Addendum No. 01

to the Memorandum of Understanding for Collaboration in the Construction of the ATLAS Detector

Construction of the ATLAS Insertable B-Layer (IBL) Sub-Detector

# **Considering that:**

The construction of the ATLAS Detector is governed by a Memorandum of Understanding, along with its Amendments and Addenda, setting out the responsibilities of the different participating Institutes and Funding Agencies for the construction of the ATLAS Detector <sup>1</sup> (Construction MoU).

Maintenance and Operation of the ATLAS Detector is governed by a Memorandum of Understanding for Maintenance and Operation (M&O MoU)<sup>2</sup>.

In order to be able to take full advantage of planned luminosity improvements of the LHC, and as part of the LHC Consolidation Program (or so-called Phase 0), the Collaboration has proposed to add a fourth layer of detectors for the Pixel Sub-Detector (IBL).

On the basis of a Technical Design Report<sup>3</sup> submitted on September 15, 2011 and a detailed review of the scientific merits, the technological feasibility and estimates of the needed resources, the LHC Committee (LHCC) has recommended approval of the IBL Sub-Detector construction to the CERN Research Board.

Based on the recommendation by the LHCC, the Research Board recommended to the Director General of CERN to approve the IBL Sub-Detector construction project.

The Director General has accepted the Research Board recommendation and approved the IBL Sub-Detector construction.

## It is agreed as follows

## Article 1: Purpose

- 1.1 The purpose of this Addendum and its Annexes is to lay down the terms of participation of the contributing Institutes and Funding Agencies in the construction, installation and commissioning of the IBL Sub-Detector in conformity with the Construction MoU along with its amendments and addenda.
- 1.2 All the Annexes are an integral part of this Addendum.

<sup>&</sup>lt;sup>1</sup> Memorandum of Understanding for Collaboration in the Construction of the ATLAS Detector (RRB-D 98-44 rev.)

<sup>&</sup>lt;sup>2</sup> Memorandum of Understanding for Maintenance and Operation of in the Construction of the ATLAS Detector (CERN-RRB-2002-035)

<sup>&</sup>lt;sup>3</sup> IBL Technical Design Report (CERN-LHCC-2010-013)

# Article 2: Parties

2.1 The Parties to this Addendum shall be all the Institutes that are contributing to the construction of the IBL Sub-Detector (severally the IBL Institutes, jointly the IBL Collaboration) and their Funding Agencies (the IBL Funding Agencies), and CERN as the Host Laboratory. The current list of IBL Institutes and Funding Agencies is given in Annex 3.

# Article 3: Duration

- 3.1 This Addendum takes effect from the date of signature and shall remain valid until the ATLAS Management declares the end of the IBL Sub-Detector construction project.
- 3.2 Any IBL Institute may withdraw its support from the IBL Sub-Detector construction effort by giving not less than eighteen months notice in writing. In this event, reasonable compensation to the IBL Sub-Detector Upgrade project shall be negotiated through the ATLAS Management and endorsed by the RRB.
- 3.3 Any Institute that joins the IBL Collaboration after the start of the IBL construction project shall accept the agreements in force and shall be expected to make an appropriate contribution to the IBL Sub-Detector construction as shall be specified in a corresponding Addendum to this Addendum. This shall be negotiated by the ATLAS Management and endorsed by the RRB.

# Article 4 : The IBL Sub-Detector Construction

- 4.1 The IBL Sub-Detector construction is defined in detail in the Technical Proposal submitted to the LHCC and in the Technical Design Report. The IBL Sub-Detector project consists of a number of sub-units as listed in Annex 1.
- 4.2 The management structure of the IBL Sub-Detector project is described in Annex 2, as well as persons currently holding management positions.
- 4.3 The technical participation of the IBL Institutes, grouped by Funding Agency, is set out in Annex 4.
- 4.4 The Collaboration decides for each IBL Sub-Detector cost item whether the cost is to be borne at the common expense of the Collaboration or not. The IBL Sub-Detector cost items are thereby divided into two categories:
  - 4.4.1 Common Infrastructure Items, comprising those costs that the Collaboration has agreed to bear at its common expense;
  - 4.4.2 Specific items that are the responsibility of IBL Sub-Detector IBL Institutes or groups of Institutes.

- 4.5 Annex 4 shows the value of the deliverables, by Funding Agency and Sub-Detector sub-units, to which the IBL Institutes and Funding Agencies are committed and for which they have foreseen the appropriate funding. The project payment profile over time is shown in Annex 5.
- 4.6 The schedule for the design, construction, installation and commissioning of the IBL Sub-Detector is given in Annex 6.

# <u>ANNEXES</u>

| Annex 1: | List of IBL Sub-Detector Sub-units (systems) and deliverables provided by participating institutes                                    |
|----------|---------------------------------------------------------------------------------------------------------------------------------------|
| Annex 2: | Organization and Management structure of the IBL Sub-<br>Detector Collaboration and persons currently holding<br>management positions |
| Annex 3: | List of Institutes, Funding Agencies and Representatives                                                                              |
| Annex 4: | Value of deliverables, grouped by Funding Agency and sub-units (systems)                                                              |
| Annex 5: | Payment profile                                                                                                                       |
| Annex 6: | Construction Schedule                                                                                                                 |

# The European Organization for Nuclear Research (CERN)

and

.....

declare that they agree on the Present Addendum to the Memorandum of Understanding for Collaboration in the Construction of the ATLAS Detector

| Done in Geneva               | Done in |
|------------------------------|---------|
|                              |         |
| for CERN                     | for     |
|                              |         |
|                              |         |
|                              |         |
|                              | ••••••  |
| Sergio Bertolucci            |         |
| Director of Research and     |         |
| Scientific Computing         |         |
|                              |         |
| For participating institutes |         |
|                              |         |
|                              |         |

.....

# **IBL Project**

# Memorandum of Understanding

Annexes



Excel Spreadsheet: Version Date IBL\_v1.15\_fill.v14.xlsx 10 15.03.2012 Annex 1

#### List of IBL Sub-units

|   | System MoU Item Description |    |                                                                                                     |  |  |  |
|---|-----------------------------|----|-----------------------------------------------------------------------------------------------------|--|--|--|
|   |                             | 1  | Sensor - prototype (including bumping to FE-I4), production, procurement & QC                       |  |  |  |
|   |                             | 2  | FE-I4 prototype (v1), production (v2), test                                                         |  |  |  |
| 1 | Module                      | 3  | Bump-bonding, thinning, bare module - prototype, production & QC                                    |  |  |  |
|   |                             | 4  | Local support (stave): CF structure, TM, pipe - prototype, production & QC                          |  |  |  |
| 2 | Stave                       | 5  | Nodule assembly, stave loading, flex-hybrid, internal electrical services - design, production & QC |  |  |  |
|   |                             | 6  | O chain: opto-board, opto-fiber, TX/RX, BOC, ROD, TDAQ (S-link, TIM, SBC, ROS, crate)               |  |  |  |
| 3 | Off-detector                | 7  | Power chain: HV/LV PS, PP2 regulators, type2, 3 & 4 cables, interlock, DCS                          |  |  |  |
|   | Integration &               | 8  | Integration in SR1 & System test                                                                    |  |  |  |
| 4 | Cooling plant               | 9  | Cooling plant & cooling services to PP1                                                             |  |  |  |
|   | Beam-pipe &                 | 10 | Beampipe & mechancal interfaces (to staves, to type 1 services, IST)                                |  |  |  |
| 5 | Installation                | 11 | Installation in the pit: beampipe extraction, IBL+beampipe insertion, services installation         |  |  |  |
| 6 | DBM                         | 12 | DBM - modules production & QC, support mechanics & services, IBL generic parts procurement          |  |  |  |

| MoU Item      | 1                          | Annex 1                                                                                                                                                                                                                                                                                      |  |  |  |
|---------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|               | -                          |                                                                                                                                                                                                                                                                                              |  |  |  |
| WBS Items:    | 1                          | Sensors: prototype & procurement                                                                                                                                                                                                                                                             |  |  |  |
| Description:  | diamonds).<br>chip. Produc | vpe:<br>nal design FE-I4 sensors for technology qualification (3D, planar,<br>Dicing, processing for bump-bonding (UBM and bump deposition), flip<br>e 10% of IBL assemblies with planar and 3D sensor and 5% with<br>rradiation to IBL requirements, laboratory and test beam measurements. |  |  |  |
|               |                            | tion:<br>f 6 batches of CiS n-in-n planar sensors, 3 batches of CNM and 3 batches<br>le side 3D sensors. Electrical and mechanical qualification of the                                                                                                                                      |  |  |  |
| Total Cost:   |                            |                                                                                                                                                                                                                                                                                              |  |  |  |
| WBS           | kCHF                       |                                                                                                                                                                                                                                                                                              |  |  |  |
| 1.2           | 210                        | Sensor prototype                                                                                                                                                                                                                                                                             |  |  |  |
| 1.3           | 542                        | Sensor production                                                                                                                                                                                                                                                                            |  |  |  |
|               | 752                        | Total (MoU item)                                                                                                                                                                                                                                                                             |  |  |  |
| Work Respons  | ibility                    |                                                                                                                                                                                                                                                                                              |  |  |  |
| Barcelona     | •                          | Prototype: 3D, Planar; Production: contribution                                                                                                                                                                                                                                              |  |  |  |
| Bonn          |                            | Prototype: 3D, Planar, Diamond; Production: contribution                                                                                                                                                                                                                                     |  |  |  |
| CERN          |                            | Prototype: 3D, Planar, Diamond; Production: contribution                                                                                                                                                                                                                                     |  |  |  |
| Dortmund (/MP | [)                         | Prototype: Planar; production: wafer QC                                                                                                                                                                                                                                                      |  |  |  |

