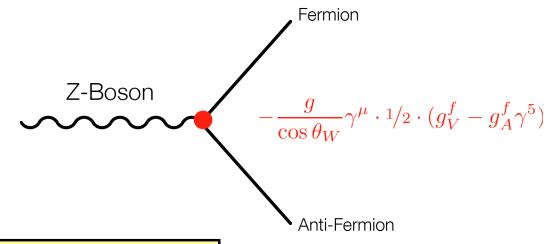
W and Z bosons

Vector boson production

- At LHC energies these processes take place at low values of Bjorken-x
- Only sea quarks and gluons are involved
- At EW scales sea is driven by the gluon,
 i.e. x-sections dominated by gluon uncertainty
- Constraints on sea and gluon distributions

Z-boson interaction

"
$$ffZ$$
": $e(s_W c_W)^{-1}(\mathbf{T}_3 - \sin^2 \theta_W \mathbf{Q})$


NC interaction:

$$\mathcal{L}_{\text{int}}^{Z} = -g/c_W \cdot \mathbf{Z}_{\mu} \cdot 1/2 \cdot (\bar{\psi} \gamma^{\mu} \mathbf{g}_{V} \psi - \bar{\psi} \gamma^{\mu} \gamma^{5} \mathbf{g}_{A} \psi)$$

Z-boson interaction

Couplings to the Z-Boson:

$$g_V = T_3 - 2Q \sin^2 \theta_W$$

 $g_A = T_3$

Standard Mod	$g_{\scriptscriptstyle V}$	${\cal G}_{\scriptscriptstyle {\cal A}}$
ν	1/2	1/2
ℓ^-	$-\frac{1}{2}$ + 2 sin ² θ_W	$-\frac{1}{2}$
u – quark	$+\frac{1}{2}-\frac{4}{3}\sin^2\theta_W$	1/2
d – quark	$-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W$	-1/ ₂

Couplings to left/right handed fermions:

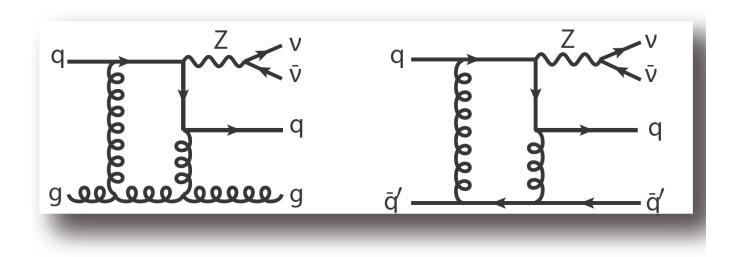
$$g_L = \frac{1}{2}(g_V + g_A)$$

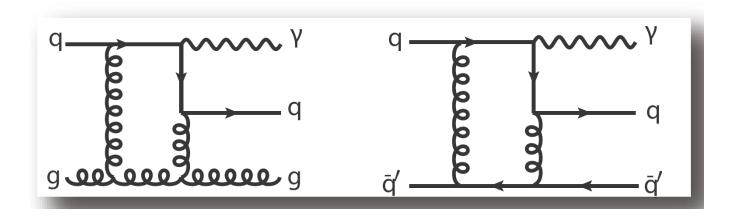
 $g_R = \frac{1}{2}(g_V - g_A)$

W-boson interaction

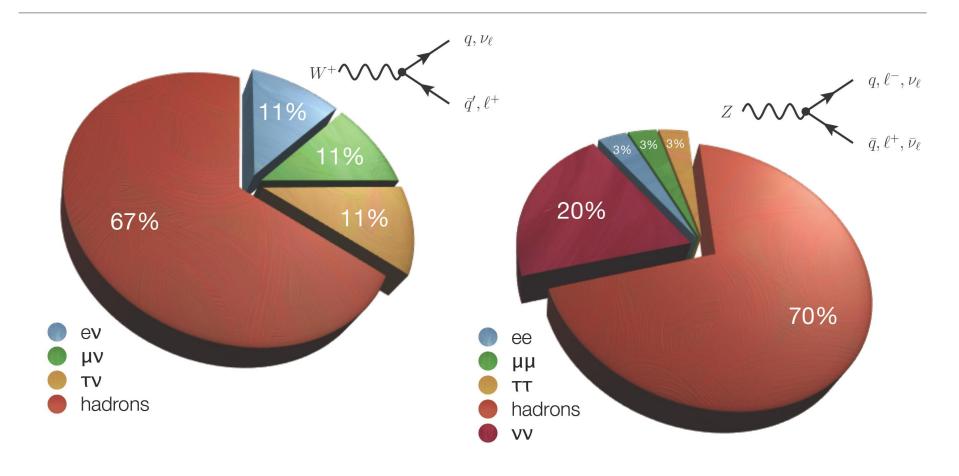
"
$$\ell\nu W$$
", " udW ": $e(\sqrt{2}s_W)^{-1}$

CC interaction:

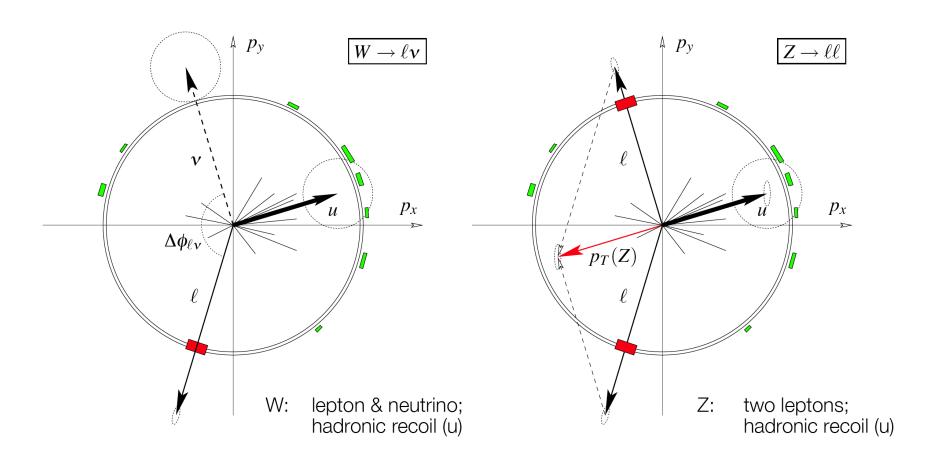

 $[\text{e,}\nu \text{ only}]$


$$\mathcal{L}_{\text{int}}^{W} = -e(\sqrt{2}s_{W})^{-1} \left[\mathbf{W}_{\mu}^{+} \bar{\psi} \gamma^{\mu} (\mathbf{T}_{1} + i\mathbf{T}_{2}) \psi + \mathbf{W}_{\mu}^{-} \bar{\psi} \gamma^{\mu} (\mathbf{T}_{1} - i\mathbf{T}_{2}) \psi \right]$$

