Development of CMOS pixel sensors for the upgrade of the ALICE inner tracking system
OUTLINE

• ALICE setup and Upgrade Strategy

• Inner Tracking System Upgrade
 • Requirements and performance
 • Pixel technology and R&D
 • Full scale prototypes

• Summary
Goal of ALICE: Experimental study of the phase diagram of the hadronic matter in ultra relativistic heavy ion collisions
ALICE UPGRADE STRATEGY

Physics program requires 10 nb⁻¹ of integrated luminosity of Pb-Pb collisions wrt. the approved program of 1 nb⁻¹

Physics signals of interest are rare but not triggerable
- Low p_T (below 1 GeV/c), high combinatorial background
- Increase rate capabilities for minimum bias heavy-ion collisions to 50 kHz – 100 kHz

ALICE runs at high luminosity
- Factor 100 increase in statistics (for untriggered probes)
- Requires smaller beam pipe, new detectors: ITS, MFT, upgraded TPC read-out chambers and readout electronics upgrade for other detectors
- New combined online-offline framework: O^2

Preserve ALICE uniqueness
- Low p_T measurements and particle identification

Upgrade in the 2nd LHC Long Shutdown (LS2) 2018/19

Full list and details of upgrade strategy: ALICE LoI, CERN-LHCC-2012-012
The current Inner Tracking System (ITS) contains 6 layers of Si detectors:

- 2 layers of Silicon Pixel Detectors (SPD)
- 2 layers of Silicon Drift Detectors (SDD)
- 2 layers of Silicon Strip Detectors (SSD)

- Tracking and particle identification
- Secondary vertex reconstruction (c,b decays), track impact parameter resolution: < 60 µm (rφ) for $p_T > 1$ GeV/c in Pb-Pb
- Prompt L0 trigger capability < 800 ns (SPD), eg. high multiplicity trigger in pp
MOTIVATION FOR A NEW INNER TRACKING SYSTEM

• Improve impact parameter resolution by factor $\approx 3(5)$ in $r-\varphi(z)$
 – move closer to IP (position of first layer): 39 mm \rightarrow 22 mm
 – reduce material budget X/X_0 / layer: from \sim1.14% …
 … to 0.3% (inner layers) and to 0.8% (outer layers)
 – reduce pixel size: 50 μm \times 425 μm \rightarrow O(30 μm \times 30 μm)

• Improve tracking efficiency and p_T resolution at low p_T
 – increase granularity: 6 layers \rightarrow 7 layers

• Fast readout (now limited at 1 kHz with full ITS):
 – Pb-Pb: up to 100 kHz
 – pp: several 100 kHz

• Fast insertion/removal
 – possibility to access for yearly maintenance

The new ALICE ITS will fully replace the present ITS!
Present and upgraded ITS performance

- Standalone track resolution improvement factor ~3(5) in \(r\phi(z) \) at \(p_T \sim 200 \) MeV/c
- Standalone tracking efficiency ~ 90 % at \(p_T \sim 200 \) MeV/c
- Improvement in momentum resolution for standalone tracking
LAYOUT OF THE UPGRADED ALICE ITS

- 7 layers layout:
 - 3 layers of Inner Barrel
 - 4 layers of Outer Barrel

- Radial coverage: 22 mm to 400 mm

- η coverage: $|\eta| \leq 1.22$, for tracks from 90 % most luminous region

- Expected radiation level (innermost layer, including a safety factor 10):
 700 krad (TID) and 1×10^{13} 1 MeV n_{eq} (NIEL)
PIXEL TECHNOLOGY

• Requirements:
 – very thin sensors
 – very high granularity
 – cover large area
 – withstand modest radiation level

• Choice:
 – monolithic silicon pixel sensors using TowerJazz 0.18 μm CMOS Imaging Process

 • high-resistivity (1-6 kΩcm) epitaxial layer on p-type substrate
 • deep p-well to shield PMOS: true CMOS circuitry in the pixel

Nwell diode output signal: \(V \sim \frac{Q}{C} \)

• minimize charge spread over different pixels
• minimize capacitance
• small diode surface (~ 100x smaller than pixel area) and large depletion volume
• Moderate bias voltage on the substrate can increase depletion zone around the Nwell charge collection diode
Three pixel chip architectures under development: MISTRAL / ASTRAL and ALPIDE

- MISTRAL/ASTRAL: based on the ULTIMATE chip of the STAR PXL detector

Decision on the ALICE Pixel Chip architecture for the ITS Upgrade: beginning of 2015

Specifications:
- Chip size: 15 mm x 30 mm
- Pixel pitch: ~ 30 µm
- Si thickness: 50 µm
- Spatial resolution: ~ 5 µm
- Power density: < 100 mW/cm²
- Integration time: < 30 µs
PIXEL CHIP R&D

