

Physics Studies for the CMS Muon System Upgrade with Triple-GEM detectors

PSD10: 10th International Conference on Position Sensitive Detectors, 7-12 September 2014, University of Surrey, London (UK)

Claudio Caputo
On Behalf of the CMS GEM Collaboration

University of Bari, INFN of Bari

Outline

Introduction

- CMS Muon System
- CMS Muon Trigger performance
- Physics motivations

The GEM Project

- GE1/1, GE2/1 and ME0
- Detector prototype development and tests
- Integration into CMS
- Impact on the Muon trigger
- Summary & Conclusions

The CMS Muon System

3 technologies:

- Drift Tubes and Cathode Strip Chambers (for tracking and triggering)
- Resistive Plate Chambers (for triggering)

Goals

- Robust, redundant and fast identification of the muons traversing the system
- Trigger capabilities and momentum measurement

Eta coverage:

 $|\eta|$ < 1.6: 4 layers of CSCs and RPCs (ME4/2 and RE4 being installed during LS1) $|\eta| \ge 1.6$: CSCs only

New technology needed for Inl > 1.6 region of muon system

- Present CMS RPC design not suitable for high rate environment
- Sustain O(MHz/cm²) environment
- Need for good spatial resolution O(100µm): muon tracking
- Need for good time resolution: muon triggering

Muon Trigger Performance

Forward region trigger relies entirely on the CSC system (4 ME stations)

Muon momentum from stub positions:

$$\Delta \Phi XY = \Phi (ME-X) - \Phi (ME-Y)$$

- Measurement driven by internal chambers (ME1/1, ME2/1): least scattering and strong B field
- Resolution using outer stations is quite coarse (not enough bending)

Muon trigger issues

- High background rates in forward region: trigger rate is dominated by junk muons reconstructed as high pT muons (multiple scattering of soft muons in the iron yoke flattens the trigger rate curve)
- Muon trigger stub losses drive inefficiency
 - Dead electronics, spaces between chambers, but also algorithmic losses
 - Especially undesirable in station ME1/1, which is key for momentum resolution

Physics motivations

Muon system is critical for both bosonic and fermionic couplings:

 H → WW and ZZ are key to the precision measurement of H → VV couplings. In particular:

$$H \rightarrow ZZ \rightarrow 4\mu$$
:

- 20% of signal events falls in the eta region from 1.6 to 2.1 and can benefit from the improved muon detection
- Gain up to 40% in signal selection efficiency with extension up to $|\eta| = 4$
- H → ττ is key for measuring fermion couplings H → ff
 - μ + τ_{had} is the most sensitive channel, fully relies on muon trigger
 - Fast falling muon momentum spectrum: requires an efficient muon trigger

The GEM Project

The GEM Project

- Restore redundancy in muon system for robust tracking and triggering
- Improve L1 and HLT muon momentum resolution to reduce or maintain global muon trigger rate up to $|\eta| = 2.4$
- Ensure maximum trigger efficiency in high PU environment
- Increase offline muon identification coverage up to $|\eta| = 3$ (calorimeter limit)

Install two layers (super-chambers) of triple-GEM (GE 1/1 & GE 2/1) chambers in the presently vacant positions in front ME1/1 (after LS2) and ME2/1 (after LS3), and a 6-layers of triple-GEM (ME0) near-tagger behind the future shortened hadron calorimeter (after LS3)

GEM features:

Rate capability: 10⁵Hz/cm²

Spatial/Time resolution: ~ 100 µm / ~ 4-5 ns

Efficiency: > 98%

Typical Gas gain: >104

LHC and detector evolution

Background (from FLUKA + GEANT4):

- Hadronic interactions lead to activation of materials and give rise to neutron backgrounds
- Long living neutrons can interact with nuclei and produce photons which further decay to electrons/positrons with some possibility to generate fake signals
- Background rates expected in each chamber normalized to 5x10³⁴ Hz/cm²

The GEM Project

GE1/1: baseline detector for **GEM** project

- $1.55 < |\eta| < 2.18$
- 36 staggered super chambers, super-chamber (2 layers), each chamber spans 10°
- Several prototype designs with different number of eta partitions
- Short and long super chambers for maximum coverage in pseudo-rapidity

GE2/1: station 2 upgrade

- 1.6 < |eta| < 2.49 -
 Chambers spanning 20°
- Looking into possibility of installing 2 rings of two layers of triple GEMs (1 ring with short, 1 ring with long super chambers)

ME0: near-tagger to be installed behind new HCal

- 6-layers of triple-GEM detectors
- $2.0 < |\eta| < 3.0 20^{\circ}$ chambers
- Additional 6 points of measurements extending in high eta (for neutron background rejection): R&D on-going

Large GEM prototype evolution

2011

2012

2013/14

GENERATION I

The first 1m-class detector ever built but still with spacer ribs and only 8 sectors.

