Update on Searches for New Physics in CMS

CERN PH-LHC Seminar
January 31, 2012

Eva Halkiadakis
Rutgers, the State University of NJ
For the CMS Collaboration
Spectacular performance of the LHC in 2011
Thank you for delivering 5.7 fb$^{-1}$!
Eagerly awaiting this year’s data

Total integrated luminosity

Integrated luminosity/day

Excellent performance of CMS experiment
→ 91% data-taking efficiency
Outline

• I will cover “exotic” and SUSY searches:
 – Heavy Resonances and Extra Dimensions
 → ordered in increasing complexity of final state
 – 4th Generation Quarks
 – Leptoquarks
 – Long-lived Particles
 – SUSY and RPV SUSY

• Many new physics results with 2011 data
 – Analyses today done with \(\sim 1 - 4.7 \text{ fb}^{-1}\)
 → 5 new analyses with full dataset!
 – Impossible to cover everything

• All CMS new physics results can be found at:
 https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
Searches for Heavy Resonances

• **Search for excesses in invariant mass spectra**
 - Bump hunt
 - Generic, powerful and track record for discovery in the past
 - Predicted by several BSM models with extended gauge symmetries
 - Z’ and W’ with SM-like couplings
 - Kaluza-Klein excitations from RS model of extra dimensions
 - E6 models
 - Technicolor
 -
Searches for Non-Resonant Signatures

- Searches non-resonant excess in kinematic distributions and mass spectra
- Predicted by many Extra Dimension Models
 - Universal Extra Dimensions (UED)
 - All particles propagate the bulk
 - Large Extra Dimensions: e.g. ADD
 - Only Graviton propagates the bulk
 - Warped Extra Dimensions: e.g. Randall-Sundrum
 - Warped geometry

\[M^2_{Pl} \sim M_D^{2+n} R^n \]
Dijet Resonances

High sensitivity to strongly produced new resonances decaying to pairs of jets predicted in numerous models: string phenomena, excited quarks, colorons, diquarks

Mass limits up to 4 TeV

<table>
<thead>
<tr>
<th>Model</th>
<th>Excluded Mass (TeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
</tr>
<tr>
<td>String Resonances</td>
<td>4.00</td>
</tr>
<tr>
<td>E₆ Diquarks</td>
<td>3.52</td>
</tr>
<tr>
<td>Excited Quarks</td>
<td>2.49</td>
</tr>
<tr>
<td>Axigluons/Colorons</td>
<td>2.47</td>
</tr>
<tr>
<td>W’ Bosons</td>
<td>1.51</td>
</tr>
</tbody>
</table>

First search published with 1 fb⁻¹
PLB 704, 123 (2011)
Paired Dijet Resonances

Extension of inclusive dijet resonance search
Paired dijet production predicted by several models: coloron, axigluon, hyperpions

- Consider 4 leading jets with $p_T > 150$ GeV
 - Require dijet mass pairs to be equal, within resolution
 - Consider average dijet masses
- To further suppress QCD, cut in 2D plane of $\text{SumPt}(jj)$ and $M_{jj}(\text{avg})$

 \[\Delta = \sum_{i=1,2} (P_T)_i - m_{\text{avg}} \]
 - Ensures a smoothly falling background
 - Enhances the resonant part of the signal
 → Would appear as a vertical stripe in plot on the right

QCD shaped by p_T thresholds
Paired Dijet Resonances

First such search from CMS

Use 4-parameter parameterization as in the inclusive Dijet Resonance search

Largest fluctuation \(\sim 615 \text{ GeV} \)

\(2.7\sigma \rightarrow 1.5\sigma \) after LEE

No evidence for new physics

Exclude pair production of colorons with mass between 320 – 580 GeV
High Paired Dijet Mass Event

Run : 166380
Event : 417060509

Pair1 (1,4) - mass = 1.075 TeV
Pair2 (2,3) - mass = 1.081 TeV

Anti-k_t 5 Jet p_T

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>944 GeV</td>
</tr>
<tr>
<td>2</td>
<td>771 GeV</td>
</tr>
<tr>
<td>3</td>
<td>380 GeV</td>
</tr>
<tr>
<td>4</td>
<td>270 GeV</td>
</tr>
</tbody>
</table>
Diphoton Mass Spectrum