$$\mathcal{L}_{\text{int}}^{W} = -g/\sqrt{2} \left[\mathbf{W}_{\mu}^{+} \left(\bar{\nu}_{e} \right)_{L} \gamma^{\mu} e_{L} + \mathbf{W}_{\mu}^{-} \bar{e}_{L} \gamma^{\mu} (\nu_{e})_{L} \right]$$


Fermions with T ≠ 0 only

Examples of high-order processes



W and Z boson decays

Leptonic decays (e/ μ): very clean, but small(ish) branching fractions Hadronic decays: two-jet final states; large QCD dijet background Tau decays: somewhere in between...

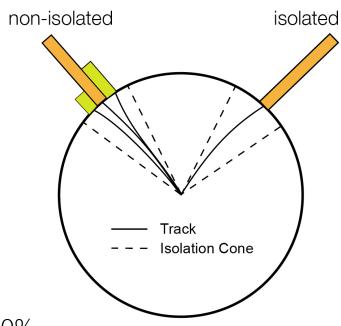
W and Z boson signatures

Additional hadronic activity → recoil, not as clean as e⁺e⁻ Precision measurements: only leptonic decays

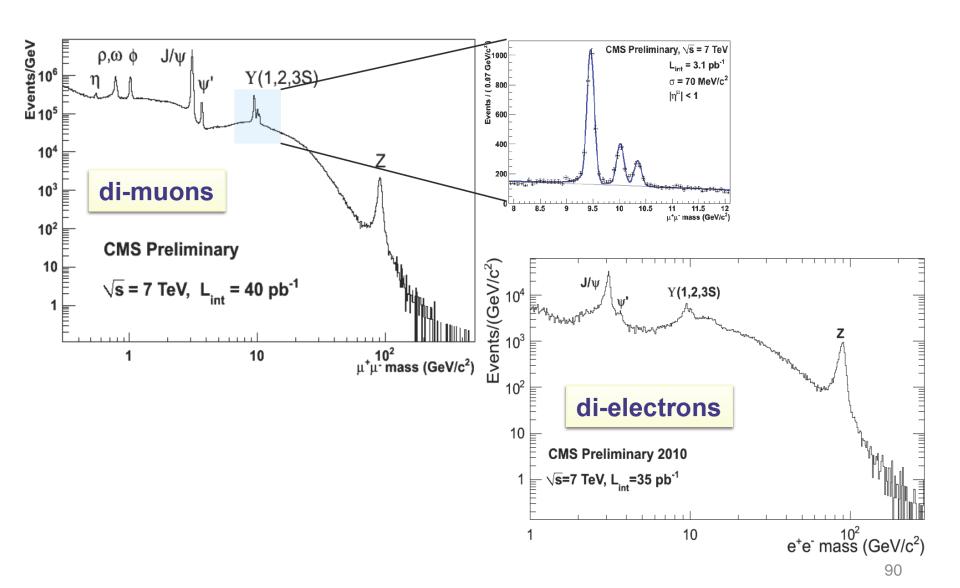
Isolated High-p_T Leptons

Starting point for many hadron collider analyses: isolated high-p_T leptons → discriminate against QCD jets ...

QCD jets can be mis-reconstructed as leptons ("fake leptons")


QCD jets may contain real leptons e.g. from semileptonic B decays [B > IVX]

→ soft and surrounded by other particles


"Tight" lepton selection ...

Require e/μ with $p_T >$ (at least) 20 GeV Track isolation, e.g. $\sum p_T$ of other tracks in cone of ΔR =0.1 less than 10% of lepton p_T

Calorimeter isolation, e.g. energy deposition from other particles in cone of ΔR =0.2 less than 10%

Dilepton mass spectrum at 7 TeV

Example: CMS W Analysis

Select isolated electrons and muons ...

Data

EWK

QCD

[muons: $p_T > 9$ GeV; electrons: $p_T > 20$ GeV]

Investigate transverse mass ...

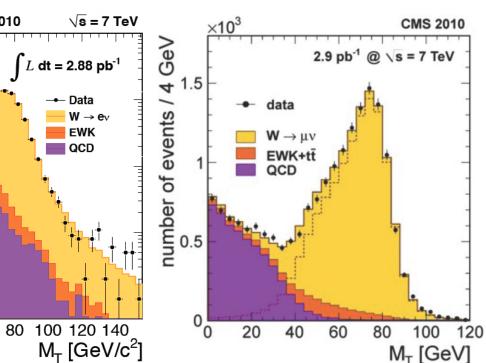
[Use $E_{T,miss}$; $M_T = (p_{lep} + E_{T,miss})^{1/2}$]