| WBS | kCHF |                   |              |  |
|-----|------|-------------------|--------------|--|
| 1.2 | 210  | Sensor p          | prototype    |  |
| 1.3 | 542  | Sensor production |              |  |
|     | 753  | -                 | (Mall Stars) |  |

| Barcelona                                                                               | Prototype: 3D, Planar; Production: contribution                    |  |  |  |  |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| Bonn                                                                                    | Prototype: 3D, Planar, Diamond; Production: contribution           |  |  |  |  |
| CERN                                                                                    | Prototype: 3D, Planar, Diamond; Production: contribution           |  |  |  |  |
| Dortmund (/MPI)                                                                         | Prototype: Planar; production: wafer QC                            |  |  |  |  |
| KEK                                                                                     | Prototype: Planar; Production: contribution                        |  |  |  |  |
| Liverpool                                                                               | Prototype: Planar; Production: contribution                        |  |  |  |  |
| Ljubljana                                                                               | Prototype: Diamond                                                 |  |  |  |  |
| LPNHE/Orsay                                                                             | Prototype: Planar; Production: contribution                        |  |  |  |  |
| Manchester/Glasgow Prototype: 3D; Production: contribution; QC supervision (Manchester) |                                                                    |  |  |  |  |
| New Mexico                                                                              | Prototype: 3D, Planar, Diamond; Production (silicon): contribution |  |  |  |  |
| Ohio SU                                                                                 | Prototype: Diamond                                                 |  |  |  |  |
| Oslo/Bergen                                                                             | Prototype: 3D; Production: contribution                            |  |  |  |  |
| Prague AS                                                                               | Prototype: Planar; Production: contribution                        |  |  |  |  |
| Santa Cruz                                                                              | Prototype: Planar, (3D); Production: contribution                  |  |  |  |  |
| SLAC/Stony Brook                                                                        | Prototype: 3D; Production: contribution                            |  |  |  |  |
| Toronto(/Carleton)                                                                      | Prototype: Diamond                                                 |  |  |  |  |
| Udine(/Trento)                                                                          | Prototype: 3D, Planar; Production: contribution                    |  |  |  |  |
| Cost Sharing:                                                                           | Prototype Production Total                                         |  |  |  |  |

### Cost Sharing:

| Cost Sharing:                                       | Prototype | Production | TULAI |
|-----------------------------------------------------|-----------|------------|-------|
|                                                     | %         | %          | %     |
| Barcelona (E)                                       | 12%       | 5%         | 7%    |
| Bergen, Oslo (N)                                    | 12%       | 5%         | 7%    |
| CERN                                                | 5%        | 10%        | 9%    |
| Bonn, Dortmund (D)                                  | 8%        | 10%        | 9%    |
| KEK (J)                                             | -         | 5%         | 4%    |
| LPNHE/Orsay (F)                                     | 6%        | 20%        | 16%   |
| Ljubljana (SLO)                                     | 13%       | -          | 4%    |
| Glasgow/Manchester/Liverpool (UK)                   | 12%       | 15%        | 14%   |
| Ohio SU/Santa Cruz/New Mexico/SLAC/Stony Brook (US) | 4%        | 10%        | 8%    |
| Prague AS (CZ)                                      | -         | 5%         | 4%    |
| Toronto/Carleton (CD)                               | 17%       | -          | 5%    |
| Udine (I)                                           | 12%       | 15%        | 14%   |
| Unassigned                                          | -         | -          | -     |
| Total                                               | 100%      | 100%       | 100%  |

٦

#### Note:

The purchase wafer quantities are enough to assemble 448 planar two-chip modules and 224 3D single-chip modules. Those numbers correspond to approximately 2 times the number of installed modules for either a 75%/25% or 100%/0% scenario of planar/3D surface coverage. Sensors yields are accounted for in this calculation.

| MoU Item     | 2                                                 | Annex 1                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WBS Items:   | 2.1                                               | FE-I4 Design, Production and Wafer Testing                                                                                                                                                                                                                                                                                                                                               |
| Description: | I4.v2 (28 wafe<br>of one diced v<br>and productio | front-end chip FE-I4. Two engineering runs: FE-I4A (22 wafers) and FE-<br>ers). Production (up to 2 additional batches x 24 wafers) of FE-I4B. Testing<br>vafer with single chip card and USBPix hardware from each engineering<br>n batches. Radiation hard qualification. Wafer probing of engineering and<br>fers. Provide USBpix single chip test setup. Wafer probing at commercial |
| Total Cost:  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                          |
| WBS          | kCHF                                              |                                                                                                                                                                                                                                                                                                                                                                                          |
| 2.1.1        |                                                   | FE-I4A: engineering run and testing                                                                                                                                                                                                                                                                                                                                                      |
| 2.7          | 42                                                | FE-I4B: Hardware (USBPix) for single FE-I4 test (on wafer and on PCB)                                                                                                                                                                                                                                                                                                                    |

| 2.7          |       |         | Lightweet (ICDDiv) for single FF 14 test (on wefer and on DCD) |
|--------------|-------|---------|----------------------------------------------------------------|
| 2.7          | 42    | FE-14B: | Hardware (USBPix) for single FE-I4 test (on wafer and on PCB)  |
| 2.1.2, 2.1.3 | 826   | FF-T4B: | engineering + production run and testing                       |
|              |       |         |                                                                |
|              | 1 372 | Total   | (MoU item)                                                     |

#### Work Responsibility

Bonn Deliver all relevant views, stand-alone verification and simulation, documentation of:

FE-I4A: PDR and DDC (pixel digital region & digital double column), EODCL (end of double column logic and also data formatter), DOB (Data Output Block including scan chain), CLKGEN (Clock Generator including PLL), IOB (I/O pad ring and LVDS), SLDO (Shunt-regulator Low Dropout).

Test setup for FE-I4 single chip / wafer level tests (USBPix). Digital test bench for whole chip functional simulation. Wafer probing & test board characterization (with USBPix).

- FE-I4B: Update of their design blocks. Top level and block verification and simulation. ShuLDO simulations and measurements. Sharing of wafer probing with LBNL.Revision of single chip test board.
- Geneva Contribution to wafer probing at commercial facility.
- Genova Deliver all relevant views, stand-alone verification and simulation, documentation of:
  - FE-I4A: CMD (Command Decoder).
    - Bench testing of CMD block and scan chain test patterns. Test vectors for scan chain of CMD.
  - FE-I4B: Update of their design blocks. Contribution to wafer testing at commercial facility.
- <u>Göttingen</u> Deliver R/O software for the single chip test system (USBPix).

LBNL Deliver all relevant views, stand-alone verification and simulation, documentation of:

FE-I4A: FEND (Analog front-end - single pixel) and DC (double column integration), DACS (for bias including stand alone shift register for configuration), DCDC (DC/DC converter), VREF (Voltage reference), EFUSE (E-Fuse memory block), GOPAMP (General purpose opAmp), PULSGEN (Charge injection pulse generator), MUX3to1 (for 4-chip module operation), AMUX (Analog MUX), CLKDIST (clock distribution block), ValueMUX (to combine 16 bit values from different blocks going to EOCHL), INMUX (digital test I/O block), conversion of CERN prompt radiation detector to DM stack and power-on reset generator, "glue logic".

Top level views and simulation, layout integration and verification, submission assembly. Wafer probing & test board characterization. Total dose radiation testing.

- FE-I4B: Integration of regulator power scheme. Layout integration and verification; top level and block simulation; submission assembly. Total dose radiation testing. Wafer probing & test board characterization. Sharing of wafer probing with Bonn.
- Marseille Deliver all relevant views, stand-alone verification and simulation, documentation of:
- FE-I4A: GADC (Generic ADC with input MUX) and ANAMUX (analog mux for input to GADC), TEMPSENS (Temperature sensor), CNFGMEM (SEU memory memory latches, as well as stand-alone triple redundant register cell), VcalTComp (temperature compensation for VCAL voltage), ANAMUX (standalone analog MUX and buffer for analog test outputs), COMP2 (low current comparator alternative), PixREG2 (SEU hard pixel register alternative).

Radiation hard and SEU qualification. Test of the PRD (Prompt Radiation Detector) in the high intensity beam.