Search for resonant and non-resonant diphoton production

- Select two photons in barrel with $E_T > 70$ GeV and $M_{\gamma\gamma} > 140$ GeV
- Optimal search region for ADD $M_{\gamma\gamma} > 0.9$ TeV
 - Observed: 2 events
 - Background: 1.5 ± 0.3 events
 - Primarily SM diphoton production
 - Estimated with Pythia + NLO (DIPHOX+GAMMA2MC)
Limits on Extra Dimensions and RS gravitons

Exclusion limits on RS gravitons (0.86-1.84 TeV) and several ADD models (2.3-3.8 TeV)

Effective Planck scale (TeV) in ADD

<table>
<thead>
<tr>
<th>K factor</th>
<th>GRW</th>
<th>Hewett</th>
<th>HLZ (n_{ED})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pos.</td>
<td>neg.</td>
<td>2</td>
</tr>
<tr>
<td>1.0</td>
<td>2.94</td>
<td>2.63</td>
<td>2.28</td>
</tr>
<tr>
<td>1.6</td>
<td>3.18</td>
<td>2.84</td>
<td>2.41</td>
</tr>
</tbody>
</table>

RS gravitons: Mass (TeV)

<table>
<thead>
<tr>
<th>\tilde{k}</th>
<th>M_1 [TeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>0.86</td>
</tr>
<tr>
<td>0.02</td>
<td>1.13</td>
</tr>
<tr>
<td>0.03</td>
<td>1.27</td>
</tr>
<tr>
<td>0.04</td>
<td>1.39</td>
</tr>
<tr>
<td>0.05</td>
<td>1.50</td>
</tr>
</tbody>
</table>

2.2 fb$^{-1}$
Dilepton Mass Spectra

Search for non-resonant excess in $M_{\ell\ell}$

 CMS PAS-EXO-11-087
~2 fb$^{-1}$

CMS $\sqrt{s} = 7$ TeV, $\int L\, dt = 2.3$ fb$^{-1}$

di-muons

<table>
<thead>
<tr>
<th>Events / 20 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>10$^{-1}$</td>
</tr>
<tr>
<td>10$^{-2}$</td>
</tr>
<tr>
<td>10$^{-3}$</td>
</tr>
</tbody>
</table>

$M_{\mu\mu}$ [GeV]

di-electrons

<table>
<thead>
<tr>
<th>Events / 20 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>106</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>104</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>102</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>10$^{-1}$</td>
</tr>
<tr>
<td>10$^{-2}$</td>
</tr>
</tbody>
</table>

M_{ee} [GeV]
Search for excess above 1.1 TeV

Combined ee and $\mu\mu$ exclusion limits for ADD models for several parameters (2.5-3.8 TeV)

<table>
<thead>
<tr>
<th>ADD K-factor</th>
<th>Λ_T [TeV] (GRW)</th>
<th>M_s [TeV] (HLZ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$n = 2$</td>
<td>$n = 3$</td>
</tr>
<tr>
<td>1.3 (ee), 1.6 ($\gamma\gamma$)</td>
<td>3.3</td>
<td>4.1</td>
</tr>
</tbody>
</table>
Lepton+MET Channel

Look for an excess in the transverse mass spectrum

\[M_T = \sqrt{2 \cdot p_T^\ell \cdot E_{T}^{\text{miss}} \cdot (1 - \cos \Delta \phi_{\ell,\nu})} \]
Highest M_T Events

$\mu + \text{MET}$

$M_T = 2.4$ TeV

$e + \text{MET}$

$M_T = 1.6$ TeV

Update on Searches for New Physics in CMS

E. Halkiadakis
Limits on W'

- Exclusion limits for different W' models:
 - RH W' with SM-like couplings
 - LH W' including their interference with the SM W
 - Kaluza-Klein W'_{KK}-states in the framework of UED
- First exclusion limits where interference has been considered for the leptonic channels
- W' with SM-like couplings is excluded below 2.5 TeV

Including interference, we exclude below:
- 2.63 TeV (constructive)
- 2.43 TeV (destructive)
ttbar Resonances

Boosted All-Hadronic State

Top decay products either partially or fully merged into one jet.
Top-tagging tools using jet substructure with Cambridge-Aachen R=0.8 jets.