Ref: 2010 IEEE

(Also RD51-Note-2010-005)

GENERATION II

The first large detector with 24 readout sectors (3x8) and 3/1/2/1 gaps but still with spacers and all glued.

Ref: 2011 IEEE (Also RD51-Note-2011-013)

GENERATION III

The first large detector without spacers, but with outer frame still glued to drift

Ref: 2012 IEEE

GENERATION IV

The first large detector evolved from previous generation without spacers and any glue.

Ref: 2013 IEEE2013

GENERATION V

Tuned version of CMS detector, to be produced in two versions (long and short)

Latest version currently compliant with CMS

The CMS GEM collaboration has undertaken a 5-year long R&D process:

- Test of performance on small prototypes
- Development of 6 generations of large-area GEM prototypes
- Intense prototype testing on bench top and in beam tests

GE1/1 detector layout

Main detector layout features:

- Single-mask
- Gap sizes: 3/1/2/1 mm
- Sectors : 3 columns x (8-10) η partitions
- Strip pitch: 0.6-1.2mm (trapezoidal chambers)
- 1D readout with 384 channels

Readout board 2mm 2mm Internal frames External frame Drift board

Self-stretching assemply (NS2):

- Tightening the horizontal screws tensions the GEMs & seals gas volume
- Allows re-opening of assembled detector for repairs if needed
- Assembly time reduced (2 hours)

GEM project achievements

Performance from Test-Beams:

- Detector efficiencies: > 98% + Time resolution: ~4ns
- Spatial resolution of about 276μm with VFAT2 (digital) and
 < 104μm APV (analog) readout chip
- Operation of GEMs in magnetic field
- Gas mixture: Ar/CO2/CF4 (45/15/40)
- Rate capability: ~10⁵ Hz/cm²
- Good performance in test-beams at CERN SPS/FNAL

GEM project achievements

Technology and assembly

- Validation of single-mask technology
- Production of large area GEM foils (GE1/1-type)
- NS2 technique for GEM assembly

Integration

- Successful trial installation of dummy super chambers to optimize design and to perform trial insertion into CMS
- No detector and no electronics inside
- All positions for gas, cooling and electronics connections at the right place
- Same weight and dimensions as a real super chamber
- Trial installation of 1st set in Summer 2013
- Trial installation of 2nd set (short and long chambers) in March 2014

Impact on the Muon Trigger

Impact on the trigger: bending angle

GEM-CSC Bending Angle

Scattering of soft muons due to multiple-scattering in the iron yoke flattens the trigger rate curve:

promotion of low-pT muon to high-pT

L1 muon momentum resolution can be improved with a second detector if we can measure the "bending angle".

CSCs are too thin (11 cm) to see the bend with sufficient resolution (around 0,5 mrad) to discriminate 5 GeV from 20 GeV muons.

GEM detector in front of CSC can measure muon bending angle in magnetic field:

- increase "lever arm";
- high point resolution of GEM detector improve over the limited pt resolution.

Impact on the trigger: rate

CSC only: at least 2 CSC stations with hits + presence of a track in ME1/1:

- Muon L1 rates increase with $|\eta|$, as the momentum resolution decreases **GEM+CSC** integrated local trigger (GEM hits as additional input for CSC stub generation):
- better discrimination of high momentum using the bending angle measured;
- can lower pt threshold increasing efficiency in GE1/1 region.

Typical trigger rate reduction for 20GeV muon: **20kHz to 2kHz**

Impact on the trigger: rate

CSC only: at least 2 CSC stations with hits + presence of a track in ME1/1:

- Muon L1 rates increase with $|\eta|$, as the momentum resolution decreases **GEM+CSC** integrated local trigger (GEM hits as additional input for CSC stub generation):
- better discrimination of high momentum using the bending angle measured;
- can lower pt threshold increasing efficiency in GE1/1 region.

Excellent handle for trigger in Run 3

Summary & Conclusions

- CMS GEM Project has been developed since 2009
- Present scope of the project includes new GE1/1 (LS2), GE2/1 and ME0 (LS3) stations
- Triple-GEMs provide a excellent solution for the CMS muon trigger and tracking needs in the LHC Phase-II era
- Good performance in test beams:
 - Detector efficiencies: ~98%; Time resolution: 4-5ns
 - Spatial resolution of about 100-250µm with analog and digital
- Design of the GE1/1 chambers for installation in CMS close to final
 - Production and test of 10 full-size GE1/1 chambers
- During LHC 2016-2017 Year-End Technical Stop 40° slices (four triple-GEM super chambers) will be installed inside CMS, in YE1/1
- Full GE1/1 installation during LHC LS2
 - Production sites being commissioned
- Preparing CMS (Muon) Phase-II Technical Proposal and GE1/1 Technical Design Report to be submitted to LHCC

Thank you for your attention!