

MedAustron 🗳

Energy dependence of detectors for 3D dosimetry of light ion beams

Hugo Palmans

MedAustron, Wiener Neustadt, Austria and National Physical Laboratory, Teddington, UK

Overview

Need for measuring absorbed dose

Characteristics of ideal 2D and 3D detectors

Energy dependence of detector response to absorbed dose

Absorbed dose versus fluence

Most of this conference: Φ , $\frac{\partial \Phi}{\partial E}$ or $\frac{\partial^2 \Phi}{\partial E \partial \theta}$

This presentation:
$$D_{med} = \frac{d\overline{\epsilon}}{dm}$$

 $\epsilon = \epsilon_{in} - \epsilon_{out} + \Delta Q = energy imparted$

- thermalisation
 - ionisation
- chemical states
- physical states

Need for accurate dosimetry

NPL 🔮

Need for measuring absorbed dose

At the cellular level:

direct DNA damage: ionisation at nanoscale indirect DNA damage: ionisation at microscale other damage: tens of micrometers scale bystander effects: millimetre scale

For photons and electrons: biological effects ~ ionisation ~ absorbed dose For protons and ions: biological effects ~ ionisation * w_i ~ absorbed dose * w_i * w_{D5}

Need for 3D dosimetry

- --- Homogeneity
- --- Target coverage
- --- Cold spots
- --- Out-of-field dose

— Integral dose

NPL 💿

Requirements

- High spatial resolution
- --- Small dosimetric "voxels"
- --- Ease of operation, non-toxic
- --- Reasonable cost
- --- Fast readout
- Stable in time; reproducible
- Signal proportional to dose (or known functional relation)
- --- Dose rate independent, large dynamic range
- Orientation independent
- ---- Water-equivalence
- Minimal/managable perturbing

MedAustron 🎴

passive (scattered) - dynamic (scanned)

Scanning for passive beams

Arrays and 2D, 3D dosimeters for dynamic beams

PPRIG workshop, Teddington UK, 12-13 Mar 2014

Vorlage / template. ZA000 10700 1310013, Vers4.0

Calorimetry (thermalisation)

$$D_{med} = c_{med} \cdot \Delta T$$

	c (J∙kg⁻¹∙K⁻¹	Δ <i>T/D</i>) (mK∙Gy⁻¹)	α (m²⋅s⁻¹)
water	4180	0.24	1.44×10 ⁻⁷
graphite	710	1.41	0.80×10 ⁻⁴

Calorimeters water vs graphite

MedAustron 🎴

Water calorimeters - energy independent chemical heat defect?

NPL

Graphite calorimeters - energy independent dose conversion?

PPRIG workshop, Teddington UK, 12-13 Mar 2014

Vorlage / template. ZA000_10700_1310013, Vers4.0

NPLØ

MedAustron 🎴

Acta Oncologica, 2011; 50: 797-805

⁴ Ion Bea

5 Radiotł

E-mail: s

Receive

Publish

0.11

IOP PUBLISHING

Figure 6. Numerical and experimental fluence correction factors for an 80 MeV/A carbon ion beam as a function of water-equivalent depth. (A) and (B) show the experimental data only and (C) shows a comparison of numerical and experimental results up to the Bragg peak region. In (C), solid circles and solid squares are based on the fluence approach of equation (2.7*a*), and solid triangles are based on the dose approach of equation (2.8*a*). The solid circles and solid triangles show results where only the carbon ion spectrum has been considered, while for the solid squares and the solid stars, all the charged particles spectra have been included.

Ionization chambers

Dose determination with ion chamber

$$D_{w} = D_{air} S_{w,air} p$$

$$\longrightarrow D_{air} = \frac{Q}{m_{air}} \frac{W}{e} = \frac{Q}{\rho V_{air}} \frac{W}{e}$$

Q: charge produced in the air of the chamber W: mean energy required to produce an ion-pair in air

Unfortunately, for commercially available chambers, the volume *V* is not known with the necessary accuracy (would otherwise be a primary standard!).