- 1+1 or Type 1
 - dijet event: two fully merged top candidates

- 1+2 or Type 2
 - trijet event: one fully merged top jet in one hemisphere, and two jets in the other (a b-jet and a merged W-jet)

W mass within jets in μ + boosted jet sample used to measure subjet energy scale
ttbar Resonances

Type 1+1 mass

- Type 1 jet $p_T > 350$ GeV
- W jet $p_T > 200$ GeV
- Other jet $p_T > 30$ GeV
- Plus jet mass and mass drop requirements consistent with top and W
- Data-driven techniques used in QCD background estimate

Type 1+2 mass

CMS PAS-EXO-11-006

4.6 fb$^{-1}$
ttbar Resonances

Exclusion limits on Z' of varying widths with SM couplings and RS KK gluon models

New physics enhancements to σ_{ttbar} must be less than 2.8 times NLO for $M_{\text{ttbar}} > 1 \text{ TeV}$

$\begin{align*}
1.0 < M_{Z'} < 1.4 \text{ TeV} & \quad (1.2\% \text{ width}) \\
1.0 < M_{Z'} < 1.7 \text{ TeV} & \quad (3\% \text{ width}) \\
1.0 < M_{Z'} < 1.9 \text{ TeV} & \quad (10\% \text{ width})
\end{align*}$

CMS PAS-EXO-11-006

4.6 fb$^{-1}$
Black Holes

Searches for New Physics at CMS

E. Halkiadakis

BH production in ADD model (large flat extra spatial dimensions)

- Democratic and isotropic decay
- High S_T events (total transverse energy)
- High total multiplicity (e.g. ≥ 4)

Use $N=2$, 3 for background model.

$N=10$, $S_T = 1.1$ TeV

CMS PAS-EXO-11-071

4.7 fb$^{-1}$
Limits on Black Holes

Model-specific limits on minimum black hole (ADD), string balls, and quantum black holes (NEW)

3.8 – 5.3 TeV range for large variety of model parameters

Also model-independent limits
Searches for 4th Generation Quarks

Searches for the extension of the generations of fermions
Heavy Top-like Quark

Search for production of: \(t' \bar{t}' \rightarrow bW^+\bar{b}W^- \)

In dilepton channels: \(ee, e\mu, \mu\mu \) with opposite sign

Use \(M_{lb}(\text{min}) \): minimum value of four possible combinations
Select events with \(M_{lb}(\text{min}) > 170 \text{ GeV} \) to reduce \(ttbar \) background

Backgrounds:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category I (data-driven)</td>
<td>0.74 (\pm) 0.79</td>
</tr>
<tr>
<td>Category II (data-driven)</td>
<td>0(^{+0.4}_{-0.0})</td>
</tr>
<tr>
<td>Category III (simulated)</td>
<td>0.99 (\pm) 0.69</td>
</tr>
<tr>
<td>Total prediction</td>
<td>1.73 (\pm) 1.12</td>
</tr>
<tr>
<td>Data</td>
<td>1</td>
</tr>
</tbody>
</table>

- Category I: events with mistagged b(s) and 2 real leptons
- Category II: events with misidentified lepton(s) and 2 real bs
- Category III: events with 2 real bs and 2 real leptons
- Category IV: events with mistagged b(s) and misidentified lepton(s).