- FE-I4B: Delivery of new blocks not included in FE-I4A: ADC, tempsens, analog MUX. Verification. SEU testing.
- Nikhef Deliver all relevant views, stand-alone verification and simulation, documentation of:
  - FE-I4A: EOCHL (End-of-chip logic, includes R/O and error monitor), CREF (Current reference) Scan chain for EOCHL. Commercial wafer test for digital part
  - FE-I4B: Update of their design blocks. Mixed mode simulation. Test vectors for wafer testing at external facility.

| Cost Sharing:            | FE-I4A | FE-I4B | Total |
|--------------------------|--------|--------|-------|
|                          | %      | %      | %     |
| Bonn, Göttingen (D-BMBF) | 22%    | 22%    | 22%   |
| Geneva (CH)              | 8%     | 14%    | 12%   |
| Genova (I)               | 12%    | 12%    | 12%   |
| LBNL (US)                | 22%    | 22%    | 22%   |
| Marseille (F)            | 20%    | 15%    | 17%   |
| Nikhef (NL)              | 16%    | 15%    | 15%   |
| Unassigned               | -      | -      | -     |
| Total                    | 100%   | 100%   | 100%  |

#### Note:

| MoU Item                                                  | 3                 | Annex 1                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WBS Items:                                                | 3.1               | Bump-bonding                                                                                                                                                                                                                                                                        |
| Description:                                              | flip chip. Pr     | nt of bump-bonding for FE-I4. Dummy FE-I4/Sensor bump deposition and btotype FE-I4 thinning, bump-deposition, dicing (14 FE-I4A wafers, 2 FE Qualification of ≥2 vendors.                                                                                                           |
|                                                           |                   | thinning, UBM & bump-deposition for FE-I4 (50 wafers) and Sensor (250<br>ers, flip-chip (1300). Production QC.                                                                                                                                                                      |
| <b>Total Cost:</b><br>WBS<br>3.1.1<br>3.1.2               | kCHF<br>73<br>653 | Prototypes and vendor qualification<br>Bump-bonding production                                                                                                                                                                                                                      |
| 3.1                                                       | 726               | Total (MoU item)                                                                                                                                                                                                                                                                    |
| Work Respon<br>Barcelona<br>Bonn<br>KEK<br>CERN<br>Milano | sibility          | Prototype: dummy sensor, production procurement (part).<br>AgSn vendor qualification, production procurement (part).<br>Production procurement (part).<br>Measurements on prototypes, production procurement (part).<br>Indium vendor qualification, production procurement (part). |

| Cost Sharing: | Prototype | Production | Total |
|---------------|-----------|------------|-------|
|               | %         | %          | %     |
| Barcelona (E) | 20%       | 10%        | 11%   |
| Bonn (D-BMBF) | 40%       | 50%        | 49%   |
| CERN          | -         | 20%        | 18%   |
| KEK (J)       | -         | 10%        | 9%    |
| Milano (I)    | 40%       | 10%        | 13%   |
| Unassigned    | -         | -          | -     |
| Total         | 100%      | 100%       | 100%  |

#### Note:

In the prototype phase the cost of FE-I4 wafer thinning and bump-deposition are in MoU item #3. The sensor wafer processing (UBM/bump-deposition) and flip chip is in MoU item #1.

Qualify the two vendors used by ATLAS Pixel - baseline AgSn - Technology backup Indium.

KEK develops bump-bonding R&D with Hamamatsu for sLHC (could become an option for IBL), participation to common procurement.

The "production cost sharing" covers 100% of the quote from the bump-bonder producer (IZM).

| MoU Item   | 4               |                           |
|------------|-----------------|---------------------------|
| WBS Items: | 4.1, 5.2, 9.1.1 | Bare Stave & Cooling Pipe |

**Description:** Stave prototype with carbon foam. Pipe prototype in titanium (Ti) and carbon fiber (CF) (2, 3 & 4mm OD); pipe Ti/Ti welding/brazing; CF to Ti and Ti to Ti fittings; internal pipes from End-of-Stave (EoS) to PP1. Thermal management (TM) qualification with CO2 and C3F8; mockup for measuring thermal parameters from beam-pipe bakeout. Stave production and piping to PP1 (32 staves including spares). Tooling and glueing flex on stave. Production QC.

#### **Total Cost:**

| WBS   | kCHF |             |                                                           |
|-------|------|-------------|-----------------------------------------------------------|
| 4.1.1 | 242  | Stave prote | otype (include Ti & CF pipes, Ti/Ti welding and fittings) |
| 4.1.2 | 100  | Stave prod  | uction                                                    |
| 5.2   | 95   | Internal co | oling pipes (PP0 to PP1) - Prot. (30kCH)+ prod. (65kCH)   |
| 9.1.1 | 30   | Cooling de  | sign qualification (prototype)                            |
|       | 467  | Total       | (MoU item)                                                |

#### Work Responsibility

| Annecy    | Design, production and QA/QC of Ti-to-Ti fittings; Ti/Inox-brazing. Electrical break at PP1; tooling PP0. Thermal cycling with CO2.               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| CERN      | Thermo-mechanical prototype & QA. CO2 tests on stave. Procedure and glueing flex to stave.                                                        |
| LPNHE     | Material budget, CAD design (software activity). Ruby fiducials, Ti screws/pins.                                                                  |
| Marseille | Prototype: Ti-pipes, stave, TM qualification. Stave production & QC. Brazing of inlet/out pipes to stave pipe.                                    |
| Milano    | Prototype: CF pipe, CF-Ti joint, TM qualification, bakeout mockup, material irradiation.<br>Stave production & QC. Tooling to glue flex on stave. |
| Nikhef    | CO2 test on stave.                                                                                                                                |
| SLAC      | Stave prototype thermal mechanical characterization with CO2 cooling test stand and stave design contributions such as the face-plate concept.    |
| Wuppertal | Prototype: CF pipe & QA, stave. Stave production & QC.                                                                                            |

| Cost Sharing:                | Prototype | Production | Total |
|------------------------------|-----------|------------|-------|
|                              | %         | %          | %     |
| Annecy, LPNHE, Marseille (F) | 30%       | 30%        | 30%   |
| CERN                         | 10%       | 10%        | 10%   |
| Milano (I)                   | 30%       | 30%        | 30%   |
| Wuppertal (D)                | 30%       | 30%        | 30%   |
| Unassigned                   | -         | -          | -     |
| Total                        | 100%      | 100%       | 100%  |

#### Note:

Annex 1

| MoU Item           | 5                              |                                                                                            |                                                               |                |                  | Annex 1         |
|--------------------|--------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------|------------------|-----------------|
| WBS Items:         | 2.2. 3.2. 3.3.                 | 4.2, 4.3, 5.1,                                                                             | Module Assem                                                  | blv & Stave    | loadina, Mod     | ule to PP1      |
|                    | 5.3                            | ,,,                                                                                        | Connections                                                   |                |                  |                 |
| Description:       | module loadir<br>EoS PP0, inte | ng on stave, sta                                                                           | ule (up to 224 wit<br>ave flex production<br>PP1. Stave-0 pro | n and gluing   | on stave, interi | mediate flex,   |
| Total Cost:<br>WBS | kCHF                           |                                                                                            |                                                               |                |                  |                 |
| 2.2                |                                | EoS card pate                                                                              | h nanel (PPO)                                                 |                |                  |                 |
| 3.2                |                                |                                                                                            | EoS); replaceme                                               | nt of Pixel mo | odule flex + tvr | e 0 cables      |
| 3.3                |                                |                                                                                            | odule production 8                                            |                |                  |                 |
| 4.2                |                                | Loaded Stave                                                                               |                                                               |                |                  |                 |
| 4.3                | 20                             | Stave-0                                                                                    |                                                               |                |                  |                 |
| 5.1                | 50                             | Internal cable                                                                             | es (ex type 1)                                                |                |                  |                 |
| 5.3                | 100                            | PP1 (cables, c                                                                             | cooling)                                                      |                |                  |                 |
|                    | 436                            | Total                                                                                      | (MoU item)                                                    |                |                  |                 |
| Work Respon        | sibility                       |                                                                                            |                                                               |                |                  |                 |
| Bonn               | •                              | "Flex module'                                                                              | ' production (50%                                             | ) & QC; Al fl  | ex hybrid proto  | type.           |
| CERN               |                                | Gluing flex to                                                                             | stave & QC; Load                                              | led stave QC   | ; stave-0.       |                 |
| Geneva / Ber       | 'n                             | Jig & procedu<br>QC; stave-0.                                                              | re for module load                                            | ding on stave  | ; loading modu   | lles on stave & |
| Genova             |                                | "Flex module" production (50%) & QC; module & stave flex hybrid design, procurement QA/QC. |                                                               |                |                  |                 |
| Marseille          |                                | Tools and pro                                                                              | totypes for modul                                             | e loading on   | stave and mod    | ule reworking.  |
| New Mexico         |                                | Qualification of flex hybrid with proton irradiation.                                      |                                                               |                |                  |                 |
| Oslo / Bergei      | n                              | Contribution of                                                                            | on flex hybrid; Int                                           | ermediate fle  | ex, design, proc | curement & QC.  |
| SLAC / Santa       | a Cruz                         |                                                                                            | rical services from<br>DT/CMD/CLK con                         | • •            |                  | •               |
| Cost Sharing:      |                                |                                                                                            | Г                                                             | Mod. Load      |                  | Total           |
| coor on an ing     |                                |                                                                                            |                                                               |                |                  | iotai           |

| Cost Sharing:                     | Mod. Load | Total |
|-----------------------------------|-----------|-------|
|                                   | %         | %     |
| Bonn (D-BMBF)                     | 6%        | 6%    |
| CERN                              | 4%        | 4%    |
| Geneva (CH)                       | 17%       | 17%   |
| Genova (I)                        | 22%       | 22%   |
| Marseille (F)                     | 10%       | 10%   |
| Bergen, Oslo (N)                  | 5%        | 5%    |
| New Mexico, Santa Cruz, SLAC (US) | 37%       | 37%   |
|                                   |           | -     |
| Unassigned                        | -         | -     |
| Total                             | 100%      | 100%  |

| MoU Item   | 6              |                  |           |  | Annex 1 |
|------------|----------------|------------------|-----------|--|---------|
| WBS Items: | 2.3, 2.4, 2.5, | 8.2, 8.4.1, 11.1 | R/O Chain |  |         |

