LOCL

A coded aperture approach for particle measurements in space plasmas

Arrow Lee, Dhiren Kataria, Alan Smith

Mullard Space Science Laboratory, University College London

8 September 2014

Space plasma particle instruments

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture

Simulations

Current tests

Future work

Figures

 ${\sf Figure \ 1: \ http://science.nasa.gov/media/medialibrary/2014/04/10/SateliteImage.png}}$

Space weather

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instruments

Simulations

Current tests

Future work

Figures

Key data:

- Fields (electric and magnetic)
- Particles
 - Electrons, ions and neutrals
 - Trapped particles

Energetic electron flux

Figure 2 : >40 keV flux at 300 km altitude at 00:00 UTC during a solar maximum in $\rm cm^{-2} s^{-1}$ from the AE-8 model via SPENVIS

Research aims

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instruments

Simulations

Current tests

Future work

Figures

To develop a concept for a charged particle detection system suitable for small satellites which can be simulated, prototyped and characterised

Figure 3 : Mask and detector geometry

Coded aperture imaging

Figure 4 : Original 'scatter-hole camera' concept for X-rays or gamma rays by Dicke (1968)

Mask shapes

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instruments

Simulations

Current tests

Future work

Figures

Parameters include

- Mask shape
- Deconvoloution algorithm
- Geometry and materials
- Type of detector

The simulation setup

UCL

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instrument

Simulations

Current tests

Future work

Figures

Figure 5 : Mask and detector irradiated with protons

Simulation output

Figures

Figure 6 : Reconstructed point sources, 3° separation

The lab setup

Arrow Lee

Space particle

Research aims

Concept

Codedaperture instruments

Simulations

Current tests

Future work

Figures

Prototype instrument:

- Requires vacuum for particle propagation
- Perfect Binary Array mask of tungsten-copper pseudo-alloy (470 μm)
- Back-illuminated CCD64 from e2v (nitrogen cooling)

Test setup:

- Radioactive β sources: Samarium-151, Carbon-14
- X-Y table for control of source position

The lab setup

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instrumen

Simulations

Current tests

Future work

Figures

Figure 7 : CAD of the vacuum chamber setup

The lab setup

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instrument

Simulations

Current tests

Future work

Figures

Figure 8 : The vacuum chamber setup

The CCD

Arrow Lee

- Space particle environment
- Research aims
- Concept
- Codedaperture instruments
- Simulations

Current tests

- Future work
- Figures

Back-illuminated CCD64 from e2v

- Custom design for the SXI x-ray telescope on GOES satellites
- $\circ\,$ Used for previous lab and rocket based electron detection at MSSL 1

¹Bedington et al., Using a CCD for the direct detection of electrons in a low energy space plasma spectrometer, *Journal of Instrumentation*, 7(1), 2012

Results

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instruments

Simulations

Current tests

Future work

Figures

Prototype analysis currently acquiring data

- Preliminary results visually match simulations
- Need longer times to match trapped particle fluxes Differences between space and lab analysis
 - Mask pattern needs to be scaled
 - Lab electronics allow 100 s integration times
 - Noise levels require individual particle identification and summing

Future work

Arrow Lee

- Space particle environment
- Research aims
- Concept
- Codedaperture instrument:
- Simulations
- Current tests
- Future work
- Figures

- Use of the concept with other suitable detectors, for example Medipix
- Further simulations of designs in realistic space-like environments
 - Use of other particle sources

Acknowledgements

Arrow Lee

- Space particle environment
- Research aims
- Concept
- Codedaperture instrument
- Simulations
- Current tests
- Future work
- Figures

Figures

Arrow Lee

Space particle environment

Research aims

Concept

Codedaperture instrument:

Simulations

Current tests

Future work

Figures

Protons

Figure 9 : >40 keV flux at 300 km altitude at 00:00 UTC during a solar maximum in $cm^{-2}s^{-1}$ from the AP-8 model via SPENVIS

Aperture shapes

Figure 10 : Slide from Rebecca Willett explaining coded aperture principles

CCD response

Figure 11 : CCD measured response from Bedington et al 2012

Repeated URAs

Figure 12 : Improved field of view using a repeated array from Fenimore (1978)