\(\leftarrow \) negligible

Update on Searches for New Physics in CMS E. Halkiadakis

CMS PAS-EXO-11-050

4.7 \(fb^{-1} \)
Limits on Heavy Top-like Quark Production

t' excluded below 552 GeV

<table>
<thead>
<tr>
<th>$M_{t'}$ (GeV/c²)</th>
<th>350</th>
<th>400</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory (pb)</td>
<td>3.200</td>
<td>1.406</td>
<td>0.622</td>
<td>0.330</td>
<td>0.171</td>
<td>0.092</td>
</tr>
<tr>
<td>Expected (pb)</td>
<td>0.560</td>
<td>0.309</td>
<td>0.256</td>
<td>0.219</td>
<td>0.187</td>
<td>0.166</td>
</tr>
<tr>
<td>Observed (pb)</td>
<td>0.503</td>
<td>0.278</td>
<td>0.230</td>
<td>0.196</td>
<td>0.168</td>
<td>0.149</td>
</tr>
</tbody>
</table>

4.7 fb⁻¹
Searches for Leptoquarks

Fractionally charged colored boson
\(\rightarrow \) quark + charged lepton (BR=\(\beta \))
\(\textbf{OR} \)
\(\rightarrow \) quark + neutrino (BR=1-\(\beta \))

- **2nd generation decays and signatures:**
 - \(\mu \)-q-\(\mu \)-q (2\(\mu \)+2j) , \(\mu \)-q-\(\nu \)-q (1\(\mu \)+MET) [also, \(\nu \)-q-\(\nu \)-q]
 - Analyze in \(S_T = \Sigma \) muon \(p_T \) + jet \(p_T \) (+MET)

- **3rd generation:**
 - \(\nu \)-b-\(\nu \)-b (2b-jets+MET) [also, \(\tau \)-b-\(\tau \)-b & \(\tau \)-b-\(\nu \)-b]
 - Analyze with razor variable \(R \) (dimensionless, related to MET)
Leptoquarks (2nd generation) 2.0 fb\(^{-1}\)

Cut thresholds on kinematic variables including \(S_T\) optimized for LQ mass

Example: \(S_T\) for 550 GeV LQ signal shown below in \(\mu q-\mu q\) channel (\(\beta=1\))

Overall consistency with SM predictions

\[630 \ (523) \ \text{GeV exclusion for } \beta=1 \ (0.5)\]
Leptoquarks (3rd generation) 1.8 fb\(^{-1}\)

Signal region optimized for razor variables: \(M_R > 400\) GeV, and \(R^2\) (varying with LQ mass)

Backgrounds: \(t\bar{t}\)bar and multijet shapes data-driven

Overall consistency with SM predictions

350 GeV exclusion for \(\beta = 1\)
Long lived particles

• Predicted in many extensions of the SM: SUSY, hidden valley, etc.

• Several ways to look for them
 – Displaced tracks
 – Highly ionizing tracks
 – Out-of-time particles
 – Non-pointing photons
 – …

• I will focus on two new results
 – Long lived particles decaying to photons
 – Heavy Stable Charged Particles (HSCP)

Somewhat Lazy Photons

- Long-lived neutral \rightarrow Non-prompt Photon + invisibles (MET)
 - $c\tau$ not that large, \sim2 to 20cm, e.g. GMSB neutralino below

- Pair production (diphotons)
- Accompanying jets
- Converted photon \rightarrow (displaced) vertex

Technique:

Sensitive to lifetimes $\mathcal{O}(0.1\text{ns})$
Non-prompt (mildly displaced) photons

CMS PAS-EXO-11-067

Select:
\[E_{T}(\gamma) > 45 \text{ GeV} \]
\[\geq 2 \text{ jets (80/50 GeV)} \]
\[\text{MET} > 30 \text{ GeV} \]

Backgrounds:
Photon + jets, Misid jets
Evaluated in MET<20 GeV region

Limits on neutralino cross section as a function of neutralino lifetime
Searches for Heavy Stable Charged Particles

- **R-hadron**: Strongly interacting particle forms bound state in process of hadronization
 - squarks or gluinos hadronize with quarks/gluons
- **Long-lived NLSP**
 - Split-SUSY, GMSB, UED etc.
- **Characteristic**: High momentum, but slower than light
 - Tracker hits show high \(\text{d}E/\text{d}x \) (\(\rightarrow \) particle mass)
 - Late arrival: Long Time Of Flight (TOF) to the muon system
 - Charge exchange possible in material: live without muon hits
- **Two approaches** \(\rightarrow \) model independent
 - Inner tracker only
 - Full tracking (reconstruct as a muon) and require TOF