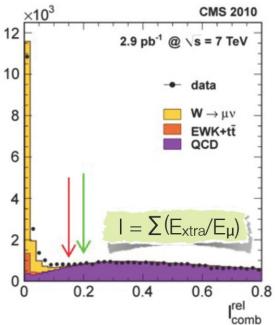
60

40

CMS preliminary 2010

events / 4 GeV/c²

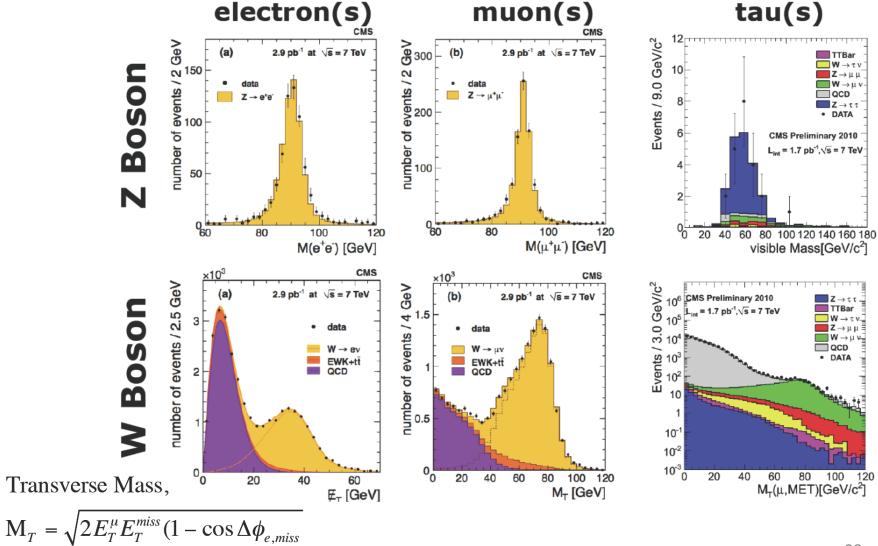

10³


 10^{2}

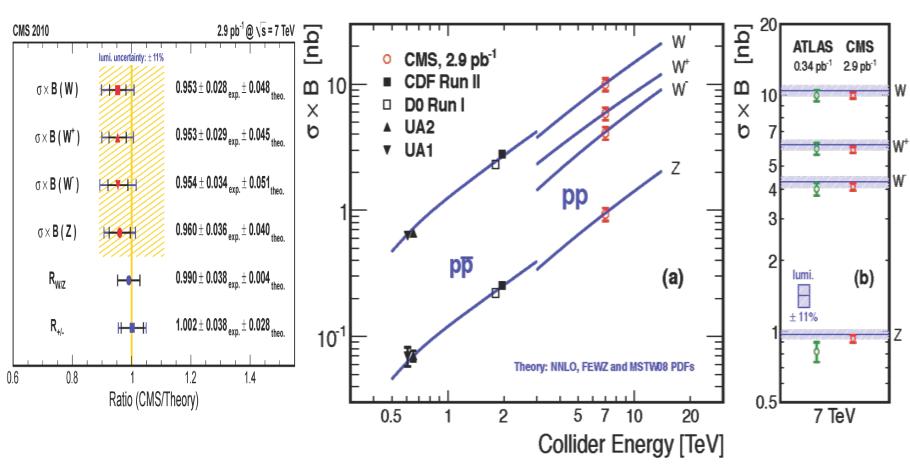
10

1

20



The W signal yield is extracted from a binned likelihood fit to the M_{T} distribution. Three different contributions:


- W signal
- QCD background
- other (EWK) backgrounds.

W/Z production at 7 TeV

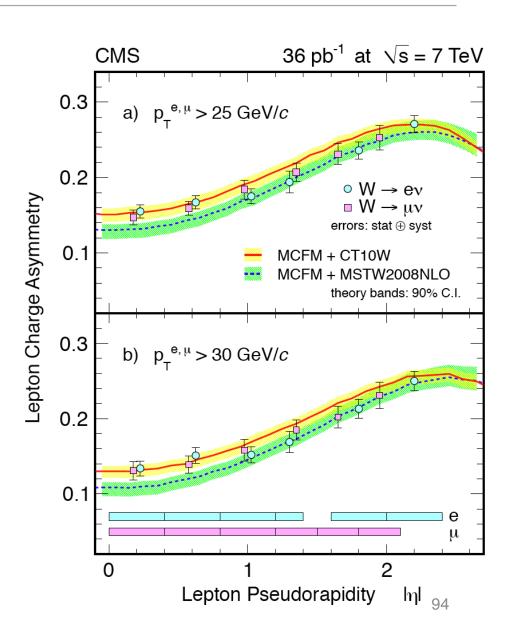
W, Z cross-section v.s. √s

hep-ex 1012.2466, JHEP 01 (2011) 080

W+/W- charge asymmetry

NNLO cross sections: scale uncertainties very small

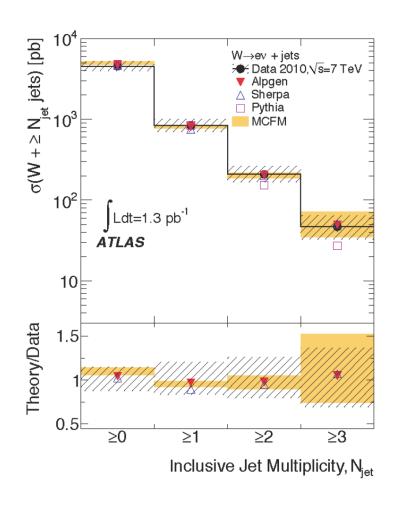
W rapidity: asymmetry [sensitivity to PDFs]

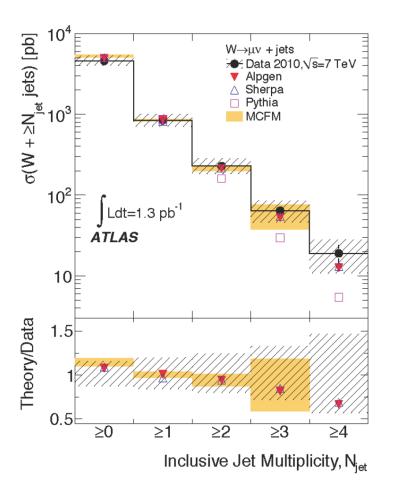

$$A_W(y) = \frac{d\sigma(W^+)/dy - d\sigma(W^-)/dy}{d\sigma(W^+)/dy + d\sigma(W^-)/dy}$$

Proton-Proton Collider:

symmetry around y=0 ...

