Charge Collection Efficiency Simulations of Irradiated Silicon Strip Detectors

PSD10, University of Surrey, 7-12 Sept 2014

T. Peltola1), A. Bhardwaj2), R. Dalal2), R. Eber3), T. Eichhorn4), K. Lalwani2), A. Messineo5), M. Printz3) and K. Ranjan2)

on behalf of the CMS Tracker collaboration

1)Helsinki Institute of Physics, 2)University of Delhi, 3)Karlsruhe Institute of Technology, 4)Deutsches Elektronen-Synchrotron, 5)Università di Pisa & INFN sez. Di Pisa
Motivation
- Silicon detectors in CMS Tracker
- Tracker upgrade to HL-LHC

Charge collection efficiency (CCE) simulations
- Method
- Results & comparison with measurements

Simulated position dependency of CCE (CCE(x))
- Method
- Results & comparison with measurements

Summary
Motivation
Motivation I: Silicon detectors in CMS Tracker

Tracker position in Compact Muon Solenoid

- Silicon detector module made of APV25 and two 6" detectors.

- 225 m² silicon
- Design: Si strip sensors surrounding the core of Si pixels.

ECAL
Magnet
HCAL
Muon chambers
Motivation II: Tracker upgrade to HL-LHC

Estimated fluence levels in CMS Tracker after 10 years of HL-LHC operation.

Upgrade: LHC → HL-LHC
- \(L = 10^{35} \text{ cm}^{-2}\text{s}^{-1} \) with an event rate of 40 MHz
 - \(\int L = 3000 \text{ fb}^{-1} \)
- Challenges for tracker:
 - Higher radiation hardness
 - High occupancy → higher granularity
 - Reduce material budget → thin sensors (~200 μm)

CMS has initiated extensive measurements & simulation studies within RD50 Collaboration for detectors suitable for HL-LHC.

Very high multiplicity pp collision: more than 110 charged particles produced inside the CMS tracker.
CCE simulations
Radiation ($\Phi_{eq} > 1e13 \text{ cm}^{-2}$) causes damage to silicon crystal structure. ($\Phi_{eq} = 1 \text{ MeV n}_{eq}$)

High fluences ($\Phi_{eq} > 1e14 \text{ cm}^{-2}$) lead to significant degradation of CCE due to charge carrier trapping.

Both bulk and surface damage affect the detector performance

- **Bulk damage**: introduces deep acceptor and donor type trap levels
- **Surface damage**: Positively charged layer accumulated inside $\text{SiO}_2 \rightarrow$ affect to sensor performance through the SiO_2/Si interface

Simulation: Bulk damage approximated by **effective two-defect model** & surface damage by placing fixed charges Q_f at SiO_2/Si interface

Defect models used in Synopsys Sentaurus package tuned by R. Eber from the EVL-model (V. Eremin et al., 2011) for $\Phi_{eq} = 1e14 - 1.5e15 \text{ cm}^{-2}$ at fixed $T=253 \text{ K}$

<table>
<thead>
<tr>
<th>Proton model</th>
<th>Neutron model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of defect</td>
<td>Level [eV]</td>
</tr>
<tr>
<td>Deep acc.</td>
<td>$E_G - 0.525$</td>
</tr>
<tr>
<td>Deep donor</td>
<td>$E_V + 0.48$</td>
</tr>
</tbody>
</table>

Both models are tuned to produce V_{fd}, I_{leak}, $E(z)$ & transient signal shapes matching with measurement (see also poster by M. Printz at Posters1)
CCE simulations: Method

Detector characterization:
- Bulk: V_{fd}, I_{leak}, $E(z)$, and CCE
- Surface: C_{int}, R_{int}, $E(x)$, and CCE(x)
- CCE(Φ): Direct information of the effect of radiation induced defects to the ability of a detector to collect charge carriers generated by traversing MIPs → most important property to determine radiation hardness of a Si detector

Definition: The collected charge of an irradiated detector is a measure of efficiency relative to the non-irradiated detector

- The collected charge is the integral of the transient signal over time → CCE = $Q_{irr} / Q_{non-irr}$

200P: $I(t)$, $Q(t)$
Results I: proton & neutron models

- **Simulation set-up:**
 - 5-strip structure to avoid non-uniformities from border effects to mesh formation at the center
 - Device is depleted by HV provided from the backplane
 - Charge is injected (mip) at the centermost strip
 - Q_{coll} = sum of charges collected at all 5 strips
 - E.g. FZ320N = 320 μm thick p-on-n float zone silicon sensor