4.7 fb\(^{-1}\) CMS PAS-EXO-11-022
Searches for Heavy Stable Charged Particles

HSCP makes it through CMS
(looks like a muon)
Tracker + TOF analysis

HSCP through CMS, suffering charge exchange in the hadron calorimeter
Inner tracker only analysis

--- HSCP

--- HSCP (becoming neutral)

Update on Searches for New Physics in CMS E. Halkiadakis 32
Searches for Heavy Stable Charged Particles

In both Tk-only and Tk+TOF analyses, data consistent with expected background, estimated with a data-driven technique.

Limits on a variety of models: $M(\text{gluino}) > 1091$ GeV, $M(\text{scalar top}) > 734$ GeV, $M(\text{scalar tau}) > 221$ GeV, and on hyper-K and hyper-ρ.
Supersymmetry

Why SUSY?

• Symmetry between bosons and fermions
• Unification of forces
• Provides a dark matter candidate
• No “fine-tuning”

I will focus on these new results

• Razor analysis
• Multilepton final state
• Z+jets+MET final state
 → Two complementary analyses
 → First SUSY result with full dataset! (More coming soon....)
A number of channels and methods pursued

Focus has been on simple signatures
- Common to wide variety of models

Gearing toward dedicated sbottom and stop searches
- Stay tuned!

Our results have been most commonly presented in the CMSSM m_0 vs $m_{1/2}$ plane
- Shows breadth of analyses and large gain in coverage
Interpretation of Limits

Results interpreted in terms of simplified model spectra (SMS)

- Use limited set of new hypothetical particles and decays to produce a given topological signature
- Excluded mass scales for gluinos and squarks, where large mass splittings between them are assumed, as well as for varying neutralino masses
- Limits are quite dependent on model assumptions.
 - But they are quantified

1 fb\(^{-1}\) summary

<table>
<thead>
<tr>
<th>Range of exclusion limits for gluinos and squarks, varying (m(\chi^0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T1: \tilde{g} \rightarrow q\tilde{\chi}^0) (E_T + \text{jets}, 1.1\text{ fb}^{-1}, \text{gluino})</td>
</tr>
<tr>
<td>(T1: \tilde{g} \rightarrow q\tilde{\chi}^0) MT2, 1.1 fb(^{-1}), gluino</td>
</tr>
<tr>
<td>(T2: \tilde{g} \rightarrow q\tilde{\chi}^0) (\alpha_T, 1.1\text{ fb}^{-1}, \text{squark})</td>
</tr>
<tr>
<td>(T2: \tilde{g} \rightarrow q\tilde{\chi}^0) (E_T + \text{jets}, 1.1\text{ fb}^{-1}, \text{squark})</td>
</tr>
<tr>
<td>(T1b) (\tilde{g} \rightarrow b\tilde{\chi}^0) (E_T + b, 1.1\text{ fb}^{-1}, \text{gluino})</td>
</tr>
<tr>
<td>(T1b) (\tilde{g} \rightarrow b\tilde{\chi}^0) MT2, 1.1 fb(^{-1}), gluino</td>
</tr>
<tr>
<td>(T1) (\tilde{g} \rightarrow \tilde{q}\tilde{\chi}^0) (l^\pm l^\pm, 0.98\text{ fb}^{-1}, \text{gluino})</td>
</tr>
<tr>
<td>(T1) (\tilde{g} \rightarrow \tilde{q}\tilde{\chi}^0) (l^\pm l^\pm, 0.98\text{ fb}^{-1}, \text{gluino})</td>
</tr>
<tr>
<td>(T2) (\tilde{g} \rightarrow \tilde{q}\tilde{\chi}^0) (l^\pm l^\pm, 0.98\text{ fb}^{-1}, \text{gluino})</td>
</tr>
<tr>
<td>(T2) (\tilde{g} \rightarrow \tilde{q}\tilde{\chi}^0) (l^\pm l^\pm, 0.98\text{ fb}^{-1}, \text{gluino})</td>
</tr>
<tr>
<td>(T2) (\tilde{g} \rightarrow \tilde{q}\tilde{\chi}^0) (l^\pm l^\pm, 0.98\text{ fb}^{-1}, \text{gluino})</td>
</tr>
<tr>
<td>(T2) (\tilde{g} \rightarrow \tilde{q}\tilde{\chi}^0) (l^\pm l^\pm, 0.98\text{ fb}^{-1}, \text{gluino})</td>
</tr>
</tbody>
</table>

