PImMS
Pixel Imaging Mass Spectrometry sensor

Jaya John John, on behalf of the PImMS Collaboration
11 September 2014, PSD10, University of Surrey
Outline

- Context and requirements for PlmMS sensors
- PlmMS1 and PlmMS2 sensors
 - Specifications, design and operation
 - PlmMS1 application results
 - PlmMS2 application results
- Summary and future work
Context – Imaging Mass Spectrometry

Combines time-of-flight mass spectrometry with 2D ion imaging – measuring time and x-y position

Basics of time-of-flight MS:

1) Molecules are dissociated and ionised – often with lasers

2) The ions are accelerated in an electric field created with charged plates = “ion optics”

3) Their time of arrival is proportional to their mass-to-charge ratio (m/z)

4) Ions arrive at a micro-channel plate (MCP), generating electron showers. Often these are converted to photons with a phosphor screen.

A time-of-flight mass spectrometer
Context – Imaging Mass Spectrometry

Depending on how the ion optics are biased, we can image:

The velocities of the ions
- “velocity map imaging”
- Learn about reaction dynamics

The positions of the ions
- “spatial imaging”
- Can study tissue samples
Context – timing structure of data

Mass spectrometry and the International Linear Collider have a similar time structure of data:

- **MS**: $O(50 - 200 \ \mu s)$ duration @ 20 Hz
- **ILC**: 868 μs duration @ 5 Hz

Mass spectrometry timing

- 50ms
- $O(50 - 200 \ \mu s)$

ILC timing

- 200ms
- 308 ns
- 868 μs
- 2820x
Requirements

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-triggering</td>
<td>Avoid needing prior knowledge of time of arrival of ions</td>
</tr>
<tr>
<td>Time-stamping and thresholding</td>
<td>Record the time of arrival of significant pulses of light (or electrons) as a digital timestamp</td>
</tr>
<tr>
<td>Storage of multiple timestamps</td>
<td>Avoid the ‘loss’ of a pixel after being hit once</td>
</tr>
<tr>
<td></td>
<td>Optimised science versus pixel size constraints to arrive at 4 timestamps per pixel</td>
</tr>
<tr>
<td>Time resolution</td>
<td>Initial spec: 50ns time bins to gain sufficient mass resolution</td>
</tr>
<tr>
<td></td>
<td>Updated spec after improvements to mass spectrometers: 12.5ns time bins</td>
</tr>
<tr>
<td>Length of experimental cycle</td>
<td>The period when ion data should be recorded is generally 50 - 200µs long</td>
</tr>
<tr>
<td>Readout frame rate</td>
<td>10 Hz minimum, higher desirable</td>
</tr>
<tr>
<td></td>
<td>Based on repetition rate of commonly-used lasers</td>
</tr>
</tbody>
</table>

PlmMS Collaboration • Jaya John John • PSD10, University of Surrey
PlmMS sensors: specifications

<table>
<thead>
<tr>
<th>Spec</th>
<th>PlmMS1</th>
<th>PlmMS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array size</td>
<td>72 x 72 pixels</td>
<td>324 x 324 pixels</td>
</tr>
<tr>
<td>Active area</td>
<td>5mm x 5mm</td>
<td>22.7mm x 22.7mm</td>
</tr>
<tr>
<td>Sensor size</td>
<td>7mm x 7mm</td>
<td>25.4mm x 26.1mm</td>
</tr>
<tr>
<td>Pixel size</td>
<td>70µm x 70µm</td>
<td>70µm x 70µm</td>
</tr>
<tr>
<td>Pixel threshold trim</td>
<td>4 trim bits + 1 masking bit per pixel</td>
<td>Four 12-bit registers per pixel</td>
</tr>
<tr>
<td>Timestamp storage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test pixel</td>
<td>1 test pixel with access to inner analogue nodes</td>
<td></td>
</tr>
<tr>
<td>Time resolution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(timecode period)</td>
<td>Initial spec: 50ns</td>
<td>Simulation target: 25ns</td>
</tr>
<tr>
<td>Current performance</td>
<td></td>
<td>12.5ns timecode period</td>
</tr>
<tr>
<td>Substrate</td>
<td>5µm epi</td>
<td>5µm epi</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18µm high-resistivity epi</td>
</tr>
</tbody>
</table>
PlmMS pixel

![Diagram of PlmMS pixel](image)

- **Collection Diodes**
- **Pre-Amplifier**
- **Shaper**
- **Comparator Trim Block**
- **Comparator**
- **Digital Control Logic**
- **Pixel Memories 12 bits each**
 - Memory 1
 - Memory 2
 - Memory 3
 - Memory 4

Analogue Readout
- vD
- vPA
- vS1
- vS2
- vS
- vC1
- vC2
- DAC
- vTh1
- vTh2
- vTr1
- vTr2

Digital Readout 12 bits

Digital Timecode 12 bits

Pixel Memories 12 bits each

![Graphs of vD, vPA, vS, vC, and vO over time](image)
Pixel operation

diode

preamplifier

shaper

comparator inputs

hit indicator

timecode

memory 1

memory 2
Pixel layout

- 615 transistors per pixel
- Process: 0.18µm CMOS INMAPS
 (Isolated N-Well Monolithic Active Pixel Sensor)
PlmMS sensors: overview

PlmMS1

- Timecode Distribution
- Test Pixel @ (3, 2)
- 72 x 72 Pixel Array
- Sense Amplifiers
- Readout Circuit
- Analogue Output Path

