

The Univers
of Manches

Monte Carlo Event Generators

Aonte Carlo

net

Mike Seymour University of Manchester MCnet-LPCC Summer School on Monte Carlo Event Generators for LHC July 23rd – 27th 2012

 \mathcal{S} |Sla $\mathcal{B}(\mathcal{O},\varphi)$ I. LHC Physics Centre at CERN

net

MCnet

net

 $(x_{\min})+R(F(x_{\max}))$

MCnet

Event Generators 1

MCnet-LPCC Summer School on Monte Carlo Event Generators for LHC

- Introduction
	- Parton showers
	- Hadronization
	- Underlying Events
- Monte Carlo methods
- Matrix element matching
- Practical tutorials
- Tuning and uncertainties

MCnet-LPCC Summer School on Monte Carlo Event Generators for LHC

- Monte Carlo for Higgs
- **Jet physics**
- Heavy Ion physics
- Beyond the Standard Model

Structure of LHC Events

- 1. Hard process
- 2. Parton shower
- 3. Hadronization
- 4. Underlying event
- 5. Unstable particle decays

Intro to Monte Carlo Event Generators

- 1. Parton showers
- 2. Hadronization
- 3. Underlying Event / Soft Inclusive Models

Parton Showers: Introduction

- QED: accelerated charges radiate.
- QCD identical: accelerated colours radiate.
- gluons also charged.
- \rightarrow cascade of partons.
- = parton shower.
- 1. e^+e^- annihilation to jets.
- 2. Universality of collinear emission.
- 3. Sudakov form factors.
- 4. Universality of soft emission.
- 5. Angular ordering.
- 6. Initial-state radiation.
- 7. Hard scattering.
- 8. Heavy quarks.
- 9. Dipole cascades.

Divergent in collinear limit $\theta \to 0, \pi$ (for massless quarks) and soft limit $z_{q} \rightarrow 0$

can separate into two independent jets:

jets evolve independently

$$
d\sigma = \sigma_0 \sum_{\text{jets}} C_F \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} dz \frac{1 + (1 - z)^2}{z}
$$

Exactly same form for anything $\propto \theta^2$ eg transverse momentum: $k_{\perp}^2 = z^2(1-z)^2 \theta^2 E^2$ invariant mass: $q^2 = z(1 - z) \theta^2 E^2$

Collinear Limit

Resolvable partons

What is a parton? Collinear parton pair \longleftrightarrow single parton

Introduce resolution criterion, eg $k_{\perp} > Q_0$.

Virtual corrections must be combined with unresolvable real emission

Sudakov form factor

Probability(emission between q^2 and $q^2 + dq^2$)
 $dP = \frac{\alpha_s}{2\pi} \frac{dq^2}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} dz P(z) \equiv \frac{dq^2}{q^2} \bar{P}(q^2)$.

Define probability(no emission between Q^2 and q^2) to be $\Delta(Q^2,q^2)$. Gives evolution equation

$$
\frac{d\Delta(Q^2, q^2)}{dq^2} = \Delta(Q^2, q^2) \frac{dP}{dq^2}
$$

\n
$$
\Rightarrow \Delta(Q^2, q^2) = \exp - \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \bar{P}(k^2).
$$

c.f. radioactive decay atom has probability λ per unit time to decay. Probability(no decay after time T) = $\exp - \int_{-T}^{T} dt \lambda$

Sudakov form factor

Probability(emission between q^2 and $q^2 + dq^2$) $d\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{dq^2}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} dz P(z) \equiv \frac{dq^2}{q^2} \bar{P}(q^2).$

Define probability(no emission between Q^2 and q^2) to be $\Delta(Q^2,q^2)$. Gives evolution equation

$$
\frac{d\Delta(Q^2, q^2)}{dq^2} = \Delta(Q^2, q^2) \frac{dP}{dq^2}
$$

\n
$$
\Rightarrow \Delta(Q^2, q^2) = \exp - \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \bar{P}(k^2).
$$

 $\Delta(Q^2,Q_0^2) \equiv \Delta(Q^2)$ Sudakov form factor =Probability(emitting no resolvable radiation)

Event Generators 1 $\Delta_q(Q^2) \sim \exp_{\frac{C}{2} \pi} G_F \frac{\alpha_s}{2 \pi} \log^2 \frac{Q^2}{Q^2}$

Multiple emission

But initial condition? q_1^2 <???

Process dependent

Monte Carlo implementation

Can generate branching according to

$$
d\mathcal{P} = \frac{dq^2}{q^2} \bar{P}(q^2) \Delta(Q^2, q^2)
$$

By choosing $0 < \rho < 1$ uniformly: If $\rho < \Delta(Q^2)$ no resolvable radiation, evolution stops. Otherwise, solve $\rho = \Delta(Q^2, q^2)$ for q^2 =emission scale

Considerable freedom: Evolution scale: $q^2/k_{\perp}^2/\theta^2$? z: Energy? Light-cone momentum? Massless partons become massive. How? Upper limit for q^2 ?

Event Generators 1 Mike Seymour

Running coupling

Effect of summing up higher orders:

absorbed by replacing α_s by $\alpha_s (k_\perp^2)$.

Much faster parton multiplication – phase space fills with soft gluons.

Must then avoid Landau pole: $k_{\perp}^2 \gg \Lambda^2$. Q_0 now becomes physical parameter!

Soft limit

Also universal. But at amplitude level…

soft gluon comes from everywhere in event. \rightarrow Quantum interference. Spoils independent evolution picture?

Angular ordering

outside angular ordered cones, soft gluons sum coherently: only see colour charge of whole jet.

Soft gluon effects fully incorporated by using θ^2 as evolution variable: angular ordering

First gluon not necessarily hardest!

Event Generators 1 Mike Seymour

NO:

Initial state radiation

In principle identical to final state (for not too small x)

In practice different because both ends of evolution fixed:

Use approach based on evolution equations…

Backward evolution

DGLAP evolution: pdfs at (x, Q^2) as function of pdfs at $(> x, Q_0^2)$:

Evolution paths sum over all possible events.

Formulate as backward evolution: start from hard scattering and work down in q^2 , up in x towards incoming hadron.

Algorithm identical to final state with $\Delta_i(Q^2, q^2)$ replaced by
 $\Delta_i(Q^2, q^2)/f_i(x, q^2)$.

 \mathcal{X}