**Description:** Opto-boards (28 + spares) & opto-boxes (2) on ID end-plate, optoribbons (3x28 + spares) & optocables, RX/TX plugins (56/28 + spares), BOC/ROD (14 + spares), S-link source/destination and fibers (56 + spares), crates for ROD with backplanes, SBC, ROS, TIM. CTP/LTP from central ATLAS.

#### **Total Cost:**

| WBS   | kCHF  |                                                                          |
|-------|-------|--------------------------------------------------------------------------|
| 2.3   | 129   | Opto-board (VCSEL, PIN, opto-package), DORIC/VDC                         |
| 2.4   | 236   | BOC, TX/RX-plugin, S-link source card (LSC) + fiber                      |
| 2.5   | 381   | ROD                                                                      |
| 8.2   | 20    | Opto-box on ID end-plate                                                 |
| 8.4.1 | 72    | Opto-fibers                                                              |
|       | 839   | Total Project part                                                       |
| 11.1  | 187   | DAQ hardware (ROD crates/racks, TIM, ROS), S-link destination card (LDC) |
|       | 187   | Total M&O-A part                                                         |
|       | 1 025 | Total MoU Item                                                           |

# Work Responsibility (4)

| Design, procurement <sup>(3)</sup> and test of RX-plugin.                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VME ROD design, production $^{(3)}$ (include calibration PCs), test. Contribution to BOC/ROD firmware & software.                                                                     |
| Detector opto cables: fibers, ribbonization, termination - procurement $^{(3)}$ and QC.                                                                                               |
| ROD (TDAQ) & test. DAQ hardware procurement <sup>(3)</sup> (in kind M&O-A): ROD crates, backplanes, SBCs, TIMs, ROSes, LDSs + fibers).                                                |
| Contribution to BOC/ROD Software.                                                                                                                                                     |
| Contribution to VME ROD design.                                                                                                                                                       |
| Procurement $^{(3)}$ of PIN-diode and VCSELS with QC. Optopackage design, production $^{(3)}$ &                                                                                       |
| QC. Optoboard design, production $^{(3)}$ and loading with opto-packages, DORIC and VDC. Optoboard test with Siegen. Contribution to opto-box design.                                 |
| Opto-box design, production, QC.                                                                                                                                                      |
| Contribution to the BOC/ROD software.                                                                                                                                                 |
| Optoboard test with Ohio SU.                                                                                                                                                          |
| Study ATCA option for the BOC/ROD $^{(2)}$ . Prototype with FE-I3 pixel modules.                                                                                                      |
| TX-plugin procurement $^{(3)}$ ("commercial component" or same design as in the present Pixel detector).                                                                              |
| BOC (with s-link LSC $^{(1)}$ ) design, production & test. Contribution to BOC/ROD firmware & software. TX-plugin commercial component design without BPM (central procurement) & QC. |
|                                                                                                                                                                                       |

| Cost Sharing:                                           | R/O chain            |         | Total |
|---------------------------------------------------------|----------------------|---------|-------|
|                                                         | M&O-A <sup>(*)</sup> | Project | %     |
| Bern (CH)                                               | -                    | 6%      | 5%    |
| Bologna, Genova (I)                                     | 100%                 | 45%     | 55%   |
| DESY                                                    | -                    | 9%      | 7%    |
| Heidelberg, Göttingen, Siegen, Wuppertal (D-BMBF)       | -                    | 19%     | 16%   |
| Ohio SU,Oklahoma,Oklahoma SU,LBNL,SLAC,Stony Brook (US) | -                    | 16%     | 13%   |
| Taiwan                                                  | -                    | 5%      | 4%    |
| Unassigned                                              | -                    | -       | -     |
| Total                                                   | 100%                 | 100%    | 100%  |

#### Note:

 $^{(*)}$  Expression of interest to M&O-A in kind contributions. The recognized values of M&O-A items are firm and fixed.

DAQ hardware (for a total & fixed value of 187 kCHF) proposed as in kind contribution from INFN.

 $^{(1)}$  LSC is integrated on BOC main board and not a plugin. S-link cost for FTK R/O is on FTK project.

<sup>(2)</sup> Selected IBL ROD design is VME. ATCA version is studied for HL-LHC

<sup>(3)</sup> Production/procurement quantities include spares, system test, set-ups in contributing labs (for non off shelf parts).

<sup>(4)</sup> Commissioning of the R/O chain is with the Institutes sharing the Work Responsibilities.

| MoU Item     | 7                             | Annex 1                                                                                                                                                                                                                           |
|--------------|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WBS Items:   | 2.6, 8.3, 8.4.2<br>11.3, 11.4 | 2, 8.4.3 8.4.4, LV / HV Power Supply Chain & DCS                                                                                                                                                                                  |
| Description: | controllers (4)               | (LV: 28 + spares, opto: 4 + spares) with crates, backplanes and<br>. Cables for power and DCS from PP1 to PP2 and from PP2 to USA15 (type<br>PP4. LV and HV power supplies. DCS: BBIM, BBM, PP1 Box (Laser + DDS),<br>DC Monitor. |
| Total Cost:  |                               |                                                                                                                                                                                                                                   |
| WBS          | kCHF                          |                                                                                                                                                                                                                                   |
| 2.6          | 36                            | PP2 power regulation (active elements).                                                                                                                                                                                           |
| 8.3          | 30                            | PP2 boxes (crates/patch panels).                                                                                                                                                                                                  |
| 11.3         | 106                           | DCS hardware (monitoring, control and interlock), LV-PP4.                                                                                                                                                                         |
|              | 172                           | Total Project part                                                                                                                                                                                                                |
| 8.4.2-4      | 166                           | Type 2, 3 & 4 cables.                                                                                                                                                                                                             |
| 11.4         | 167                           | LV & HV power supplies.                                                                                                                                                                                                           |

333 Total M&O-A part 505 Total MoU Item

#### Work Responsibility (1)

| work kespon | Sidility * 7                                                                                                                                                                                                                                 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Barcelona   | Contribution to the design of the LV power chain with Milano. Type 2 cables specification and test. Radiation test (cable & PP2 components). Commissioning of LV power chain with Milano.                                                    |
| DESY        | Commissioning of HV chain.                                                                                                                                                                                                                   |
| Genova      | Type 3 HV cables specification and test. HV PS procurement and test (cost on M&O-A).                                                                                                                                                         |
| Grenoble    | Type3-LV and Type3/4-DCS cables specification and test.                                                                                                                                                                                      |
| Iowa        | LV-PP4 (crates, inter-board, opto-isolator boards, ELMB) design, production test.<br>Contribution in testing DCS cards with Wuppertal.                                                                                                       |
| Milano      | PP2: regulator card + box + controller; design, production & test. LV-PS procurement (in-kind contribution to M&O-A). LV chain commissioning with Barcelona.                                                                                 |
| Wuppertal   | DCS hardware: BBIM, Logic Unit, IDB, BOB, OH-Ibox, PIM (Pixel Interlock Matrix), PP1<br>Box (Laser + DSS), BOC-I-Box, SCOL, BBM, BOC Mon, PP2 aux PS (Wiener), CAN aux<br>PS, PCs and Kvaser CAN interface cards, PP3. Commissioning of DCS. |
| ATLAS TC    | Procurement of cables with connectors, based on Barcelona/Genova/Grenoble specifications.                                                                                                                                                    |

| Cost Sharing:      | Power                | chain   | Total |
|--------------------|----------------------|---------|-------|
|                    | M&O-A <sup>(*)</sup> | Project | %     |
| Barcelona (E)      | -                    | -       | -     |
| DESY (D-DESY)      | -                    | -       | -     |
| Genova, Milano (I) | 50%                  | 38%     | 46%   |
| Grenoble (F)       | -                    | -       | -     |
| Iowa (US)          | -                    | 19%     | 6%    |
| Wuppertal (D-BMBF) | -                    | 43%     | 15%   |
| M&O-A              | 50%                  | -       | 33%   |
| Unassigned         | -                    | -       | -     |
| Total              | 100%                 | 100%    | 100%  |

#### Note:

 $^{(*)}$  Expression of interest to M&O-A in kind contributions. The recognized values of M&O-A items are firm and fixed.

