

The Univer of Manches

Monte Carlo Event Generators

Monte

Carlo

net

Mike Seymour University of Manchester MCnet-LPCC Summer School on Monte Carlo Event Generators for LHC July 23rd – 27th 2012

LPCC (SPILEB)() LHC Physics Centre at CERN Mr K 10

MCnet

Carlo

net

Event Generators 1

Carlo

net

 $(x_{\min}) + R(F(x_{\max}))$

MCnet

Mike Seymour

MCnet-LPCC Summer School on Monte Carlo Event Generators for LHC

- Introduction
 - Parton showers
 - Hadronization
 - Underlying Events
- Monte Carlo methods
- Matrix element matching
- Practical tutorials
- Tuning and uncertainties

Event Generators 1

MCnet-LPCC Summer School on Monte Carlo Event Generators for LHC

- Monte Carlo for Higgs
- Jet physics
- Heavy Ion physics
- Beyond the Standard Model

Event Generators 1

Structure of LHC Events

- 1. Hard process
- 2. Parton shower
- 3. Hadronization
- 4. Underlying event
- 5. Unstable particle decays

Mike Seymour

Intro to Monte Carlo Event Generators

- 1. Parton showers
- 2. Hadronization
- 3. Underlying Event / Soft Inclusive Models

Parton Showers: Introduction

- QED: accelerated charges radiate.
- QCD identical: accelerated colours radiate.
- gluons also charged.
- \rightarrow cascade of partons.
- = parton shower.

- 1. e^+e^- annihilation to jets.
- 2. Universality of collinear emission.
- 3. Sudakov form factors.
- 4. Universality of soft emission.
- 5. Angular ordering.
- 6. Initial-state radiation.
- 7. Hard scattering.
- 8. Heavy quarks.
- 9. Dipole cascades.

Divergent in collinear limit $\theta \rightarrow 0,\pi$ (for massless quarks) and soft limit $z_g \rightarrow 0$

Event Generators 1

can separate into two independent jets:

$2 d\cos\theta$		$d\cos\theta$ _	$d\cos\theta$
$\sin^2 \theta$		$1 - \cos \theta$	$\frac{1}{1+\cos\theta}$
	=	$d\cos\theta$	$d{\cos ar heta}$
		$\frac{1-\cos\theta}{1-\cos\theta}$	$\overline{1-\cosar{ heta}}$
		$d\theta^2 \mid d\overline{\theta}^2$	
	\approx	$\overline{\theta^2} + \overline{\overline{\theta}^2}$	

jets evolve independently

$$d\sigma = \sigma_0 \sum_{\text{jets}} C_F \frac{\alpha_s}{2\pi} \frac{d\theta^2}{\theta^2} dz \frac{1 + (1 - z)^2}{z}$$

Exactly same form for anything $\propto \theta^2$ eg transverse momentum: $k_{\perp}^2 = z^2(1-z)^2 \ \theta^2 \ E^2$ invariant mass: $q^2 = z(1-z) \ \theta^2 \ E^2$

$$\frac{d\theta^{2}}{\theta^{2}} = \frac{dk_{\perp}^{2}}{k_{\perp}^{2}} = \frac{dq^{2}}{k_{\perp}^{2}}$$

$$\frac{dq^{2}}{k_{\perp}^{2}} = \frac{dq^{2}}{k_{\perp}^{2}}$$

$$\frac{dq^{2}}{k_{\perp}^{2}} = \frac{dq^{2}}{k_{\perp}^{2}}$$

Collinear Limit

Event Generators 1

Resolvable partons

What is a parton? Collinear parton pair \longleftrightarrow single parton

Introduce resolution criterion, eg $k_{\perp} > Q_0$.