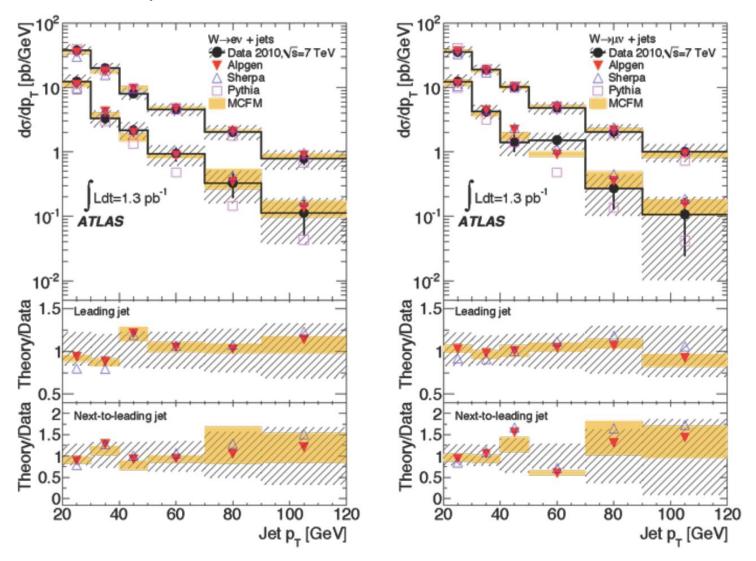
PDFs:

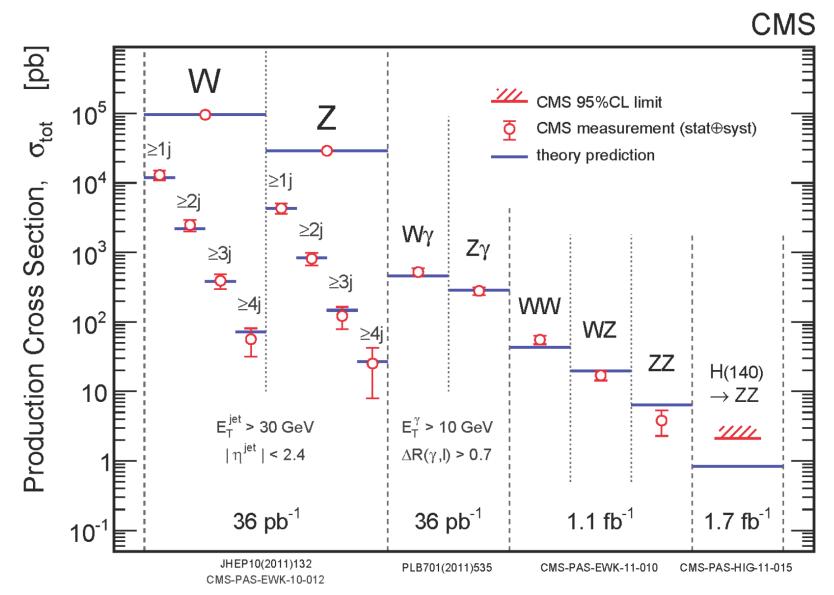

u(x) > d(x) for large x ... more W⁺ at positive rapidity d/u ratio < 1 ... always more W⁺ than W⁻



W + Jets multiplicity

 $|\eta| < 2.8$ and $p_{\rm T} > 20$ GeV


arXiv:1012.5382



W + Jets P_T

Tails are important in several Exotica and SUSY searches

SM processes measured at LHC

W Mass Determination

Very challenging measurement

Template method:

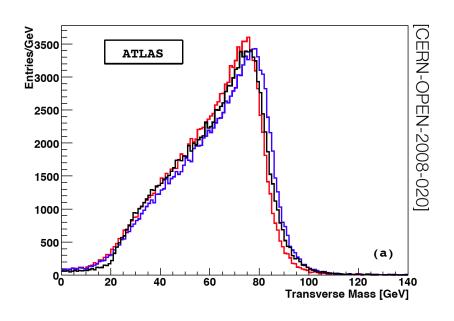
Fit templates (from MC simulation) with different m_W to data

→ W mass from best fit

Requires very good modeling of physics & detector

Present

systematic uncertainties: [DØ-Experiment]


Lepton energy scale: 34 MeV

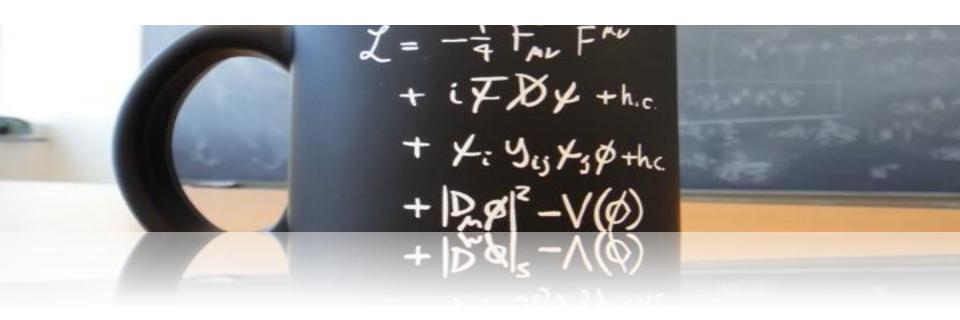
calibrated to known Z mass [calorimeter: 3.6% for 50 GeV]

Hadronic recoil: 6 MeV

W production model [PDFs, ...]: 12 MeV

Templates for $m_W = 80.4 \pm 1.6 \text{ GeV}$

Ultimate LHC goal: m_W uncertainty of 15 MeV [via combination]


Acknowledgments

We are thankful to Hans-Christian Schultz-Coulon Kirchhoff-Institut fur Physic

for allowing to use material of the course Advanced Topics in Particle Physics University of Heidelberg

End of Lecture 3

Electroweak theory (reminder)

Electroweak Theory

Unified theory of electromagnetic and weak interactions

Non-abelian gauge group: $SU(2)_T \times U(1)_Y$

[T: weak isospin → coupling g, Y: hypercharge → coupling g']

Pure Yang-Mills theory:

Massless gauge bosons W^{1,2,3}, B⁰

Electroweak symmetry breaking:

Masses for gauge bosons and fermions [Higgs mechanism]

 $T = \frac{1}{2}$

Three generations of quarks and leptons

Left-handed doublets:

$$\begin{pmatrix}
u_e \\ e \end{pmatrix}_L$$
, $\begin{pmatrix}
u_\mu \\ \mu \end{pmatrix}_L$, $\begin{pmatrix}
u_\tau \\
\tau \end{pmatrix}_L$, $\begin{pmatrix} u \\ d \end{pmatrix}_L$, $\begin{pmatrix} c \\ s \end{pmatrix}_L$, $\begin{pmatrix} t \\ b \end{pmatrix}_L$

Right-handed singlets:

$$e_R$$
,

$$\mu_{R}, \qquad \tau_{R},$$

$$u_R$$
, d_R , c_R , s_R , t_R , b_R

Rich flavor phenomenology ...