- **CCE simulations**
 - 320N/P 5-strip sensor structure, pitch=80 μm, implant width=18 μm @ $T = 253$ K
 - $Q_f = 5e11$ cm$^{-2}$ @ $\Phi_{\text{eq}} < 7e14$ cm$^{-2}$, $Q_f = 1e12$ cm$^{-2}$ @ $\Phi_{\text{eq}} > 7e14$ cm$^{-2}$
 - Data from mini sensors, measured with the ALiBaVa system

Proton model

FZ320N: CCE(Φ)

$V = 1$ kV

FZ320P: CCE(Φ)

max. $Q_f = 7e11$ cm$^{-2}$

$V = -1$ kV
Simulated CCE has dependency on Q_f:

- If Q_f is set too low for high fluences, charge multiplication sets in too early → Unphysically high CCE
- If Q_f is set too high strip isolation is lost & undepleted region extending from front surface results in low CCE not matching with measurement @ $V < 1$ kV

320P 5-strip sensor structure, pitch=80 μm, implant width=18 μm @ $T = 253$ K

Further tuning of models to produce correct CCE for expected Q_f @ high fluences
Results III: SiBT data vs simulation @ T=0°C

- SiBT = Silicon Beam Telescope
- 5-strip sensor, pitch=120 μm, implant width=28 μm
- Tuning to match I_{leak} @ T = 273 K for both models: $\sigma_{\text{e, h}}(273\text{K}) = 0.75 \cdot \sigma_{\text{e, h}}(253\text{K})$

![Graph showing measured and simulated CCE vs fluence (1 MeV n$_{\text{eq}}$)](image)

SiBT data fluences

<table>
<thead>
<tr>
<th>Detector</th>
<th>$\Sigma \Phi$ (1 MeV n$_{\text{eq}}$) [cm$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FZ320P</td>
<td>4.0e14</td>
</tr>
<tr>
<td>FZ320P</td>
<td>1.3e15</td>
</tr>
<tr>
<td>FZ200P</td>
<td>3.0e14</td>
</tr>
<tr>
<td>MCz200P</td>
<td>1.4e15</td>
</tr>
</tbody>
</table>

- Thicknesses of the reference detectors and DUTs are not equal → measured CCE is determined by:
 \[
 \text{CCE}_{\text{data}} = \frac{Q_{\text{DUT}}}{Q_{\text{ref}}} \cdot \frac{d_{\text{ref}}}{d_{\text{DUT}}}
 \]

 $Q =$ collected signal

 $d =$ detector thickness

- Q_f & V: iteration parameters to match CCE with measured
- Find Q_f producing matching CCE with measured detector & irradiation type
- Use the fixed Q_f to make prediction to detector with equal irradiation type/dose
- Uncertainty in data from detector T & effective thickness

<table>
<thead>
<tr>
<th>Fluence [cm$^{-2}$]</th>
<th>Q_f(neutron) [cm$^{-2}$]</th>
<th>Q_f(proton) [cm$^{-2}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1e14</td>
<td>6e10</td>
<td>1.4e11</td>
</tr>
<tr>
<td>3e14</td>
<td>-</td>
<td>3e11</td>
</tr>
<tr>
<td>4e14</td>
<td>9e10</td>
<td>-</td>
</tr>
<tr>
<td>8e14</td>
<td>3.25e11</td>
<td>7.1e11</td>
</tr>
<tr>
<td>1.3e15</td>
<td>6e11</td>
<td>-</td>
</tr>
<tr>
<td>1.4e15</td>
<td>-</td>
<td>1.2e12</td>
</tr>
</tbody>
</table>

Timo Peltola, PSD10, 9 Sept 2014
CCE(x) simulations
Surface damage induced by protons is significantly higher than for neutrons.

Experimentally observed Q_f is in the range $1e12 \text{–} 2e12 \text{ cm}^{-2}$ @ $\Phi_{eq} > 1e15 \text{ cm}^{-2}$ for proton irradiation.

E.g. when $Q_f \geq 1.3e12 \text{ cm}^{-2}$ is applied for proton model @ $\Phi_{eq} = 1.4e15 \text{ cm}^{-2}$ in n-on-p strip detector:

- No strip isolation \rightarrow no CCE(x) (measured: strip isolation ok, CCE loss between strips $\sim30\%$)
- C_{int} increases $\sim O(1)$ over measured

→ Need to add another acceptor trap level that compensates for both inversion layer electrons and signal electrons.