LV and HV power supplies (for a total & fixed value of 167 kCHF) proposed as in kind contribution from INFN.

 $^{(1)}$  Commissioning of the power chain is with the Institutes sharing the Work Responsibilities.

| MoU Item | 8 |
|----------|---|
|          |   |

**WBS Items:** 7, 11.6

Integration in SR1 & System Test

**Description:** Stave Mounting Tool (SMT), IBL Multipurpose Container (MPC). Procedure to integrate stave and type1 services on beam-pipe. Test of IBL with cooling and R/O in SR1. Integration Mock-up. System Test in SR1.

# Total Cost:

| WBS       | kCHF |                                                                 |  |
|-----------|------|-----------------------------------------------------------------|--|
| 7.1, 7.3  | 75   | Tooling for integration of staves & type1 services on beam-pipe |  |
| 7.2       | 122  | SMT: loading of staves on global supports                       |  |
| 7.4       | 25   | Transport and testing tool - IBL enclosure for cold test        |  |
| 7.5       | 70   | Services to PP1 installation and portable cooling system in SR1 |  |
| 7.6, 11.6 | 200  | System Test (ST) and Integration Mock-up in SR1                 |  |
|           | 492  | Total (MoU item)                                                |  |

#### Work Responsibility

| Bern, CERN, Geneva                                                   | Surface Integration work, IBL surface and system tests before<br>installation. Infrastructure for integration and qualification of IBL staves<br>and complete IBL. Construction and operation of a high performance<br>thermo-mechanical facility at the SR1 building. Construction of an active<br>integration and qualification mock-up of IBL prototype. System test<br>infrastructure. Major responsibility in tooling (SMT, MPC). |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Oklahoma, Prague AS Stony<br>Brook                                   | y Integration work in SR1.                                                                                                                                                                                                                                                                                                                                                                                                             |
| SLAC, Santa Cruz                                                     | Integration of internal services.                                                                                                                                                                                                                                                                                                                                                                                                      |
| Barcelona, Bonn Göttingen<br>Iowa, Oslo Prague AS, SLAG<br>Wuppertal | , Contribution to System Test.                                                                                                                                                                                                                                                                                                                                                                                                         |

| Cost Sharing:     | Integration | ST / Mock-up | Total |
|-------------------|-------------|--------------|-------|
|                   | %           | %            | %     |
| CERN              | 50%         | 50%          | 50%   |
| Bern, Geneva (CH) | 50%         | 50%          | 50%   |
|                   |             |              | -     |
|                   |             |              | -     |
|                   |             |              | -     |
|                   |             |              | -     |
|                   |             |              | -     |
|                   |             |              | -     |
| Unassigned        | -           | -            | -     |
| Total             | 100%        | 100%         | 100%  |

#### Note:

Bern, CERN and Geneva are the main contributors to this package with shared responsibilities.

Several Institutes interested in work contribution to integration and system test in SR1 and Installation in the pit.

| MoU Item   | 9               |                                          | Annex 1 |
|------------|-----------------|------------------------------------------|---------|
| WBS Items: | 8.5, 9.1.2, 9.2 | , 9.3, 9.4, 9.5 Cooling plant & services |         |

**Description:** Cooling plant, cooling distribution, cooling pipes, manifolds/heaters, nitrogen pipes.

| Total Cost:<br>WBS | kCHF |                 |                          |
|--------------------|------|-----------------|--------------------------|
| 8.5                | 130  | Cooling pipes   | and manifolds            |
| 9.1.2              | 220  | Cooling plant   |                          |
| 9.2                | 50   | Cooling servic  | es (distribution system) |
| 9.3                | 20   | Nitrogen flow   |                          |
| 9.4-5              | 41   | Plant installat | on and fluids            |
|                    | 461  | Total           | (M&O-A)                  |

| Work Responsibility |                                                                                                                                                                                                                                                                   |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATLAS TC            | Steering of the design and prototyping of the CO2 cooling plant.<br>Procurement and installation of cooling distribution, cooling pipes,<br>manifolds/heaters, nitrogen pipes and the necessary liquids. Cooling<br>plant controls development and commissioning. |
| Nikhef              | Construct the vessel of the cooling plant according to the ATLAS technical specification; commissioning and functional tests before delivery to CERN for installation in the ATLAS cavern. Participation in the design phase.                                     |

| Cost Sharing: | Cooling              |   | Total |
|---------------|----------------------|---|-------|
|               | M&O-A <sup>(*)</sup> |   | %     |
| Nikhef (NL)   | 48%                  |   | 48%   |
| M&O-A         | 52%                  |   | 52%   |
|               |                      |   | -     |
|               |                      |   | -     |
|               |                      |   | -     |
|               |                      |   | -     |
|               |                      |   | -     |
| Total         | 100%                 | - | 100%  |

#### Note:

 $^{(\ast)}$  Expression of interest to M&O-A in kind contributions. The recognized values of M&O-A items are firm and fixed.

Construction of the cooling plant (for a total & fixed value of 220 kCHF) proposed as in kind contribution from Nikhef

| MoU Item     | 10            | Annex 1                                                                                                                                                                                                                  |
|--------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WBS Items:   | 6.1, 6.2, 6.3 | Beam-pipe & Interfaces                                                                                                                                                                                                   |
| Description: | & procurement | raction & IBL insertion: tooling & test on mock-up. New beam-pipe design<br>. Global support for beam-pipe & IBL: IBL Support Tube (IST) with<br>aves and internal services, volume enclosure, support and alignment for |

Total Cost:

| WBS | kCHF  |                 |                                                        |
|-----|-------|-----------------|--------------------------------------------------------|
| 6.3 | 420   | IST, interfaces | to support staves & services                           |
|     | 420   | Total           | (Project part)                                         |
| 6.1 | 180   | Beam-pipe ext   | raction/IBL insertion. Tooling, test on mock-up, ALARA |
| 6.2 | 1 390 | New beam-pip    | e with insulators and heaters                          |
|     | 1 570 | Total           | (M&O-A part)                                           |
|     | 1 990 | Total           | (MoU Item)                                             |

| Work Responsibility |                                                                                                                                                                                                                                                                                     |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATLAS TC            | Coordination of the CAD integration. Contribution to global supports design. Design, prototype and fabrication of VI beam-pipe support system. Design and fabrication of beam-pipe support outside IBL. Procurement of the Be beam-pipe with instrumentation.                       |
| Brandeis            | Development and fabrication of the Long Guiding Tube (LGT), an active tool to compensate bow of the beam pipe during its extraction and the bow of the IST during its insertion.                                                                                                    |
| Geneva              | Design and fabrication of the installation mock-up in bld.180. Visual inspection with endoscope of the extraction/insertion process. Dummy beam pipe design and procurement. Contribution to prototype IST fabrication.                                                             |
| Genova              | Z-stopper and sliding pads production and qualification.                                                                                                                                                                                                                            |
| Grenoble LPSC       | Engineering of the extraction/insertion table (tooling for beam-pipe extraction/IBL insertion).                                                                                                                                                                                     |
| LBNL                | Wire tension system and IST support system design.                                                                                                                                                                                                                                  |
| LPNHE Paris         | Design and follow up of an IBL mock-up (dummy beam pipe, services,<br>support rings, dummy staves) to practice IBL insertion. Design and<br>fabrication of the support rings for staves, services and beam-pipe.                                                                    |
| Orsay LAL           | Design, fabrication and installation of the sealing ring closing IBL volume<br>and the interface supporting the IST at the level of the Pixel<br>end plate. Those design shall integrate the grounding connection. Design,<br>prototype and production of IBL/ID end-plate sealing. |
| Seattle Washington  | Design, prototype and fabrication of the Inner Support Tube (IST).<br>Including the shielding and grounding connection.                                                                                                                                                             |

| Cost Sharing:                     | Beam-pipe<br>supp    | Total   |      |
|-----------------------------------|----------------------|---------|------|
|                                   | M&O-A <sup>(*)</sup> | Project | %    |
| Geneva (CH)                       |                      | 71%     | 15%  |
| LPNHE Paris, Orsay LAL (F)        |                      | 10%     | 2%   |
| Brandeis, Seattle Washington (US) |                      | 19%     | 4%   |
| Grenoble LPSC                     | 1%                   |         | 1%   |
| ATLAS TC                          | 99%                  |         | 78%  |
| Unassigned                        | -                    | -       | -    |
| Total                             | 100%                 | 100%    | 100% |

#### Note:

 $^{(\ast)}$  Expression of interest to M&O-A in kind contributions. The recognized values of M&O-A items are firm and fixed.