Electroweak Theory

W and Z masses: connected via weak mixing angle

$$m_W^2 = \frac{g^2 v^2}{4}, \quad m_Z^2 = \frac{v^2}{4} (g^2 + g'^2) \longrightarrow \frac{m_W^2}{m_Z^2 \cos \theta_W} = 1$$

Couplings to W and Z

[here: leptons only]

$$g : SU(2)_T$$
 coupling $g' : U(1)_Y$ coupling

 θ_{W} : Weinberg angle

v: vacuum expectation value

$$\mathcal{L}^{CC} = -\frac{g}{\sqrt{2}} \left[J_{\mu}^{+CC} W^{\mu,-} + J_{\mu}^{-CC} W^{\mu,+} \right]$$

$$= -\frac{g}{\sqrt{2}} \left[\left(\bar{\nu}_{e} \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) e \right) W^{\mu,-} + \left(\bar{e} \gamma_{\mu} \frac{1}{2} (1 - \gamma_{5}) \nu_{e} \right) W^{\mu,+} \right]$$

Charged current: always flavor-changing

[quarks: mass eigenstates ≠ EW eigenstates → CKM matrix]

$$\mathcal{L}^{\text{NC}} = -\frac{g}{2\cos\theta_W} J_{\mu}^{\text{NC}} Z^{\mu}$$

$$= -\frac{g}{2\cos\theta_W} \left[\bar{\nu}_e \gamma_{\mu} \frac{1}{2} (1 - \gamma_5) \nu_e - \bar{e} \gamma_{\mu} \frac{1}{2} (1 - \gamma_5) e + 2\sin^2\theta_W (\bar{e} \gamma_{\mu} e) \right] Z^{\mu}$$

Neutral current: always flavor-conserving

The SM Lagrangian

$$\mathcal{L}=\mathcal{L}_0+\mathcal{L}'$$
 Interaction Gauge Bosons $\mathcal{L}_0=-rac{1}{4}F_{\mu
u}F^{\mu
u}+iar{\psi}\gamma^\mu\partial_\mu\psi$ Fermions

$$\mathcal{L}' = e \bar{\psi} \gamma^{\mu} A_{\mu} \psi$$
 Fermion-Boson Coupling

$$eA_{\mu} = \frac{g_s}{2} \lambda_{\nu} G^{\nu}_{\mu} + \frac{g}{2} \vec{\tau} \vec{W}_{\mu} + \frac{g'}{2} Y B_{\mu}$$

$$F_{\mu\nu} F^{\mu\nu} = G_{\mu\nu} G^{\mu\nu} + W_{\mu\nu} W^{\mu\nu} + B_{\mu\nu} B^{\mu\nu}$$

The Higgs mechanism

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}' + \mathcal{L}_{Yuk} + \mathcal{L}_{\phi'}$$
 Higgs Field

$$\mathcal{L}_{\phi} = (\partial_{\mu}\phi^{\dagger})(\partial^{\mu}\phi) - V(\phi)_{\text{Higgs Potential}}$$
 $\mathcal{L}_{\text{Yuk}} = c_f(\bar{\psi}_L\psi_R\phi + \bar{\psi}_R\psi_L\phi)_{\text{Interaction}}$

Gauge Boson masses:
$$i\partial_{\mu} \rightarrow i(\partial_{\mu} - ieA_{\mu})$$
 $\phi' = \phi - \rho_0$ Fermion masses: $c_f \bar{\psi} \psi \phi$

SM parameters

3 Couplings
$$g_s, e, \sin \theta_W$$

4 CKM parameters
$$\theta_1, \theta_2, \theta_3, \delta$$

2 Boson masses
$$m_{\rm Z}, m_{\rm H}$$

3 Lepton masses
$$m_{\rm e}, m_{\mu}, m_{\tau}$$

6 Quark masses
$$m_{\rm u}, m_{\rm d}, m_{\rm s}, m_{\rm c}, m_{\rm t}, m_{\rm b}$$
.

18 free SM parameters no neutrino masses

$$m_{\rm W}^2 = \frac{1}{2} g^2 \rho_0^2$$

 $m_{\rm Z}^2 = \frac{1}{2} (g^2 + {g'}^2) \rho_0^2$ $g = e/\sin \theta_W$
 $m_{\rm H}^2 = 4 \lambda \rho_0^2$ $g' = e/\cos \theta_W$ $m_f = c_f \rho_0$

Fermion-Boson Interaction

$$i\,ar{\psi}\gamma^{\mu}\mathbf{D}_{\mu}\psi^{\mathrm{Fermion-Boson}}$$
 Interaction Gauge boson $=i\,ar{\psi}\gamma^{\mu}\partial_{\mu}\psi+\mathcal{L}_{\mathrm{int}}$ $\mathbf{D}_{\mu}=\partial_{\mu}+ig\mathbf{W}_{\mu}^{a}\mathbf{T}^{a}+ig'\mathbf{B}_{\mu}\mathbf{Y}$

$$\mathcal{L}_{\mathrm{int}} = -\bar{\psi}\gamma^{\mu}(g\mathbf{W}_{\mu}^{a}\mathbf{T}^{a} + g'\mathbf{B}_{\mu}\mathbf{Y})\psi$$
Weak Isospin