SiBT measured CCE(x) (T. Määnpää, 2013)

$q_{eq}=1.4e15 \text{ cm}^{-2}$

Center of strip

Center of pitch

MCz 200P sensor, pitch=120 μm, implant width=28 μm
Method I: Non-uniform 3-level model

- Non-unif. 3-level model can be tuned to equal bulk properties (TCT, V_{fd} & I_{leak}) with proton model → suitable tool to investigate CCE(x)
- 3-level model within 2 μm of device surface + proton model in the bulk: R_{int} & C_{int} in line with measurement (see back-up slides) also at high fluence & Q_f

<table>
<thead>
<tr>
<th>Type of defect</th>
<th>Level [eV]</th>
<th>σ_e [cm2]</th>
<th>σ_h [cm2]</th>
<th>Concentration [cm$^{-3}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep acc.</td>
<td>$E_C - 0.525$</td>
<td>1e-14</td>
<td>1e-14</td>
<td>1.189*Φ + 6.454e13</td>
</tr>
<tr>
<td>Deep donor</td>
<td>$E_V + 0.48$</td>
<td>1e-14</td>
<td>1e-14</td>
<td>5.598*Φ - 3.959e14</td>
</tr>
<tr>
<td>Shallow acc.</td>
<td>$E_C - 0.40$</td>
<td>8e-15</td>
<td>2e-14</td>
<td>40*Φ</td>
</tr>
</tbody>
</table>

- Effect of acceptor traps in non-unif. 3-l. model is clearly visible: O(5) lower electron density to proton model between strips
- Strips are isolated at $V=0$ for $\Phi_{eq}=5e14$ cm$^{-2}$ as in real detectors

- $\Phi_{eq}=1.5e15$ cm$^{-2}$ & $Q_f=1.2e12$ cm$^{-2}$: C_{int} at geometrical level ~2 pF/cm (pitch=80 μm)
Method II: Variation of oxide charge

- Principle of CCE(x) simulation for given c (shallow acc.) & voltage
- 5-strip 200P (pitch=120 μm, implant width=28 μm) @ $\Phi_{eq} = 1.5 \times 10^{15}$ cm$^{-2}$, V=-1 kV, T=253 K

- Acceptor traps remove both accumulation layer & signal electrons: better radiation damage induced strip isolation → larger CCE loss between the strips

- Increased Q_t → more traps are filled → charge sharing between strips increases, undepleted region between strips grows → CCE loss decreases
Results I: CCE(x) of proton model & non-unif. 3-l model

When strips are isolated: Q_{coll} at center strip increases as position of charge injection moves closer to it & Q_{coll} at 2nd strip drops down

- $Q_I = 1.2e12$ cm$^{-2}$: CCE loss $\approx 15\%$
- $Q_I \sim 1.5e12$ cm$^{-2}$: no strip isolation & cluster CCE ~ 0.5 of expected due to even charge sharing between all strips (total strip # = 3*1 + 2*0.5 = 4)

- $Q_I = 1.2e12$ cm$^{-2}$: CCE loss $\approx 41\%$
- $Q_I = 2e12$ cm$^{-2}$: increased charge sharing when mip position ≥ 30 μm from center strip, but still producing position information

Charge injected at the center of strip:
Both models produce essentially same total collected charge at the 5 strips
Results II: Measured CCE(x) vs simulation

- Target $Q_f \approx 5 \times 10^{11}$ and 1.5×10^{12} cm$^{-2}$ for given fluences (estimation from measured data)
- c (shallow acc.) parametrized by using 'fixed' values of $Q_f \rightarrow$ fixed c, parametrized Q_f

- Measured average CCE loss (FZ200P/Y, MCz200P) @ $\Phi_{eq} (p^+) = 3 \times 10^{14}$ cm$^{-2}$, $V = 600 - 990$ V: $26.5 \pm 1.1\%$

\[\Phi_{eq} = 3 \times 10^{14} \text{ cm}^{-2} \]
\[V = -990 \text{ V} \]

\[Q_f = (4.6 - 6.0) \times 10^{11} \text{ cm}^{-2} \]

- Two low CCE loss regions observed in Q_f scan for $\Phi_{eq} = 3 \times 10^{14}$ cm$^{-2}$
- At very low Q_f charges of opposite sign are collected at strips further away of charge injection point → injection at center of strip produces cluster Q_{coll} closer to Q_{coll} @ injection at center of pitch