Installation tools (for a total & fixed amount value of 20 kCHF) proposed as in kind contribution from IN2P3.

| MoU Item   | 11        |              | Annex 1 |
|------------|-----------|--------------|---------|
| WBS Items: | 8.1.1, 10 | Installation |         |

**Description:** Extraction of the present beam-pipe, installation of the external services & test, installation of the IBL package, connection to the services at PP1/PP2 and testing

| Total Cost: |       |                                                       |
|-------------|-------|-------------------------------------------------------|
| WBS         | kCHF  |                                                       |
| 10.1        | 370   | Radiation work and limitation (safety & IMB)          |
| 10.2        | 500   | Extraction of the Beam Pipe (Present)                 |
| 10.3        | 435   | Installation of the b-layer "Package"                 |
| 10.4        | 130   | Services Installation from PP1 to PP2, counting room. |
| 8.1.1, 10.5 | 80    | Services Routing, Connection & Testing                |
|             | 1 515 | Total (M&O-A)                                         |

#### Work Responsibility

ATLAS TC

Operation planning, supervision and execution.

| Cost Sharing: | Cooling |   | Total |
|---------------|---------|---|-------|
|               | M&O-A   |   | %     |
| M&O-A         | 100%    |   | 100%  |
|               |         |   | -     |
|               |         |   |       |
|               |         |   | -     |
|               |         |   | -     |
|               |         |   | -     |
|               |         |   | -     |
|               |         |   | -     |
|               |         |   | -     |
| Total         | 100%    | - | 100%  |

#### Note:

| MoU Item                     | 12                                              |                               |                                                      |                                |                     | Annex 1              |
|------------------------------|-------------------------------------------------|-------------------------------|------------------------------------------------------|--------------------------------|---------------------|----------------------|
| WBS Items:                   | 13                                              |                               | Diamond Beam                                         | Monitor                        |                     |                      |
| Description:                 | Diamond Beam                                    | Monitor                       | detector assemb                                      | ly and test, R/O,              | PS, services and me | echanics.            |
| Total Cost:<br>WBS           | kCHF                                            |                               |                                                      |                                |                     |                      |
| 2, 8, 11                     | 150 7                                           | otal                          | (IBL Common) <sup>(1</sup>                           | 1)                             |                     |                      |
| 13.1                         | 115 S                                           | Sensor                        |                                                      |                                |                     |                      |
| 13.3                         | 35 M                                            | 1echanics                     | 5                                                    |                                |                     |                      |
| 13.4                         | 10 F                                            | lex                           |                                                      |                                |                     |                      |
| 13.5                         | 26 I                                            | ntegratio                     | n                                                    |                                |                     |                      |
|                              | 186 7                                           | otal                          | (DBM Production                                      | )                              |                     |                      |
| Total                        | 336 7                                           | otal                          | (Total) <sup>(3)</sup>                               |                                |                     |                      |
| Work Respons                 | sibility                                        |                               |                                                      |                                |                     |                      |
| Bonn                         | Lead role:<br>Responsibility<br>Participation:  | Module<br>Test-bea<br>DAQ, of |                                                      | sting                          |                     |                      |
| CERN                         | Lead role:<br>Responsibility<br>Participation:  | Module                        | s and integration<br>testing, DAQ<br>procurement and | testing, test-bea              | m. offline          |                      |
| Göttingen                    | Lead role:<br>Responsibility<br>Participation:  | Test-bea<br>Module            |                                                      | -                              | , cc                |                      |
| Ljubljana                    | Lead role:<br>Responsibility:<br>Participation: | DAQ<br>Module                 | testing, services                                    | and integration, t             | est-beam            |                      |
| New Mexico                   | Lead role:<br>Responsibility<br>Participation:  | Module                        | irradiation and te                                   | esting, services               |                     |                      |
| Ohio SU                      | Lead role:<br>Responsibility<br>Participation:  | Module                        | procurement and<br>assembly<br>testing, mechani      | testing<br>cal support, test-l | beam                |                      |
| Toronto                      | Lead role:<br>Responsibility<br>Participation:  |                               | ical support, offlin<br>testing, test-bean           |                                |                     |                      |
| Cost Sharing:                |                                                 |                               |                                                      | DBM Prototype <sup>(2)</sup>   | DBM Production      | Total <sup>(3)</sup> |
|                              |                                                 |                               | %                                                    | %                              |                     | %                    |
| Bonn/Gotting                 | en (D-BMBF)                                     |                               | 30%                                                  | 1.00/                          | 28%                 | 29%                  |
| CERN                         | 0)                                              |                               | 20%                                                  | 10%<br>30%                     | 21%<br>16%          | 12%<br>18%           |
| Ljubljana (SL<br>New Mexico, |                                                 |                               | 30%                                                  | 30%                            | 16%                 | 22%                  |
| Toronto (CND                 |                                                 |                               | 20%                                                  | 30%                            | 10%                 | 10%                  |

| Toronto (CND) |  |
|---------------|--|
|               |  |
|               |  |
| Unassigned    |  |
| Total         |  |

#### Note:

<sup>(1)</sup> Estimate, 50 % contingency added until cost finalized, needs negotiation with IBL institutes supplying deliverables.

100%

20%

30%

100%

19%

100%

19%

100%

\_ --

 $^{(2)}$  For information only. The actual work package is in Annex A1.1 - WBS 1.2: sensor prototypes developed for IBL sensor qualification.

<sup>(3)</sup> Total of "IBL Common" and "DBM Production".

#### IBL Common Parts (customized for DBM)

#### Item

#### Lead Institute in DBM

FE-I4 DCS HV-PS - Crate HV-PS - Modules HV-PP4 LV-PS LV-PP4 PP2: boards+controller+crate ROD BOC+S-link TX plugin **RX** plugin ROD-Crate+BP+SBC LTP S-link RX+ROS Opto-board/box Type 0 services Type I services Type 2 services LV, DCS cables HV cables Fiber optics

Bonn Gottingen Gottingen Gottingen Gottingen Gottingen Gottingen CERN, Gottingen Ljubljana Ljubljana OSU OSU Ljubljana Ljubljana Ljubljana OSU N/A CERN, Toronto New Mexico New Mexico New Mexico New Mexico

#### Lead Institute in IBL

Bonn, CPPM, Genova, Geneva, Nikhef Wuppertal Genova Milano DESY Milano Iowa Milano Bologna Wuppertal/Heidelberg Taiwan Bern (Ohio) Bologna/Genova Genova Genova nSQP, Ohio Genova SLAC Barcelona, LAPP Grenoble Genova DESY

# Memorandum of Understanding (MoU)

# Annex 2

# **Description of the IBL Organization**

The IBL [1] Organization operates under the control and guidance of ATLAS Collaboration Management Structure as is defined in the Annex.5 of the ATLAS Construction MoU [2]. The IBL Management Structure organization chart is shown in Fig.1. The IBL Management Board (IBL MB) takes decisions on technical execution matters and makes recommendations to the Institute Board on major technical choices and on matters of sharing resources and responsibilities. The Institute Board (IB), which is an extension of the Pixel IB, takes decisions on major technical choices and on sharing of resources and responsibilities.

The IBL Project Leader (PL) is directly and ultimately responsible to the ATLAS Collaboration, for ensuring that the design and construction of the IBL is carried out on schedule, within the cost ceiling, and in a way that guarantees the required performance and reliability, within the framework of the ATLAS resource planning.

The IBL Technical Coordinator (TC) oversees and assesses the feasibility of the technical aspects. He or she assists the Project Leader (PL) in the technical decisions by preparing and keeping updated the schedule, organizing the technical reviews, assigning the technical manpower.

Participation to the IBL construction can be from the existing Institutions, which are in the Pixel collaboration, or from new Institutions, which join directly the project. Participation is also possible through the Upgrade Project Office (UPO).

IBL PL and TC have to report to the Institute Board, at the ATLAS Weeks, to the Upgrade Project Office, Upgrade Steering Group and Pixel and Inner Detector meetings.

The IBL Project Leader (IBL PL) is elected in accordance to the ATLAS rules [3] and is in charge for two years, with the possibility to be renewed by  $2/3^{rd}$  majority. The Institutes signing the IBL MoU, which are the ones bringing the resources to the project, vote for the selection of the PL. It is up to the IB, in consultation with the PL, to decide whether to continue to have a Technical Coordinator (IBL TC), and if so, on the selection process.

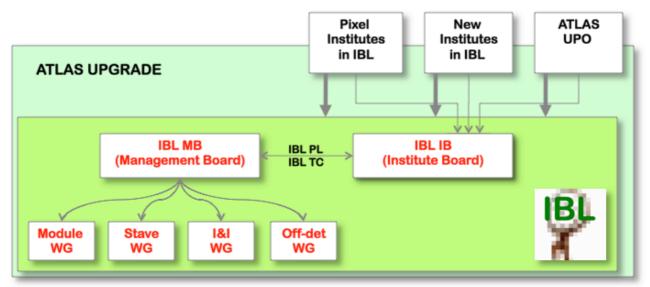



Figure 1: IBL Organization Chart.

#### **Management Board**

The IBL Management Board (MB) controls the execution of the project. The IBL MB meets every two weeks in phone meetings chaired by the IBL PL and TC. Meetings have closed participation to MB members and speakers could be invited to report on specific issues on request of the IBL MB. The IBL MB uses indico and SharePoint to distribute material for discussion. Minutes circulated to the IBL collaboration and Issue Tracking is the way the MB works.