We have to rely on methods other than "first principles", which involve the use of ion chamber calibration factors

Water/air stopping power ratio

Medin et al. 1997, Phys Med Biol 42:89

Perturbation correction factors

Palmans 2006 Phys Med Biol 51:3483

Palmans 2011 Proc IDOS ¹⁹ IAEA-CN182-230

NPL 💿

Ionisation chambers – overall conversion air to dose

Palmans, Dosimetry, in : Proton Therapy Physics, Ed Paganetti

Vorlage / template. ZA000_10700_1310013, Vers4.0

Ionisation chambers (& any ionisation detector) - charge recombination

Palmans et al 2006 NPL report DQL-RD003

Ion chambers - recombination

diamond detectors

Fidanzio et al 2002 Med Phys 29:669

Silicon-based detectors

Kohno et al 2006 Phys Med Biol 51:6077

TLD - protons

Besserer et al 2001 Phys Med Biol 46:473

NPL therapy level alanine/EPR

Operates since 1991 Bruker ESP 300 X-band 9" magnet

Pellets

- 90% alanine + 10% paraffin wax
- 5 mm diameter
- ---- 0.5 mm and 2.5 mm nominal thickness

Measurement reproducibility of 2.5 mm pellets ~ 0.05 Gy

NPLO

Alanine/EPR dosimetry

Radiochromic film

Piermattei et al 2000 Med Phys 27:1655

MedAustron 🎴

Radiochromic film - energy dependence

Kirby et al. 2010 Phys Med Biol 55:417

NPL

MedAustron 🎴

An interesting one... depth dose distribution for fluence determination

Pic laser induced beam

PPRIG workshop, Teddington UK, 12-13 Mar 2014

/orlage / template. ZA000_10700_1310013, Vers4.0

Alanine - plan verification

Radiotherapy and Oncology 108 (2013) 99-106

(b) show the beam direction. A Farm detectors).

Accepted 27 April 2013 Available online 22 July 2013

of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and car-

Polymer gels

PPRIG workshop, Teddington UK, 12-13 Mar 2014

Polymer gel dosimetry

Palmans et al 2006 NPL report DQL-RD003

Polymer gel dosimetry

BANG3-Pro2:

Zeidan et al. 2010 Med Phys 37:2145

Plastic scintillators

A. Beierholm, Risoe

Goulet et al. 2012 Med Phys 39:4840

Scintillators

Safai et al. 2004 Phys. Med. Biol. 49:4637

Microdosimetry...

Chip : about 5×5 mm²

Andrea Pola, Politecnico di Milano

Superconducting Absorber

Seb Galer, NPL

Nanodosimetry...

Ion counter / PTB

Startrack / INFN

Reading

C. P. Karger, O. Jäkel, H. Palmans and T. Kanai, "Dosimetry for Ion Beam Radiotherapy," Phys. Med. Biol. 55(21) R193-R234, 2010

H. Palmans, A. Kacperek and O. Jäkel, "Hadron dosimetry" In: Clinical Dosimetry Measurements in Radiotherapy (AAPM 2009 Summer School), Ed. D. W. O. Rogers and J. Cygler, (Madison WI, USA: Medical Physics Publishing), 2009, pp. 669-722

H. Palmans, "Dosimetry," In: Proton Therapy Physics, Ed. H. Paganetti (London: Taylor & Francis), 2011, pp. 191-219

H. Palmans, "Monte Carlo for proton and ion beam dosimetry," In: Monte Carlo Applications in Radiation Therapy, Ed. F. Verhaegen and J Seco, (London: Taylor & Francis), 2013, pp. 185-199

Health. Technology. Humanity. SAVE THE DATE · JUNE 7–12, 2015

JUNE 7 - 12 · 2015 · TORONTO WORLDCONGRESS ON MEDICAL PHYSICS & BIOMEDICAL ENGINEERING

IUPESM CONGRESS THEMES

- Global Health Challenges
- Evidence and Health Informatics
- Women in Biomedical Engineering and Medical Physics
- Urban Health and Future Earth
- Next Generation Medicine

WWW.WC2015.ORG

PESIN

@IUPESMWC2015
 facebook.com/groups/WCon2015/