For limits on \(m(\tilde{g}), m(\tilde{q}) > m(\tilde{\chi})\) (and vice versa), \(\sigma_{\text{mod}} = \sigma_{\text{mod}}^{\tilde{\chi}_0, \tilde{\chi}_0}\).

\(m(\tilde{\chi}^0)\) is varied from 0 GeV/c\(^2\) (dark blue) to \(m(\tilde{g})\sim 200\text{ GeV}/c^2\) (light blue).
Search for SUSY using Razor variables \(\sim 1 \text{ fb}^{-1} \)

- Search for pair production heavy particles
 - squarks and gluinos
- Objects grouped into two “megajets”
 - perform event-by-event test that they represent visible portion of decays
- Use two kinematic variables: \(M_R \) and \(R \)
 - Evaluated in *razor* frame:
 - \(M_R \) is invariant under this longitudinal boost
 \[
 M_R \equiv \sqrt{(E_{j1} + E_{j2})^2 - (p_{z1}^1 + p_{z2}^2)^2}.
 \]
 \(\Rightarrow \) \(M_R \) peaks at \(M_\Delta \)
 - \(M_\Delta \) edge in \(M_T^R \)
 \[
 M_T^R \equiv \sqrt{\mathbb{H}_T (p_T^{j1} + p_T^{j2}) - \mathbb{H}_T \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})} \]
 \(\Rightarrow \) \(M_\Delta \) edge in \(M_T^R \)
 - \(R \) is ratio of the two and related to MET
 \[
 R \equiv \frac{M_T^R}{M_R}.
 \]
Search for SUSY using Razor variables

- **Search is done in 2D:** R^2 & M_R
 - Backgrounds expected to fall exponentially in both variables
 - Signal would ~ peak in M_R
- **Background modeling based on data**
- **Shapes predicted from 2D fit to low (M_R, R^2) in multi-jet, lepton & dilepton control samples**
 - Extrapolate to signal region

![Graphs and plots showing search results](image)

Limit in CMSSM \rightarrow plane

Update on Searches for New Physics in CMS
E. Halkiadakis

CMS PAS-SUS-11-008 ~1 fb$^{-1}$
Multileptons (e, μ, τ)

- A universal low-background signature (≥ 3 leptons)
 - R-Parity-conserving & RPV-SUSY
 - GMSB, mSUGRA/EWK production
 - high $\tan\beta$ (with tau’s)
 - (Fermiophobic) Higgs
 - 4th generation (b’) (with b tags), See-saw...
- Search: ≥ 3 e,\(\mu\),\(\tau\) with or w/o H_T, MET & on-Z/off-Z, binned in S_T
- Backgrounds: Drell Yan, ttbar, Dibosons (irreducible)
 - With high statistics: ttW, ttZ, WH, ttH (!!!)
- A broad model-independent multichannel search
- Exclusive channels ordered by SM background
 - Large background channels also control (validation) regions
Multileptons (e, μ, τ)

A surprise on the way to the result: Internal conversion background

Asymmetric internal (Dalitz) conversion of FSR from Z followed by the loss of soft lepton

Affects mostly an on-Z control channel for this analysis

But corresponding $W\gamma^*$ internal conversion affects H to WW search (Now being taken into account by CMS and ATLAS)
Multileptons \((e, \mu, \tau)\)

Many channels explored – overall agreement with SM predictions.