Virtual corrections must be combined with unresolvable real emission

Mike Seymour

Sudakov form factor

Probability(emission between q^2 and $q^2 + dq^2$) $d\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{dq^2}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} dz \ P(z) \equiv \frac{dq^2}{q^2} \bar{P}(q^2).$

Define probability(no emission between Q^2 and q^2) to be $\Delta(Q^2, q^2)$. Gives evolution equation

$$\frac{d\Delta(Q^2, q^2)}{dq^2} = \Delta(Q^2, q^2) \frac{d\mathcal{P}}{dq^2}$$
$$\Rightarrow \Delta(Q^2, q^2) = \exp - \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \bar{P}(k^2).$$

c.f. radioactive decay atom has probability λ per unit time to decay. Probability(no decay after time T) = $\exp - \int^T dt \lambda$

Event Generators 1

Sudakov form factor

Probability(emission between q^2 and $q^2 + dq^2$) $d\mathcal{P} = \frac{\alpha_s}{2\pi} \frac{dq^2}{q^2} \int_{Q_0^2/q^2}^{1-Q_0^2/q^2} dz \ P(z) \equiv \frac{dq^2}{q^2} \bar{P}(q^2).$

Define probability(no emission between Q^2 and q^2) to be $\Delta(Q^2, q^2)$. Gives evolution equation

$$\frac{d\Delta(Q^2, q^2)}{dq^2} = \Delta(Q^2, q^2) \frac{d\mathcal{P}}{dq^2}$$
$$\Rightarrow \Delta(Q^2, q^2) = \exp - \int_{q^2}^{Q^2} \frac{dk^2}{k^2} \bar{P}(k^2).$$

 $\Delta(Q^2, Q_0^2) \equiv \Delta(Q^2)$ Sudakov form factor =Probability(emitting no resolvable radiation)

 $\Delta_q(Q^2) \sim \exp_{Carlo} \frac{\alpha_s}{2\pi} \log^2 \frac{Q^2}{Q^2}$ MCnet

Mike Seymour

Multiple emission

But initial condition? $q_1^2 < ???$

Process dependent

Event Generators 1

Monte Carlo implementation

Can generate branching according to

$$d\mathcal{P} = \frac{dq^2}{q^2} \bar{P}(q^2) \,\Delta(Q^2, q^2)$$

By choosing $0 < \rho < 1$ uniformly: If $\rho < \Delta(Q^2)$ no resolvable radiation, evolution stops. Otherwise, solve $\rho = \Delta(Q^2, q^2)$ for q^2 =emission scale

Considerable freedom: Evolution scale: $q^2/k_{\perp}^2/\theta^2$? z: Energy? Light-cone momentum? Massless partons become massive. How? Upper limit for q^2 ?

All formally free choices, but can be very important numerically

Mike Seymour

Running coupling

Effect of summing up higher orders:

absorbed by replacing α_s by $\alpha_s(k_{\perp}^2)$.

Much faster parton multiplication – phase space fills with soft gluons.

Must then avoid Landau pole: $k_{\perp}^2 \gg \Lambda^2$. Q_0 now becomes physical parameter!

Event Generators 1

Soft limit

Also universal. But at amplitude level...

soft gluon comes from everywhere in event. → Quantum interference. Spoils independent evolution picture?

Event Generators 1

Angular ordering

outside angular ordered cones, soft gluons sum coherently: only see colour charge of whole jet.

Soft gluon effects fully incorporated by using θ^2 as evolution variable: angular ordering

First gluon not necessarily hardest!

Event Generators 1

NO:

Initial state radiation

In principle identical to final state (for not too small x)

In practice different because both ends of evolution fixed:

Use approach based on evolution equations...

Event Generators 1

Backward evolution

DGLAP evolution: pdfs at(x, Q^2) as function of pdfs at ($> x, Q_0^2$):

Evolution paths sum over all possible events.

Formulate as backward evolution: start from hard scattering and work down in q^2 , up in x towards incoming hadron.

Algorithm identical to final state with $\Delta_i(Q^2, q^2)$ replaced by $\Delta_i(Q^2, q^2)/f_i(x, q^2)$. **Event Generators 1**