The management board members are appointed by the IBL PL in consultation with the IBL TC and endorsed by the IB.

#### **Working Groups**

The construction activities of the whole IBL project are divided into four working groups. Each working group has two coordinators. Sharing of responsibilities between the two coordinators in each working group is defined on the basis of a mandate document.

The four groups are:

- Module WG (Coordinators: M. Garcia Sciveres and F. Hügging)

Activities: Sensor design, prototyping, production and quality control.

Design of the front-end chip (FE-I4), prototyping, procurement and quality control.

Bump-bonding, thinning, bare module production and quality control.

- Stave WG (Coordinators: O. Rohne and E. Vigeolas)

Activities: Local support (stave) including cooling pipe design, procurement and quality control.

Cooling and stave thermal management design.

Flex Hybrid and internal service design, procurement and quality control.

Stave loading with module and electrical, thermal and mechanical quality control.

– Integration & Installation WG (Coordinators: F. Cadoux and R. Vuillermet)

Activities: Design and procurement of global support for beam-pipe, staves and services.

Procurement of new beam-pipe.

Integration of the staves with beam-pipe and services in SR1 and QC with cooling system and electronics.

Design and installation of cooling plant and cooling services.

Extraction of beam-pipe.

Installation of IBL package with beam-pipe.

Installation of services (type2, 3 and 4 cables, cooling and gas piping).

ALARA compliance.

- Off-detector WG (Coordinators: T. Flick and S. Débieux)

Activities: Design and procurement of the R/O chain, including ROD/BOC and opto-links

Design and procurement of the power chain, including LV and HV power supplies and PP2 regulators.

Design and procurement of DCS and interlock system.

Design of procurement of cables and opto-fibers.

System test.

The Working Group coordinators steer the activities they are concerned with in periodic meetings that are largely in the form of a phone conference.

#### **Diamond Beam Monitor - DBM**

The Diamond Beam Monitor (DBM) is a technological spin-off of the IBL module qualification program and offers the possibility for ATLAS to measure luminosity with high precision on a bunch-by-bunch basis. The DBM is a sub-project of the IBL project and is an IBL deliverable. Its construction activities are followed in the IBL project through the IBL management in close collaboration with DBM experts. Installation of the DBM in the present Pixel detector volume is planned and prepared in the framework of the nSQP project. One representative of the DBM is member of the IBL Management Board to oversee sub-project dependent activities and report on its status.

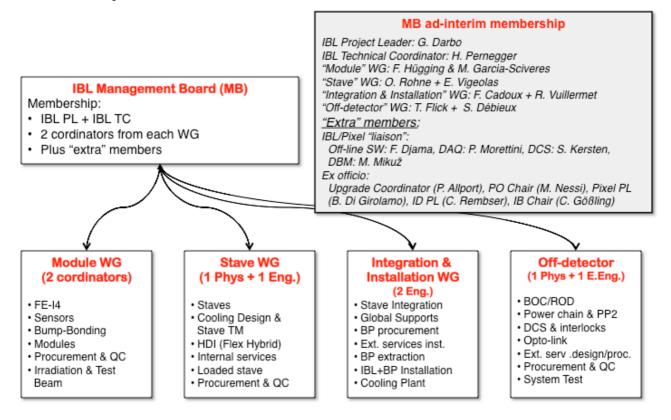



Figure 2: IBL Management Board and its membership as at 1<sup>st</sup> October 2011.

#### **Institute Board**

The Institutions taking part in the project, in a direct way (as opposed through the UPO), with money and manpower, are part of the Institute Board (IB). The IB is an extension of the Pixel IB and usually meets after the normal Pixel IB with the additional Institutions members in the IBL.

The Institute Board takes decisions on major technical choices and on sharing of resources and responsibilities. Major technology choices affecting the overall performance of ATLAS have to be brought forward to the collaboration as a whole for decision in the Collaboration Board. The institutions are the source of money and manpower, and therefore all major questions involving sharing of responsibilities and contribution of resources have to be agreed upon by the Institute Board.

Composition of the IB is one member for each institute, as listed in the Annex 3, plus Pixel, IBL and ATLAS management.

#### **IBL General Meetings**

These meetings are held three or four times a year and constitutes the forum where discussions on any aspect of the Pixel project should take place. The results of the working groups should periodically be presented at the general meetings. The session are organised by the IBL PL and TC with the help of the working group coordinators.

### **Collaborative Tool and EDMS depository**

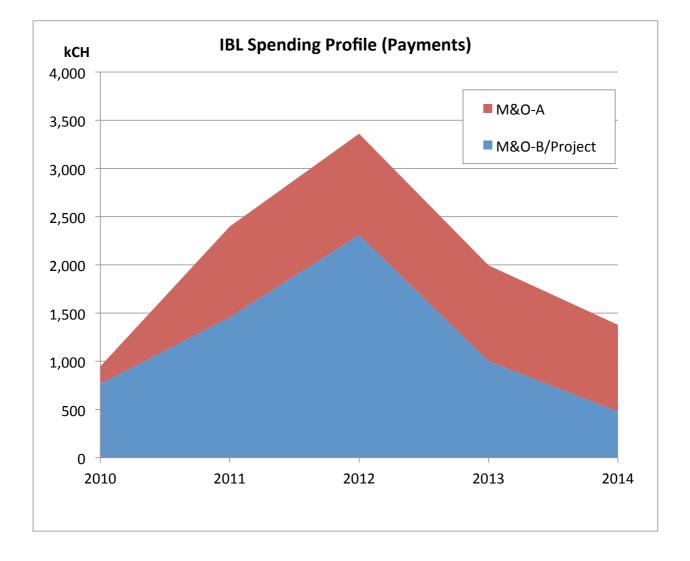
To transmit the information in the IBL project a "Share Point" [4] Collaborative Workspace is created where material relative to the project is uploaded and maintained under the responsibilities of the working group coordinators and of the IBL PL and TC. This depository is used during the phase of preparation of the documents in their final form. The approved documents are referenced and posted in the EDMS structure [5].

Workgroup meetings and IBL General Meeting are on indico [6].

To transmit the information, a few open-subscription (to ATLAS members) mailing lists {7} have been created: a general mailing list and one for each working group. The software simulation activities have a dedicated mailing list too. Additional mailing lists can be created on discretion of working group coordinators or project leader and technical coordinator.

#### References.

- [1] ATLAS Collaboration, Insertable B-layer Technical Design Report, CERN- LHCC-2010-013. ATLAS-TDR-019, CERN, Geneva, Sep 2010.
- [2] ATLAS Collaboration, Memorandum of Understanding for Collaboration in the Construction of the ATLAS Detector, CERN-RRB-98-44 rev.
- [3] ATLAS CB, ATLAS System Organization, ATLAS GEN-No-015 29/11/96, rev 2.1 Nov 2006.
- [4] IBL Collaborative Workspace: <u>https://espace.cern.ch/atlas-ibl/default.aspx</u>
- [5] IBL EDMS root node: <u>https://edms.cern.ch/nav/ATLAS/ATU-0000000042</u>
- [6] Indico IBL category: <u>http://indico.cern.ch/categoryDisplay.py?categId=2337</u>
- [7] IBL mailing lists:
  - a. IBL General: atlas-ibl-gen@cern.ch
  - b. IBL Working Group 1 (Module): <u>atlas-ibl-wg1@cern.ch</u>
  - c. IBL Working Group 2 (Stave): <u>atlas-ibl-wg2@cern.ch</u>
  - d. IBL Working Group 3 (Integration & Installation): <u>atlas-ibl-wg3@cern.ch</u>
  - e. IBL Working Group 4 (Off-detector): <u>atlas-ibl-wg4@cern.ch</u>
  - f. IBL Software Simulation: <u>atlas-ibl-software@cern.ch</u>