PlmMS2

- Timecode Generation (Counter)
- Test Pixel @ (3, 2)
- 324 x 324 Pixel Array
- Trim and row control
- Trim readback + row control
- Sense Amplifiers
- Readout Circuit
- Analogue Output Path
- Bias DACs
Readout: camera

- USB control and readout
- F-mount SLR lens
- C-mount SLR lens also possible – delivers more light to sensor

- Cooling system based on copper finger and Peltier device
- Connection for nitrogen/dry air flushing
Application results
Coincidence imaging

- Here bromine gas (Br_2) is dissociated. By switching the polarity of the ion optics, first the electrons are imaged, then the ions.
- (a) shows the mass spectrum including $^{79}\text{Br}^+$ and $^{81}\text{Br}^+$
- (b) shows the mass intersections for the electrons and Br ions
- (c) zooms in on the two isotopes, $^{79}\text{Br}^+$ and $^{81}\text{Br}^+$

Spatial imaging

- This is imaging the mass spectrum over a 2D surface.
- Materials used: lines of Auramine O (yellow) and Rhodamine 590 (red)
- The samples produced 10 mass peaks in all. 5 are highlighted here.
- Data taken at 25ns time resolution
- Demonstrates multi-mass imaging

Coulomb Explosion Imaging

- Using PlmMS to record images on Henrik Stapelfeldt’s coulomb explosion rig
- Acknowledgements: Aarhus: Henrik Stapelfeldt, Lauge Christensen, Jens Nielsen
- Oxford: Craig Slater, Alexandra Lauer, Sophie Blake

- A biphenyl molecule is aligned using a 1064 nm, 10 ns pulse, linearly polarised (from a Nd:YAG laser, 20 Hz)
- It is then ionised using an 800 nm, ~30 fs probe pulse (amplified Ti:Sapphire laser)
- Stripped of valence electrons, the molecule breaks up due to electrostatic repulsion, termed a coulomb explosion

Coulomb Explosion Imaging 2

Parallel 1D alignment and Coulomb explosion imaging
Coulomb Explosion Imaging 3

Perpendicular 1D alignment and Coulomb explosion imaging
Neutron detection

- Daniel Pooley of ISIS’ Neutron Detectors Group is developing a neutron detector based on PlmMS, working with Jason Lee (Oxford Chemistry)
- Gadolinium is thinly sputtered onto the surface of PlmMS (4µm) which creates showers of electrons immediately above the pixel array
- Here are early results using a cadmium mask to demonstrate neutron sensitivity:

![Diagram of neutron detection setup](image)

Not to scale
Imaging two materials with PlmMS2 (GP2)

Cu

Fe

DE Pooley, JWL Lee
Neutron tomography – assorted metal
Summary and future work

- PImMS is a self-triggered time-stamping sensor.
- Initially designed for imaging mass spectrometry, it has also been successfully applied to neutron imaging.
- PImMS1 is producing science in a variety of chemistry applications.
- PImMS2 is under development as a neutron imaging sensor.
- PImMS2 is currently being commissioned for chemistry work – calibration is under development.
- Once PImMS2 calibration is established, much interesting sensor characterisation becomes possible.
Thank you for your attention. Questions?

The PImMS Collaboration

Mark Brouard, Alexandra Lauer, Craig Slater, Michael Burt, Ed Halford, Kasra Amini
(Benjamin Winter, Wei Hao Yuen)
Department of Chemistry, University of Oxford

Claire Vallance, Simon-John King, Jason Lee, Weiwei Zhou
(James Bull, Cécilia Cauchy, Laura Lipciuc, Sara Gardiner, Edward Wilman)
Department of Chemistry, University of Oxford

Andrei Nomerotski, Richard Nickerson, Todd Huffman, Jaya John John, Richard Makin
(Laura Hill, Robert Pisarczyk, Xavier Coubez, Rebecca Ramjiawan)
Department of Physics, University of Oxford

Renato Turchetta, Iain Sedgwick, Jamie Crooks (Andy Clark)
STFC Rutherford Appleton Laboratory

The support of the STFC, ICONIC, EPSRC, ERC, RC-UK and ISIS Innovation Ltd. are gratefully acknowledged.
Backup material
Requirements: self-triggering

- Proof of concept experiments with a fast-framing camera: multiphoton fragmentation of dimethyldisulfide (images recorded in 2008 using a Dalsa Zenith CCD camera).

- Required prior knowledge of timing of mass peaks, programming the framing for the known time of arrival of each peak.

Requirements: multiple timestamps

- Want a fast sensor, flexible to analyse any mass spectrum
- Sparse events \rightarrow consider time-stamping approach
- To record both early and late ions, need multiple memories. How many? Simulate:
Requirements: timing resolution

- Initial spec for time resolution: 50ns
- Updated spec, based on our significant progress in mass spectrometer timing, is to distinguish ions with a mass difference of 1 Dalton over a wide range of masses.
- This gives an updated target spec of 12.5ns

\[
\frac{m}{\Delta m} \approx \frac{t}{2\Delta t}
\]

\[
\Delta t = \frac{t}{2m}
\]

\[
\begin{align*}
\Delta t & \approx 25\text{ns} \\
\Delta t & = 12.5\text{ns} \\
\Delta t & = 6.25\text{ns}
\end{align*}
\]