Paul Scherrer Institut
Oxana Actis, David Meer, Stefan König
Precise On-line Position Measurement for Particle Therapy
Introduction
Radiation and particle therapy

PSI Facility
Gantry 2
Spot scanning technique

Ionization Strip Chamber as on-line beam position monitoring and QA tool

Beams at Gantry 2 and Reconstruction Methods

Operation Stability

Conclusions & Outlook
Radiation therapy

Relative irradiation dose

- **18 MeV photon**
- **250 MeV carbon**
- **135 MeV proton**
- **Tumor**

The depth beneath the skin (CM)

Bragg peak

Picture from: Front.Med. doi: 10.1007/s11684-012-0196-4
Radiation therapy: Why charged particles?

- Bragg peak
- 18 MeV photon
- 250 MeV carbon
- 135 MeV proton
- Tumor

Relative irradiation dose vs. The depth beneath the skin (CM)

- Low entrance dose
- Narrow peak (few mm)
- Depth of penetration depends on the proton’s energy
- “No” exit dose
Superconducting cyclotron
Varian, 250 MeV

First spot scanning Gantry worldwide
In operation since 1996

Ocular tumors
OPTIS1 (1984-2010)
OPTIS2 since 2010

Fast energy change for volumetric repainting
Extend to new clinical indications
Parallel Lateral Scanning
- T sweeper magnet 2 cm/ms
- U sweeper magnet 0.5 cm/ms
- Scan area 20 x 12 cm
- Field patching for larger fields
Energy
- Degrader based energy change within < 100 ms
 merit of optimized magnets and power supply
- Energies from 70 to 230 MeV
 (corresponding range 4.3 - 33 cm)
- Dose down to 5e05 protons per spot

Parallel Lateral Scanning
- T sweeper magnet 2 cm/ms
- U sweeper magnet 0.5 cm/ms
- Scan area 20 x 12 cm
- Field patching for larger fields
Beam Position Precision Requirements

Longitudinal accuracy (depth) depends on beam energy uncertainties.

- 1 MeV at high energy → 2 mm in range → ~5% in dose variation

Transverse (lateral) accuracy depends on spot position, grid and size.

- Spot shift: large dose inhomogeneity > 5% for 1 mm shift

The goal to deliver dose homogeneity of ~1% require:

- Longitudinal accuracy better than 2mm
- Lateral accuracy at sub-millimeter level
Tool for on-line lateral position and dose monitoring

Dose Monitors:
Ionization Chambers (0.5,1 cm, air gap)

Position Monitor
• Choice is based on Gantry 1 experience
• No aging effect (~ 20y experience Gantry 1)
• Stability and flexibility in operation
• (Sub-)optimal material budget (technical limitations)

Beam broadening due to multiple scattering

Spot Size at patient location

Aim: small spot size
Tool for on-line lateral position monitoring

Read-out
- 16 bit TTL digital output
- 10 MHz digital count frequency
- 200 fC Quantum of charge

\[t = \frac{d^2}{\mu*V_a} \]

\(\mu = 1.4 \) (dry air) is the mobility of charged particles in the electric field

\(V = 1800 \) V applied HV

\(d = 1 \) cm air gap

Since 2009 commercialized by

2 TERA06 chips
- 128 channels each

0.2 \(\mu \)m Mylar foil

1 cm air gap

T-anode 88 channels / 2mm

U-anode 128 channels / 2mm
- 50 \(\mu \)m kapton foil
- with 17 \(\mu \)m Cu electrodes

One 2-sided Al cathode
On-line Signal Readout Process

Signal collection
ADC
Front-end electronics
Back-end

Spot
Beam ON
100us - ~ min
Goal < 2 ms

1ms
100 µs
~1ms

Dose Element
Charge collection

Data logging & verification

TERA dse
SB

TERA DSE System Serializer Board(SB) FPGA

High Speed Optical link

PMC
CPU

COG Reconstruction
Position visualization
Save Data

OK
NOK
Continue
ILK
On-line Signal Readout Process

Signal collection ➔ ADC ➔ Front-end electronics ➔ Back-end

Signal collection

100us - ~ min

Goal < 2 ms

1ms

100 µs

~1ms

Dose Element

Charge collection

Data logging & verification

TERA DSE System Serializer Board(SB) FPGA

High Speed Optical link

PMC

CPU

COG Reconstruction
Position visualization
Save Data

OK

NOK

Continue ILK
Integrated Quality Assurance

Therapy Verification System

Single LogFile with on-line reconstructed mean, sigma and integral for each dose spot

Optional for QA

Full profiles logging for Nozzle and additional Strip or MiniStrip chamber mounted at ISO for

- DailyQA
- Sweeper maps
- Back projection

MiniStrip Chamber
7x7 cm active area
32 channels/side
0.22 cm spacing
Signal Reconstruction Algorithm(s)

COG algorithm
- Fast enough for on-line reconstruction
- Implemented in a FW
- Sensitive to noise/spikes
- Reconstruction uncertainties at the detector edge

Gaussian Fit
- More precise position calculation
- Robust for events at the detector edge
- Less sensitive to noise
- Time consuming
- Implemented only in SW