- Measured average CCE loss (FZ200P/Y, MCz200P) @ Φ_{eq} (mixed) = $(1.4 \pm 0.1) \times 10^{15}$ cm$^{-2}$, $V = 606 \pm 2$ V: $30 \pm 2\%$

\[\Phi_{eq} = 1.5 \times 10^{15} \text{ cm}^{-2} \]
\[V = -608 \text{ V} \]

\[Q_f = (1.405 - 1.425) \times 10^{12} \text{ cm}^{-2} \]

Type of defect	Level [eV]	σ_e [cm2]	σ_h [cm2]	Concentration [cm$^{-3}$]
Deep acceptor | $E_C - 0.525$ | 1×10^{-14} | 1×10^{-14} | $1.189 \Phi + 6.454e13$
Deep donor | $E_V + 0.48$ | 1×10^{-14} | 1×10^{-14} | $5.598 \Phi - 3.959e14$
Shallow acceptor | $E_C - 0.40$ | 8×10^{-15} | 2×10^{-14} | 40Φ
Shallow acceptor | $E_C - 0.40$ | 8×10^{-15} | 2×10^{-14} | $14.417 \Phi + 3.1675e16$

Timo Peltola, PSD10, 9 Sept 2014
Summary

- 2-level defect models for both protons and neutrons were applied for the CCE simulations of 320N/P and 200P strip sensors up to $\Phi_{\text{eq}} = 1.5\times10^{15} \text{ cm}^{-2}$
 - By adjusting V_d and Q_f it is possible to reach good agreement with both ALiBaVA and SiBT measured CCE data
 - Problem: realistic values of oxide charge Q_f for proton irradiation

- By applying non-uniform 3-level defect model, matching CCE(x) with SiBT measured data was reached
 - Simulated CCE(x) is governed by Q_f and the shallow acceptor concentration
 - By tuning these, the measured CCE loss between strips for given Φ_{eq} is reproduced
 - Realistic values of Q_f for proton irradiation without compromising strip isolation, strip noise, etc.
 - Preliminary parametrization of the model for fluence range $3\times10^{14} - 1.5\times10^{15} \text{ cm}^{-2}$
Backup: SiBT measured CCE loss between strips

Signal loss in-between strips (p=120µm, w/p∼0.23)

No loss before irrad.; after irrad. ~30% loss; all technologies similar [Phase-2 Outer TK Sensors Review]
Backup: Measured R_{int} & C_{int}

Interstrip Resistance after 40 cm mixed irradiation

- $F=5\times10^{14}$ cm$^{-2}$

- P and Y types: R_{int}

Interstrip Resistance after 20 cm mixed irradiation

- $F=1\times10^{15}$ cm$^{-2}$

Measurement (W. Treberspurg)
- DC-CAP

Simulations by Silvaco Atlas 5-trap model

NO-1

- Red: Experimental result (flux-5e14)
- Blue: Flux=5e14neq, & QF =8e11 cm$^{-2}$
- Green: Flux=1e15neq, & QF=1.2e12 cm$^{-2}$

N type: C_{int}

Str-1

- Red: Experimental result (flux-5e14)
- Blue: Flux=5e14neq, & QF =8e11 cm$^{-2}$
- Green: Flux=1e15neq, & QF=1.2e12 cm$^{-2}$

P type: C_{int}

Timo Peltola, PSD10, 9 Sept 2014
3 strip structure, $V_{\text{strip1}} = V_{\text{strip3}} = 0$, $V_{\text{strip2}} = LV$ and 0 V

- $V = -HV$ at the backplane

Interstrip resistance (R_{int}) is defined as (Induced Current Method):

$$R_{\text{int}} = \frac{V_2(LV)}{I_1(LV)+I_3(LV) - I_1(0)+I_3(0)}$$

- R_{int} is plotted as a function of applied voltage V

Electrical circuit diagram of R_{int} measurement:

C_{int} simulation principle:

$$C_{\text{int}} = 2*[AC(1,2)+DC(1,2)+AC(1)DC(2)+DC(1)AC(2)]$$

R_{int} simulation principle:

$V_{\text{strip1}} = 0$

1: $V_{\text{strip2}} = LV$

2: $V_{\text{strip2}} = 0$

$V_{\text{strip3}} = 0$