Example bin: \(3(e/\mu)\) channel \(S_T\) distributions

CMS Preliminary \(\sqrt{s} = 7\) TeV, \(L_{int} = 2.1\) fb\(^{-1}\)

![Graphs showing \(S_T\) distributions for ON Z and OFF Z channels.](image)
Interpretation of Multileptons

Sensitive to gluino-squark production via q-g and g-g interactions

RP conserving limit in gluino-wino-like chargino plane (left)

RPV limit in the squark-gluino plane (right)

\[\sqrt{s} = 7 \text{ TeV}, \quad L_{\text{int}} = 2.1 \text{ fb}^{-1} \]

slepton co-NLSP scenario

Leptonic RPV: \(\lambda_{123} = \lambda_{\text{e} \mu \tau} \)
Search for SUSY in Z + jets + MET events

Two complementary searches: MET and JetZBalance

Backgrounds: dominantly top (predicted from $e\mu$ events) and $Z+$jets (use MET templates or JZB symmetry)

MET Search

CMS Preliminary $\sqrt{s} = 7$ TeV, $L_{\text{int}} = 4.7$ fb$^{-1}$

JZB Search

CMS, $\sqrt{s} = 7$ TeV, $L_{\text{int}} = 4.7$ fb$^{-1}$

Preliminary

$JZB = \left| -E_T^{\text{miss}} - \overline{p}_T^{(Z)} - \overline{\overline{p}}_T^{(Z)} \right|$
Interpretation of Results

• Good agreement with SM \(\rightarrow \) set upper limits on SMS scenarios

• Scenario inspired by mSUGRA where the LSP is the lightest neutralino
 – Results are parameterized as a function of the gluino and the LSP masses
 – Mass of the intermediate neutralino is
 \[M(\chi_2) = M(\text{LSP}) + x \left(M(\text{glu}) - M(\text{LSP}) \right) \]
 – \(x = 0.5 \) and \(x = 0.75 \)

• Also consider scenario inspired by GMSB where the LSP is the gravitino
 – Results are parametrized as a function of the gluino and neutralino masses

• We also provide additional information for model testing
 – Generator level efficiencies as a function of JZB and MET
Limits on Neutralino LSP Scenario

JZB Search
Signal efficiency, including acceptance, for JZB>150GeV (left)
Cross section limit (right)

MET Search
Signal efficiency, including acceptance, for MET>100GeV (left)
Cross section limit (right)
Conclusions

• Rich program of searches for physics beyond the SM
• Many analyses performed with \(\sim 1 - 4.7 \text{ fb}^{-1} \)
 – Lots more analyses with full dataset coming for Moriond
 – Preparing for 2012 run
• Advanced analysis techniques
• Stringent limits on many benchmark models
• No evidence of new physics yet
 – Keep looking until either we find something
 – The exploration of Terascale physics has only just started!

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
Backup
Paired Dijet Resonances

QCD with and without Δ cut

CMS Simulation

QCD Simulation
- w/o $\Delta > 25$ GeV
- with $\Delta > 25$ GeV

Arbitrary Unit

Paired dijet average mass (GeV)
Black Holes

N = 2 and N = 3. Fit S_T between 1200 and 2800 GeV
Razor frame

longitudinal boost (R-frame)

R-frame \sim \text{CM frame}

\begin{align*}
m_j1 & \quad m_j2 \\
\hat{q}_1 & \quad \hat{q}_2
\end{align*}

beam axis

\begin{align*}
j_1 & \quad j_2 \\
j_3
\end{align*}

\begin{align*}
\text{MET} & \quad \text{beam axis}
\end{align*}

\begin{align*}
\beta_T^{\text{CM}} & \quad -\beta_T^{\text{CM}} \\
\beta_L^{\text{R}*} & \quad -\beta_L^{\text{R}*}
\end{align*}