80 MeV U-beam profile at ISO

<table>
<thead>
<tr>
<th>Channel number</th>
<th>Counts</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>0</td>
</tr>
<tr>
<td>140</td>
<td>0</td>
</tr>
</tbody>
</table>

Cut-off

- **ROI min**
- **ROI max**

Data

Gaussian Fit
Gantry 2 beams: signal amplitude

150 MeV beams of various dose

Counts

Channel number

SNR still acceptable for lowest dose signal
⇒ can be reconstructed for all energies and pre-absorber positions

Preabsorber position

• Dose can be varied over 4 orders of magnitude
• Signal-to-noise ratio is important for low weighted spots

6e05 protons beams of various energies

Counts

Channel number
Gantry 2 beams: spot size without preabsorber

Beam Profile 70MeV - 230 MeV

Signal normalized to 1

σ = 2.5-5 mm

1 cm

27 cm

70 cm

Iso-center
Gantry 2 beams: spot size with preabsorber

Beam Profile 70MeV - 230 MeV

- 230 MeV
- 210 MeV
- 190 MeV
- 170 MeV
- 150 MeV
- 130 MeV
- 110 MeV
- 90 MeV
- 70 MeV

Signal normalized to 1

Channel number

Influence of preabsorber on beam size at different distances:

- 1 cm
- 27 cm
- 70 cm

Unaffected iso-center
Stability of the signal

Data sample:
- Energies 230-70 MeV 10 MeV step
- Dose 2e08 – 6e05 protons
- 100 repetitions / each combination

- Position reconstruction is highly reproducible
- Overall lateral position reconstruction fluctuation 0.17 < mm if fit is used
- For GOG reconstruction max fluctuation < 0.2 mm

Fulfill requirements also for lowest weighted spots
Stability of operation

- Gantry 2 is in clinical operation on **November 27, 2013**
- Daily verification of the beam position was performed using mini strip-chambers at ISO:
 - at different gantry angles
 - all clinically used energies
- Detector alignment is uncertainty ~ 0.5 mm
Conclusions

- The strip ionization chambers have proven to be an appropriate on-line verification and QA tool for the scanning proton beam therapy system
- Device has demonstrated an efficient and extremely stable operation over several years
- Sub-optimal material budget allow low multiple scattering which especially important for protons
- Efficient readout electronics (however, physics is still a limiting factor)
- The system demonstrates a sub-millimetre precision of the lateral position reconstruction even for lowest dose

Dose homogeneity of better than 1% guarantee a highest patient treatment quality
Higher dynamic in scanning will require new hardware developments:

Detector optimization possibilities
- Air gap optimization for faster transmission \Rightarrow smaller signals challenge
- Lighter material for electrodes
- Optimal detector strip size
- Using gas instead of the air (e.g. Nitrogen) to increase charge mobility
Proton vs Carbon

<table>
<thead>
<tr>
<th>Proton Advantages over Carbon</th>
<th>Proton Beam Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lower cost</td>
<td></td>
</tr>
<tr>
<td>• Able to be delivered via gantry, allowing multiple beam angles</td>
<td></td>
</tr>
<tr>
<td>• More narrow range of RBE (1-1.1) and greater certainty leading to smaller variations in actual delivered dose.</td>
<td></td>
</tr>
<tr>
<td>• Decreased risk of late normal tissue damage due to lower RBE.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Carbon Advantages over Proton</th>
<th>Carbon Ion Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>• RBE is similar to photon radiation and increased tumor control would not be expected.</td>
<td>• Higher RBE particularly at distal edge of Bragg peak which may permit greater tumor control.</td>
</tr>
<tr>
<td>• Larger lateral penumbra which can cause greater dose to normal tissue structures than carbon ion.</td>
<td>• Smaller lateral penumbra which may permit a more conformal dose laterally and limit normal tissue damage.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Similarities of Proton and Carbon</th>
<th>Both proton and carbon ion limit the integral dose and therefore are predicted to reduce the risk of secondary malignancies over photon therapy, particularly in the pediatric population.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Both proton and carbon ion research is limited, largely consisting of small series of patients where definitive conclusions are difficult to make.</td>
</tr>
</tbody>
</table>
Strip Chamber Read-out

TERA DSE System

- TERA DSE Board
 - Power distribution
 - SB Power
 - DSE Power
 - Board Config
 - DAC
 - Analog
 - Digital
 - PlugIn
 - SERDES interface
 - Serial LVDS

- Serializer Board
 - FPGA
 - Virtex PRO
 - XC2VP4
 - Rocket IO

- High Speed Optical Communication

- FPGA IO interface

TERA 06 Board

- Analog Current Inputs
 - TERA 06
 - Reserved for other sensor inputs

- TERA Interface board
 - LabView readout system
 - Serial LVDS
 - ILK signals

- LabView readout system

- Digital

- DAC

- Analog

- ADC

- Reserved for other sensor inputs

TVS

- VME bridge

- FPGA IO

- FPGA

- Virtex-5 Xilinx

- Alpha Data

- PMC1

- PMC2

- Verification Board (VB)

- FPGA IO interface

- PCI path

- 3.3V

- 5V

- Slot 1

- Slot 2

- VME erate

Oxana Actis, Position Sensitive Detectors Conference, 7-12 September 2014, Surrey UK
Photons vs Protons

(a)

(b)

Dose [Gy]

Dose [CGE]