Hypercharge

Fermion-Boson Interaction

$$\mathcal{L}_{\mathrm{int}} = -\bar{\psi}\gamma^{\mu} (g\mathbf{W}_{\mu}^{a}\mathbf{T}^{a} + g'\mathbf{B}_{\mu}\mathbf{Y})\psi$$

$$\mathbf{W}_{\mu}^{\pm} = \frac{1}{\sqrt{2}}(\mathbf{W}_{\mu}^{1} \mp i\mathbf{W}_{\mu}^{2})$$

$$\mathbf{A}_{\mu} = \frac{1}{\sqrt{g^{2} + g'^{2}}}(g\mathbf{W}_{\mu}^{3} + g'\mathbf{B}_{\mu}) = \mathbf{W}_{\mu}^{3}\cos\theta_{W} + \mathbf{B}_{\mu}\sin\theta_{W}}$$

$$\mathbf{Z}_{\mu} = \frac{1}{\sqrt{g^{2} + g'^{2}}}(g\mathbf{W}_{\mu}^{3} - g'\mathbf{B}_{\mu}) = \mathbf{W}_{\mu}^{3}\cos\theta_{W} - \mathbf{B}_{\mu}\sin\theta_{W}}$$

$$\mathbf{E}_{\mathrm{int}} = -e\left[\mathbf{A}_{\mu}\mathcal{J}_{\mathrm{em}}^{\mu} + (s_{W}c_{W})^{-1}\mathbf{Z}_{\mu}\mathcal{J}_{\mathrm{NC}}^{\mu}\right]$$

$$+(\sqrt{2}s_{W})^{-1}(\mathbf{W}_{\mu}^{+}\mathcal{J}_{\mathrm{CC}}^{\mu} + \mathbf{W}_{\mu}^{-}\mathcal{J}_{\mathrm{CC}}^{\mu\dagger})$$

$$+(\sqrt{2}s_{W})^{-1}(\mathbf{W}_{\mu}^{+}\mathcal{J}_{\mathrm{CC}}^{\mu} + \mathbf{W}_{\mu}^{-}\mathcal{J}_{\mathrm{CC}}^{\mu\dagger})$$

Fermion-Boson Interaction

$$\mathcal{L}_{\text{int}} = -e \left[\mathbf{A}_{\mu} \mathcal{J}_{\text{em}}^{\mu} + (s_{W} c_{W})^{-1} \mathbf{Z}_{\mu} \mathcal{J}_{\text{NC}}^{\mu} \right. \\ \left. + (\sqrt{2} s_{W})^{-1} (\mathbf{W}_{\mu}^{+} \mathcal{J}_{\text{CC}}^{\mu} + \mathbf{W}_{\mu}^{-} \mathcal{J}_{\text{CC}}^{\mu\dagger}) \right] \\ \mathcal{J}_{\text{em}}^{\mu} = \bar{\psi} \gamma^{\mu} (\mathbf{T}_{3} + \mathbf{Y}) \psi = \bar{\psi} \gamma^{\mu} \mathbf{Q} \psi$$

$$\mathcal{J}_{\text{NC}}^{\mu} = \bar{\psi} \gamma^{\mu} (\mathbf{T}_{3} - \sin^{2} \theta_{W} (\mathbf{T}_{3} + \mathbf{Y})) \psi = \bar{\psi} \gamma^{\mu} (\mathbf{T}_{3} - \sin^{2} \theta_{W} \mathbf{Q}) \psi$$

$$\mathcal{J}_{\text{CC}}^{\mu} = \bar{\psi} \gamma^{\mu} (\mathbf{T}_{1} + i \mathbf{T}_{2}) \psi$$

Coupling strengths:

"
$$ff\gamma$$
": $e\mathbf{Q}$ " ffZ ": $e(s_W c_W)^{-1}(\mathbf{T}_3 - \sin^2 \theta_W \mathbf{Q})$ "
" $\ell \nu W$ ", " udW ": $e(\sqrt{2}s_W)^{-1}$
[left-handed only]

isospin

raising operator

Flavor Quantum Numbers

			T	T_3	Y	Q
$(^{\nu_e}L)$	$(^{\nu_{\mu_L}})$	$\begin{pmatrix} v_{\tau} L \end{pmatrix}$	1/2	1/2	- 1/2	0
(eL)	$\langle \mu_{\rm L} \rangle$	$\langle \tau_{\rm L} \rangle$	1/2	- 1/2	- 1/2	- 1
e _R	$\mu_{ m R}$	τ_{R}	0	0	- 1	- 1
$\begin{pmatrix} u_L \\ d'_L \end{pmatrix}$	$\begin{pmatrix} c_{\mathbf{L}} \\ s'_{\mathbf{L}} \end{pmatrix}$	$\begin{pmatrix} t_{L} \\ b_{L}' \end{pmatrix}$	1/2 1/2	1/2 - 1/2	1/6 1/6	2/3 - 1/3
u _R d _R	c _R s _R	^t R ^b R	0	0	2/3 - 1/3	2/3 - 1/3

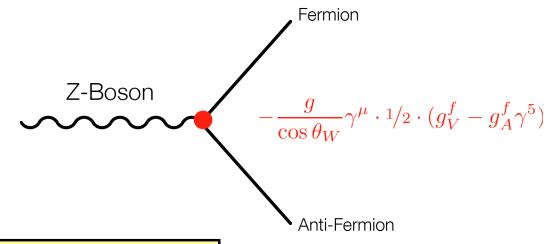
T: Weak Isospin

 T_3 : 3rd Isospin Component

Y: Hypercharge Q: Charge [=T₃-Y]

Z-boson interaction

"
$$ffZ$$
": $e(s_W c_W)^{-1}(\mathbf{T}_3 - \sin^2 \theta_W \mathbf{Q})$


NC interaction:

$$\mathcal{L}_{\text{int}}^{Z} = -g/c_W \cdot \mathbf{Z}_{\mu} \cdot 1/2 \cdot (\bar{\psi} \gamma^{\mu} g_V \psi - \bar{\psi} \gamma^{\mu} \gamma^5 g_A \psi)$$

Z-boson interaction

Couplings to the Z-Boson:

$$g_V = T_3 - 2Q \sin^2 \theta_W$$

 $g_A = T_3$

Standard Mod	$g_{\scriptscriptstyle V}$	${\cal G}_{\scriptscriptstyle {\cal A}}$
ν	1/2	1/2
ℓ^-	$-\frac{1}{2} + 2\sin^2\theta_W$	$-\frac{1}{2}$
u – quark	$+\frac{1}{2}-\frac{4}{3}\sin^2\theta_W$	$\frac{1}{2}$
d – quark	$-\frac{1}{2} + \frac{2}{3}\sin^2\theta_W$	-1/2

Couplings to left/right handed fermions:

$$g_L = \frac{1}{2}(g_V + g_A)$$

 $g_R = \frac{1}{2}(g_V - g_A)$

W-boson interaction

"
$$\ell\nu W$$
", " udW ": $e(\sqrt{2}s_W)^{-1}$

CC interaction:

[e,v only]

$$\mathcal{L}_{\text{int}}^{W} = -e(\sqrt{2}s_{W})^{-1} \left[\mathbf{W}_{\mu}^{+} \bar{\psi} \gamma^{\mu} (\mathbf{T}_{1} + i\mathbf{T}_{2}) \psi + \mathbf{W}_{\mu}^{-} \bar{\psi} \gamma^{\mu} (\mathbf{T}_{1} - i\mathbf{T}_{2}) \psi \right]$$

$$\mathcal{L}_{\text{int}}^{W} = -g/\sqrt{2} \left[\mathbf{W}_{\mu}^{+} \left(\bar{\nu}_{e} \right)_{L} \gamma^{\mu} e_{L} + \mathbf{W}_{\mu}^{-} \bar{e}_{L} \gamma^{\mu} (\nu_{e})_{L} \right]$$

Fermions with T ≠ 0 only

Gauge Boson Self-Couplings

$$\mathcal{L}_0 = -rac{1}{4}F_{\mu
u}F^{\mu
u} + iar{\psi}\gamma^\mu\partial_\mu\psi \ _{F_{\mu
u}F^{\mu
u} \ = \ W_{\mu
u}W^{\mu
u} + B_{\mu
u}B^{\mu
u}}$$
 [electroweak only]

Transition to covariant derivative ...

$$\partial_{\mu} o {f D}_{\mu}$$
 with ${f D}_{\mu} = \partial_{\mu} + ig{f W}_{\mu}^a{f T}^a + ig'{f B}_{\mu}{f Y}$ yields ...

- 1. Invariance under local gauge transformation
- 2. Gauge-boson self-couplings ...

Gauge Boson Self-Couplings

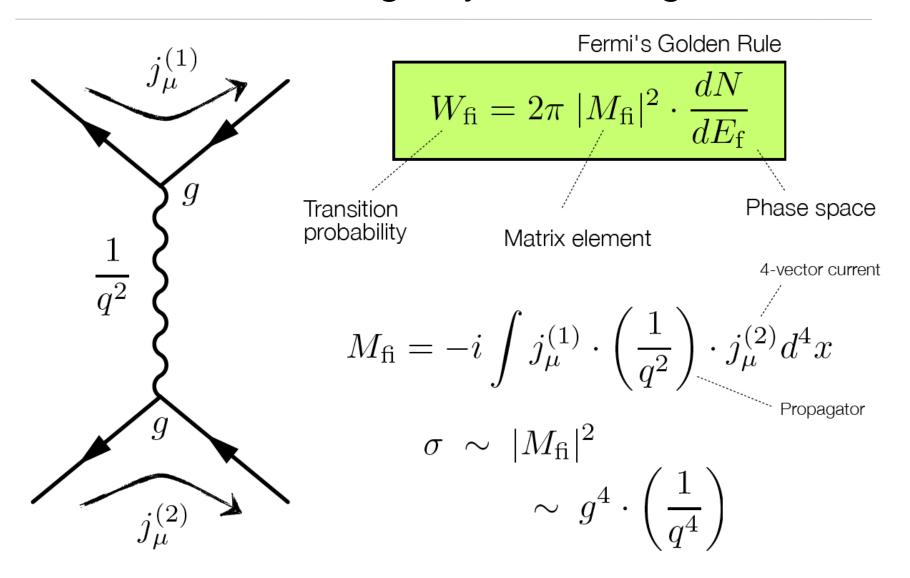
Triple gauge-boson couplings:

$$W_{\mu}^{+}$$
 W_{ν}^{-} W_{ν}^{-} W_{ν}^{-}

Quartic gauge-boson couplings:

$$W^+_\mu$$
 W^-_ν V^-_ρ V^-_ρ V^-_σ

$$V_{\rho} = Z, \gamma$$
:


$$ieC_{WWV} \left[g_{\mu\nu}(k_{+} - k_{-})_{\rho} + g_{\nu\rho}(k_{-} - k_{V})_{\mu} + g_{\rho\mu}(k_{V} - k_{+})_{\nu} \right]$$

with
$$C_{WW\gamma}=1, \quad C_{WWZ}=-\frac{c_{\mathrm{W}}}{s_{\mathrm{W}}}$$

$$V_{\rho}, V_{\rho'} = (W, W), (Z, Z), (Z, \gamma), (\gamma, \gamma) \colon$$

$$\begin{split} \mathrm{i}e^2 C_{WWVV'} \Big[2g_{\mu\nu}g_{\rho\sigma} - g_{\mu\rho}g_{\sigma\nu} - g_{\mu\sigma}g_{\nu\rho} \Big] \\ \text{with} \quad C_{WW\gamma\gamma} = -1, \qquad C_{WW\gamma Z} = \frac{c_\mathrm{W}}{s_\mathrm{W}}, \\ C_{WWZZ} = -\frac{c_\mathrm{W}^2}{s_\mathrm{W}^2}, \quad C_{WWWW} = \frac{1}{s_\mathrm{W}^2} \end{split}$$