Dedicated R&D to develop an ALICE pixel chip since 2011

Several small scale and recently full-scale prototypes have been realized to …

• … improve Signal-over-Noise ratio (SNR)
• … implement different read-out and front end architectures
• … investigate radiation hardness

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Analogue prototype</th>
<th>Digital prototype</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTRAL / MISTRAL</td>
<td>MIMOSA-32-X MIMOSA-34</td>
<td>MIMOSA-22THR-X AROM-0/1 FSBB A0 FSBB M0</td>
</tr>
<tr>
<td>ALPIIDE</td>
<td>Explorer-0 Explorer-1</td>
<td>pALPIDE pALPIDEFs</td>
</tr>
</tbody>
</table>

FSBB: Full Scale Building Block = 1/3 of a full chip
PIXEL CHIP R&D
ASTRAL / MISTRAL – MIMOSA-34

- Analogue, no in-pixel pre-amplification and CDS circuitry
 - sensing node optimisation: pixel size, epitaxial layer characteristics
- Pixel size varies from 22 × 27 µm² to 22 × 66 µm²
- High detection efficiency even for large 22 × 66 µm² pixels

Test beam
DESY
4.4 GeV e⁻

CDS: correlated double sampling
• Analogue, variable integration and readout time, 20 and 30 µm pitch
 • Study: charge collection, reverse bias, noise, epitaxial layer thickness
• Cluster charge increases linearly with the epi. layer thickness
• Optimum value of back bias depends on epi. layer thickness
 largest seed SNR: HR-30 for $V_{bb} = -6$ V, HR-20 for $V_{bb} = -1$ V
PIXEL CHIP R&D
Digital prototypes

ASTRAL/MISTRAL – MIMOSA22THR
- in-pixel pre-amplification and CDS circuitry
- parallel column readout and discriminators at end of column
- 22 × 33 µm² pixels
- … to validate upstream part of MISTRAL and most of ASTRAL readout

ALPIDE – pALPIDE
- in-pixel front-end
- binary readout
- in-matrix sparsification
- 22 µm pitch
- … for optimization of in-pixel front-end with binary readout and priority encoder

Achieved at the DESY test beam measurements (3 to 6 GeV e− and e+ beams):
- Detection efficiency: > 99 %
- Fake hit rate: ≈ 10⁻⁸/(event×pixel)
- Spatial resolution ≈ 5 µm
- Performance of small scale digital prototypes complies with ALICE requirements
PIXEL CHIP R&D
ASTRAL / MISTRAL – MIMOSA-32ter, Radiation hardness

Analogue, in-pixel pre-amplification and average noise subtraction – in-pixel circuitry optimisation, radiation hardness

In-pixel circuitry is adequate for the expected radiation levels

Expected radiation level (innermost layer, safety factor 10):
700 kradiodegree (TID) and 1×10^{13} 1 MeV n_{eq} (NIEL)
PIXEL CHIP R&D

Explorer-0 radiation hardness

Explorer 0 irradiated to 1×10^{13} 1MeV n_{eq} cm$^{-2}$

- 2 bias settings (-1V, -6V), N-well diode: 7.6 µm2 with 1.04 µm spacing
- Single pixel cluster signal remains stable at a level of a few percent
- Noise increases by 5-15% (different pixel sizes and diode geometries)
PIXEL CHIP R&D

Full scale prototypes

Chips received from foundry in late Q2/2014

Laboratory and beam-tests are on-going

MISTRAL FSBB (M0):

- 1.37 x 0.92 cm²
- 416 * 416 pixels, 22 x 33 µm²
- Double-row read-out at 160 MHz clock frequency
- On-chip 3-stage sparsification
- 2 versions fabricated, each with 2 slightly different sub-arrays

Full scale ALPIDE prototype chip:

- 3 x 1.5 cm²
- 1024 * 512 pixels, 28 x 28 µm²
- In-pixel discriminator and sparse priority encoder readout
- Matrix divided into 4-sub sectors with different pixel types
FIRST RESULTS OF THE FULL SCALE PROTOTYPES

ALPIDE:
- Currently: test beam at CERN PS
- Efficiency close to 100% (first measured at BTF Frascati)
- Low fake hit rates
- ENC noise: 5-10 e,
 threshold RMS: 5-20 e
- Resolution ~ 5.5 μm, incl. 3 μm error on tracking
- Soon: back bias and irradiated results

MISTRAL FSBB:
- Currently: lab. characterization
- Fabrication yield satisfactory
- Uniformity: similar chip-to-chip TN and FPN
- Test beam: CERN SPS in Oct 2014
SUMMARY

- The new ALICE ITS with 7 layers of monolithic silicon pixel detectors will be installed during LS2 of the LHC in 2018/19 completely replacing the present ITS.

- Different architectures for the pixel chip have been explored:
 - Performance of small scale digital prototypes complies with requirements of pixel chip.

- Full-scale prototypes are currently being characterized leading to a decision on the ALICE Pixel Chip architecture for the ITS Upgrade in the beginning of 2015.