# Institutes / Institutions Participating in the IBL Construction

| Institution           | Country                  | Funding Agency           | Institute Representative                 | National Contact Physicist          |
|-----------------------|--------------------------|--------------------------|------------------------------------------|-------------------------------------|
| Toronto               | Canada                   | Canada                   | Trischuk, William                        | McPherson, Robert                   |
| CERN                  | Switzerland              | CERN                     | Dittus, Fido                             | Mornacchi, Giuseppe                 |
| Prague AS             | Czech Republic           | Czech Republic           | Sicho, Petr                              | Vrba, Vaclav                        |
| Annecy LAPP           |                          | ·                        | Di Ciaccio, Lucia                        | Fournier, Daniel                    |
| Grenoble LPSC         |                          |                          | Malek, Fairouz                           | Fournier, Daniel                    |
| LPNHE Paris           |                          |                          | Schwemling, Philippe                     | Fournier, Daniel                    |
| Marseille CPPM        |                          |                          | Talby, Mossadek                          | Fournier, Daniel                    |
| Orsay LAL             | France                   | France - IN2P3           | Schaffer, Arthur                         | Fournier, Daniel                    |
| Berlin HU             |                          |                          | Lacker, Heiko                            | Mättig, Peter                       |
| Bonn                  |                          |                          | Wermes, Norbert                          | Mättig, Peter                       |
| Dortmund              |                          |                          | Gößling, Claus                           | Mättig, Peter                       |
| Göttingen             |                          |                          | Quadt, Arnulf                            | Mättig, Peter                       |
| Heidelberg ZITI       |                          |                          | Kugel, Andreas                           | Mättig, Peter                       |
| Siegen                |                          |                          | Buchholz, Peter                          | Mättig, Peter                       |
| Wuppertal             |                          | Germany - BMBF           | Mättig, Peter                            | Mättig, Peter                       |
| DESY                  |                          | Germany - DESY           | Mönig, Klaus                             | Mönig, Klaus                        |
| Munich MPI            | Germany                  | Germany - MPI            | von der Schmitt, Hans; Bethke, Siegfried | Bethke, Siegfried                   |
| Bologna               | ,                        |                          | Zoccoli, Antonio; Bruni, Graziano        | Rossi, Leonardo                     |
| Genova                |                          |                          | Morettini, Paolo                         | Rossi, Leonardo                     |
| Milano                |                          |                          | Meroni, Chiara; Troncon, Clara           | Rossi, Leonardo                     |
| Udine                 | Italy                    | Italy                    | Cobal, Marina                            | Rossi, Leonardo                     |
| KEK                   | Japan                    | Japan                    | Unno, Yoshinobu                          | Tokushuku, Katsuo; Kobayashi, Tomio |
| Nikhef                | Netherlands              | Netherlands              | Bentvelsen, Stan                         | Bentvelsen, Stan                    |
| Bergen                |                          |                          | Sandaker, Heidi                          | Ould-Saada, Farid                   |
| Oslo                  | Norway                   | Norway                   | Ould-Saada, Farid                        | Ould-Saada, Farid                   |
| Ljubljana             | Slovenia                 | Slovenia                 | Mikuz, Marko                             | Mikuz, Marko                        |
| Barcelona             | Spain                    | Spain                    | Grinstein, Sebastian; Padilla, Cristobal | Higon-Rodriguez, Emilio             |
| Bern                  |                          |                          | Ereditato, Antonio                       | Clark, Allan                        |
| Geneva                | Switzerland              | Switzerland              | Iacobucci, Giuseppe                      | Clark, Allan                        |
| Taipei AS             | Taiwan                   | Taiwan                   | Lee, Shih-Chang                          | Lee, Shih-Chang                     |
| Glasgow               |                          |                          | Buttar, Craig                            | Tovey, Daniel                       |
| Liverpool             |                          |                          | Allport, Phillip                         | Tovey, Daniel                       |
| Manchester            | United Kingdom           | United Kingdom           | Loebinger, Fred                          | Tovey, Daniel                       |
| Berkeley LBNL         |                          |                          | Hinchliffe, Ian                          | Gordon, Howard; Tuts, Michael       |
| Brandeis              |                          |                          | Bensinger, James R.                      | Gordon, Howard; Tuts, Michael       |
| Iowa                  |                          |                          | Mallik, Usha                             | Gordon, Howard; Tuts, Michael       |
| New Mexico            | —                        |                          | Seidel, Sally                            | Gordon, Howard; Tuts, Michael       |
| Ohio State University |                          |                          | Gan, KK; Kagan, Harris                   | Gordon, Howard; Tuts, Michael       |
| Oklahoma              | —                        |                          | Skubic, Patrick                          | Gordon, Howard; Tuts, Michael       |
| Oklahoma SU           | —                        |                          | Rizatdinova, Flera                       | Gordon, Howard; Tuts, Michael       |
| Santa Cruz UC         | —                        |                          | Seiden, Abraham                          | Gordon, Howard; Tuts, Michael       |
| Seattle Washington    | —                        |                          | Lubatti, Henry                           | Gordon, Howard; Tuts, Michael       |
| SLAC                  | —                        |                          | Dong, Su                                 | Gordon, Howard; Tuts, Michael       |
| Stony Brook           | United States of America | United States of America | Tsybychev, Dmitri                        | Gordon, Howard; Tuts, Michael       |

#### MoU System Items

|         |                      | 1        | 2        | 3                               | 4                                 | 5                                             | 6   | То             | tal            |
|---------|----------------------|----------|----------|---------------------------------|-----------------------------------|-----------------------------------------------|-----|----------------|----------------|
|         | Funding Agency       | Module   | Stave    | Off-<br>detector<br>Electronics | Integration<br>& Cooling<br>Plant | Beam-Pipe,<br>Interfaces<br>&<br>Installation | DBM | Include<br>DBM | Exclude<br>DBM |
| Project | Canada               | 35       | -        | -                               | -                                 | -                                             | 65  | 100            | 35             |
|         | Czech Republic       | 27       | -        | -                               | -                                 | -                                             | -   | 27             | 27             |
|         | France IN2P3         | 353      | 183      | -                               | -                                 | 40                                            | -   | 576            | 576            |
|         | Germany BMBF         | -        | -        | -                               | -                                 | -                                             | -   | -              | -              |
|         | Germany DESY         | -        | -        | 72                              | -                                 | -                                             | -   | 72             | 72             |
|         | Germany MPI<br>Italy | -<br>365 | -<br>235 | -<br>447                        | _                                 | -                                             | -   | -<br>1 047     | -<br>1 047     |
|         | Japan                | 92       | -        | -                               |                                   |                                               | _   | 92             | 92             |
|         | Netherlands          | 211      | _        | -                               | -                                 | -                                             | -   | 211            | 211            |
|         | Norway               | 52       | 21       | -                               | -                                 | -                                             | -   | 73             | 73             |
|         | Slovenia             | 28       | -        | -                               | -                                 | -                                             | 60  | 88             | 28             |
|         | Spain                | 132      | -        | -                               | -                                 | -                                             | -   | 132            | 132            |
|         | Switzerland          | 159      | 75       | 50                              | 246                               | 300                                           | -   | 830            | 830            |
|         | United Kingdom       | 106      | -        | -                               | -                                 | -                                             | -   | 106            | 106            |
|         | US DOE & NSF         | -        | -<br>(Г  | -                               | -                                 | -                                             | -   | -              | -              |
|         | CERN                 | 196      | 65       | -                               | 246                               | -                                             | 39  | 546            | 507            |
|         | Total                | 1 758    | 577      | 569                             | 492                               | 340                                           | 164 | 3 900          | 3 736          |
|         |                      |          |          |                                 |                                   |                                               |     |                |                |
| М&О-В   | Czech Republic       | -        | -        | -                               | -                                 | -                                             | -   | -              | -              |
|         | France IN2P3         | -        | -        | -                               | -                                 | -                                             | -   | -              | -              |
|         | Germany BMBF         | 728      | 165      | 235                             | -                                 | -                                             | 97  | 1 225          | 1 128          |
|         | Italy                | -        | -        | -                               | -                                 | -                                             | -   | -              | -              |
|         | Taipei               | -        | -        | 41                              | -                                 | -                                             | -   | 41             | 41             |
|         | US DOE & NSF         | 364      | 161      | 167                             | -                                 | 80                                            | 75  | 846            | 771            |
|         | Total                | 1 092    | 326      | 442                             | -                                 | 80                                            | 172 | 2 111          | 1 939          |
|         |                      |          |          |                                 |                                   |                                               |     |                |                |
| M&O-A   | Total                |          |          |                                 |                                   |                                               |     | 4 065          | 4 065          |
| Total   |                      | 2 850    | 903      | 1 011                           | 492                               | 420                                           | 336 | 10 077         | 9 741          |

|                     | 2010 | 2011  | 2012  | 2013  | 2014  | Total  |
|---------------------|------|-------|-------|-------|-------|--------|
| M&O-A               | 180  | 940   | 1 050 | 995   | 900   | 4 065  |
| M&O-B/Project       | 767  | 1 457 | 2 310 | 1 000 | 478   | 6 012  |
| Total including DBM | 947  | 2 397 | 3 360 | 1 995 | 1 378 | 10 077 |



#### Annex 6

| Component                                                | Start    | Finish   |
|----------------------------------------------------------|----------|----------|
| TDR approved by ATLAS                                    | -        | Sep 2010 |
| Stave 0: loading FE-I4A modules on stave                 | Apr 2012 | Jul 2012 |
| FE-I4B: submission to end of probing                     | Sep 2011 | Apr 2012 |
| Sensor: production and QC                                | Feb 2011 | Mar 2012 |
| Bump bonding process: UBM, bump deposition and flip-chip | Nov 2011 | Oct 2012 |
| Module assembly with flex and QC                         | Apr 2012 | Jan 2013 |
| Module loading on stave and QC                           | Jul 2012 | Mar 2013 |
| Beam-pipe: procurement                                   | May 2011 | Dec 2012 |
| Stave integration with beam-pipe and internal services   | Mar 2013 | Jun 2013 |
| Whole IBL test and commissioning                         | Jul 2013 | Sep 2013 |

# **Production schedule for main IBL components**