Cross section: using Feynman diagrams

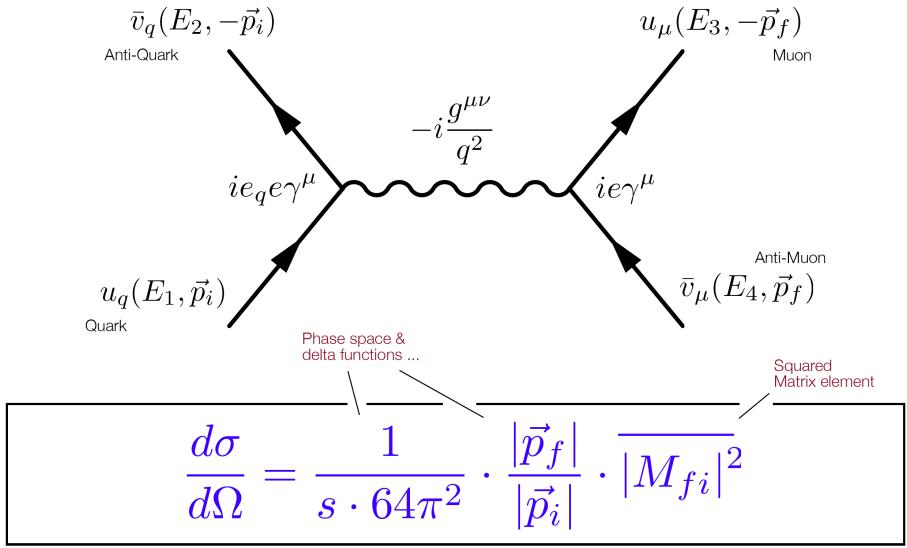
From the Lagrangian to cross sections

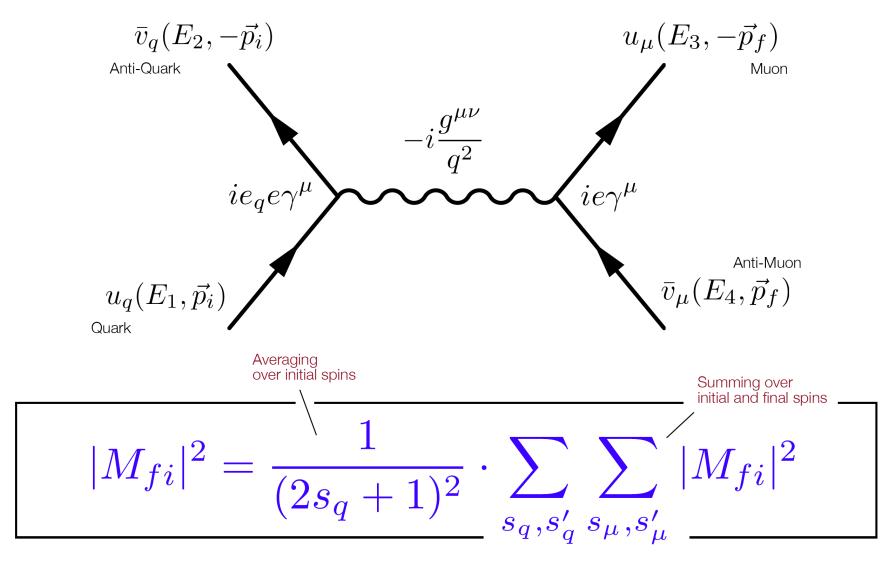
Inelastic

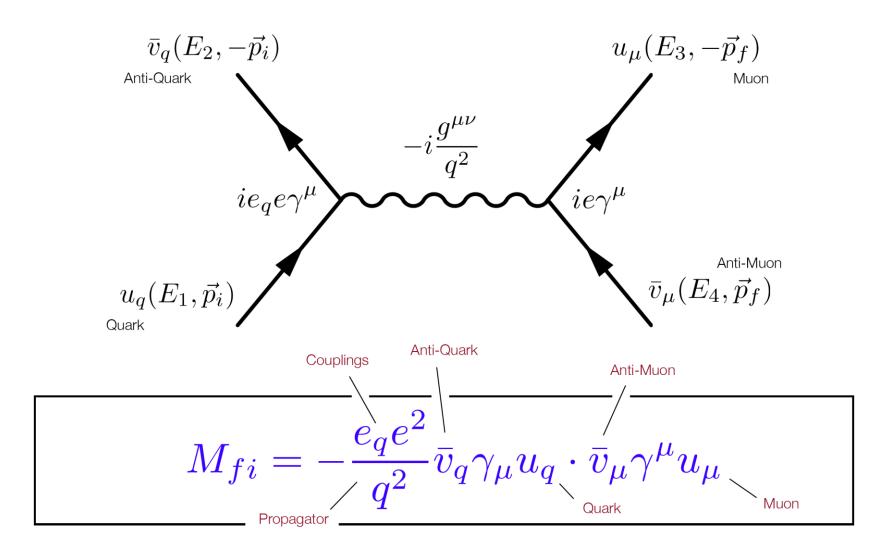
Cross Section

[for | i⟩ ≠ | f⟩]

[Def.:
$$|t = +\infty\rangle \equiv \mathbf{S}|t = -\infty\rangle$$
]

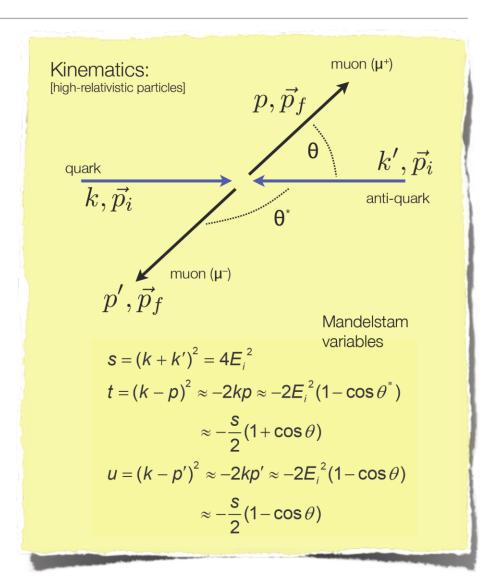

Time Evolution


From Schrödinger-Equation [Dirac picture]


$$|t\>\rangle = |t\>_0\>\rangle - i\int_{t_0}^t \mathrm{d}t'\,\mathbf{H}'(t')|t'\>
angle$$
 Lagrangian of Interaction
$$\mathbf{H}'(t) = -\int \mathcal{L}'(x,t)\,\mathrm{d}^3x$$

Matrix element

$$\langle f | \mathbf{S} | i \rangle \cong \delta_{fi} - i \int_{-\infty}^{\infty} \mathrm{d}t' \langle f | \mathbf{H}'(t') | i \rangle$$
 \Longrightarrow Feynman rules


$$\overline{|M|^2}_{q\bar{q}\to\mu\mu} = 2e_q^2 e^4 \cdot \frac{t^2 + u^2}{s^2}$$

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{32\pi^2} e_q^2 \cdot \frac{1}{s} \cdot \frac{t^2 + u^2}{s^2}$$
$$= \frac{e^4}{64\pi^2} e_q^2 \cdot \frac{1}{s} \cdot (1 + \cos^2 \theta)$$

$$\frac{d\sigma}{d\Omega} = \frac{\alpha}{4s}e_q^2 \cdot (1 + cos^2\theta)$$
 [8 in CMS frame]

