

A coded aperture approach for particle measurements in space plasmas

Arrow Lee, Dhiren Kataria, Alan Smith

Mullard Space Science Laboratory, University College London

8 September 2014

Space plasma particle instruments

AUCL

Arrow Lee

[Space particle](#page-1-0) environment

[Research aims](#page-4-0)

aperture

[Current tests](#page-10-0)

[Future work](#page-15-0)

[Figures](#page-17-0)

Figure 1 : http://science.nasa.gov/media/medialibrary/2014/04/10/SateliteImage.png

Space weather

\blacksquare UCI

Arrow Lee

[Space particle](#page-1-0) environment

[Research aims](#page-4-0)

aperture

[Current tests](#page-10-0)

[Future work](#page-15-0)

[Figures](#page-17-0)

Key data:

- Fields (electric and magnetic)
- Particles
	- Electrons, ions and neutrals
	- **Trapped particles**

Energetic electron flux

Figure 2 : >40 keV flux at 300 km altitude at 00:00 UTC during a solar maximum in cm $^{-2}$ s $^{-1}$ from the AE-8 model via <code>SPENVIS</code>

Research aims

\blacksquare

Arrow Lee

[Space particle](#page-1-0)

[Research aims](#page-4-0)

aperture

[Current tests](#page-10-0)

[Future work](#page-15-0)

[Figures](#page-17-0)

To develop a concept for a charged particle detection system suitable for small satellites which can be simulated, prototyped and characterised

Figure 3 : Mask and detector geometry

Coded aperture imaging

Figure 4 : Original 'scatter-hole camera' concept for X-rays or gamma rays by Dicke (1968)

 \blacksquare

Mask shapes

Arrow Lee

[Space particle](#page-1-0)

[Research aims](#page-4-0)

Codedaperture [instruments](#page-6-0)

[Current tests](#page-10-0)

[Future work](#page-15-0)

[Figures](#page-17-0)

Parameters include

- Mask shape
- Deconvoloution algorithm
- Geometry and materials
- Type of detector

 \blacksquare

The simulation setup

Arrow Lee

- [Space particle](#page-1-0)
- [Research aims](#page-4-0)
- [Concept](#page-5-0)
- aperture

[Simulations](#page-8-0)

- [Current tests](#page-10-0)
- [Future work](#page-15-0)
- [Figures](#page-17-0)

Figure 5 : Mask and detector irradiated with protons

Simulation output

Figure 6 : Reconstructed point sources, 3◦ separation

The lab setup

Arrow Lee

[Space particle](#page-1-0)

[Research aims](#page-4-0)

[Current tests](#page-10-0)

[Future work](#page-15-0)

[Figures](#page-17-0)

Prototype instrument:

- Requires vacuum for particle propagation
- Perfect Binary Array mask of tungsten-copper pseudo-alloy (470 μ m)
- Back-illuminated CCD64 from e2v (nitrogen cooling)

Test setup:

- \circ Radioactive β sources: Samarium-151, Carbon-14
- X-Y table for control of source position

\blacksquare

The lab setup

Figure 7 : CAD of the vacuum chamber setup

The lab setup

\blacksquare \blacksquare

Arrow Lee

[Space particle](#page-1-0)

[Research aims](#page-4-0)

[Concept](#page-5-0)

aperture

[Current tests](#page-10-0)

[Future work](#page-15-0)

[Figures](#page-17-0)

Figure 8 : The vacuum chamber setup

The CCD

AUCI

Arrow Lee

- [Space particle](#page-1-0) environment
- [Research aims](#page-4-0)
-
-
-

[Current tests](#page-10-0)

- [Future work](#page-15-0)
- **[Figures](#page-17-0)**

Back-illuminated CCD64 from e2v

- Custom design for the SXI x-ray telescope on GOES satellites
- Used for previous lab and rocket based electron detection at MSSL¹

 1 Bedington et al., Using a CCD for the direct detection of electrons in a low energy space plasma spectrometer, Journal of Instrumentation, 7(1), 2012

Results

\blacksquare

Arrow Lee

[Space particle](#page-1-0)

[Research aims](#page-4-0)

aperture

[Current tests](#page-10-0)

[Future work](#page-15-0)

[Figures](#page-17-0)

Prototype analysis currently acquiring data

- Preliminary results visually match simulations
- Need longer times to match trapped particle fluxes Differences between space and lab analysis
	- Mask pattern needs to be scaled
	- Lab electronics allow 100 s integration times
	- Noise levels require individual particle identification and summing

Future work

\blacksquare UCI

Arrow Lee

- [Space particle](#page-1-0)
- [Research aims](#page-4-0)
-
- aperture
-
- [Current tests](#page-10-0)
- [Future work](#page-15-0)
- [Figures](#page-17-0)
- Use of the concept with other suitable detectors, for example Medipix
- Further simulations of designs in realistic space-like environments
- Use of other particle sources

Acknowledgements

\blacksquare UCI

Arrow Lee

- [Space particle](#page-1-0)
- [Research aims](#page-4-0)
-
- aperture
-
- [Current tests](#page-10-0)
- [Future work](#page-15-0)
- [Figures](#page-17-0)

Figures

AUCL

Arrow Lee

- [Space particle](#page-1-0)
- [Research aims](#page-4-0)
- [Concept](#page-5-0)
- aperture
-
- [Current tests](#page-10-0)
- [Future work](#page-15-0)
- [Figures](#page-17-0)

Protons

Figure 9 : >40 keV flux at 300 km altitude at 00:00 UTC during a solarmaximum in cm $^{-2}$ s $^{-1}$ from the AP[-8](#page-17-0) [mo](#page-19-0)[d](#page-17-0)[el](#page-18-0) [v](#page-19-0)[ia](#page-16-0) <code>[SP](#page-20-0)[E](#page-16-0)[N](#page-17-0)[VI](#page-20-0)[S](#page-0-0)</code> r Fyl

Aperture shapes

Figure 10 : Slide from Rebecca Willett explaining coded aperture principles

CCD response

Figure 11 : CCD measured response from Bedington et al 2012

 \blacksquare

Repeated URAs

Figure 12 : Improved field of view using a repeated array from Fenimore (1978)