\begin{align*}
p_{j1} & \quad p_{j1} \\
p_{j2} & \quad p_{j2}
\end{align*}

\begin{align*}
p_{R,j1} & \quad p^*_j1 \\
p_{R,j2} & \quad p^*_j2
\end{align*}

RAZOR CONDITION

|p_{R,j1}| = |p_{R,j2}|
Multileptons

<table>
<thead>
<tr>
<th>Selection</th>
<th>N(τ)=0 expected SM</th>
<th>N(τ)=1 expected SM</th>
<th>N(τ)=2 expected SM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>obs</td>
<td>obs</td>
<td>obs</td>
</tr>
<tr>
<td>≥FOUR Lepton Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET>50, H_T > 200, noZ</td>
<td>0 0.003 ± 0.002</td>
<td>0 0.01 ± 0.05</td>
<td>0 0.30 ± 0.22</td>
</tr>
<tr>
<td>MET>50, H_T > 200, Z</td>
<td>0 0.06 ± 0.04</td>
<td>0 0.13 ± 0.10</td>
<td>0 0.15 ± 0.23</td>
</tr>
<tr>
<td>MET>50, H_T < 200, noZ</td>
<td>1 0.014 ± 0.005</td>
<td>0 0.22 ± 0.10</td>
<td>0 0.59 ± 0.25</td>
</tr>
<tr>
<td>MET>50, H_T < 200, Z</td>
<td>0 0.43 ± 0.15</td>
<td>2 0.91 ± 0.28</td>
<td>0 0.34 ± 0.15</td>
</tr>
<tr>
<td>MET<50, H_T > 200, noZ</td>
<td>0 0.0013 ± 0.0008</td>
<td>0 0.01 ± 0.05</td>
<td>0 0.18 ± 0.07</td>
</tr>
<tr>
<td>MET<50, H_T > 200, Z</td>
<td>1 0.28 ± 0.11</td>
<td>0 0.13 ± 0.10</td>
<td>0 0.52 ± 0.19</td>
</tr>
<tr>
<td>MET<50, H_T < 200, noZ</td>
<td>0 0.08 ± 0.03</td>
<td>4 0.73 ± 0.20</td>
<td>6 6.9 ± 3.8</td>
</tr>
<tr>
<td>MET<50, H_T < 200, Z</td>
<td>11 9.5 ± 3.8</td>
<td>14 5.7 ± 1.4</td>
<td>39 21 ± 11</td>
</tr>
<tr>
<td>THREE Lepton Results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MET>50, H_T > 200, no-OSSF</td>
<td>2 0.87 ± 0.33</td>
<td>21 14.3 ± 4.8</td>
<td>12 10.4 ± 2.2</td>
</tr>
<tr>
<td>MET>50, H_T < 200, no-OSSF</td>
<td>4 3.7 ± 1.2</td>
<td>88 68 ± 17</td>
<td>76 100 ± 17</td>
</tr>
<tr>
<td>MET<50, H_T > 200, no-OSSF</td>
<td>1 0.50 ± 0.33</td>
<td>12 7.7 ± 2.3</td>
<td>22 24.7 ± 4.0</td>
</tr>
<tr>
<td>MET<50, H_T < 200, no-OSSF</td>
<td>7 5.0 ± 1.7</td>
<td>245 208 ± 39</td>
<td>976 1157 ± 323</td>
</tr>
<tr>
<td>MET>50, H_T > 200, noZ</td>
<td>5 1.9 ± 0.5</td>
<td>7 10.8 ± 3.3</td>
<td>- -</td>
</tr>
<tr>
<td>MET>50, H_T > 200, Z</td>
<td>8 8.1 ± 2.7</td>
<td>10 11.2 ± 2.5</td>
<td>- -</td>
</tr>
<tr>
<td>MET>50, H_T < 200, noZ</td>
<td>19 11.6 ± 3.2</td>
<td>64 52 ± 13</td>
<td>- -</td>
</tr>
<tr>
<td>MET<50, H_T > 200, Z</td>
<td>5 2.0 ± 0.7</td>
<td>24 26.6 ± 3.3</td>
<td>- -</td>
</tr>
<tr>
<td>MET<50, H_T < 200, Z</td>
<td>58 57 ± 21</td>
<td>47 44.1 ± 7.0</td>
<td>- -</td>
</tr>
<tr>
<td>MET<50, H_T > 200, Z</td>
<td>5 8.2 ± 2.0</td>
<td>2 90 119 ± 14</td>
<td>- -</td>
</tr>
<tr>
<td>MET<50, H_T < 200, noZ</td>
<td>86 82 ± 21</td>
<td>2566 1965 ± 438</td>
<td>- -</td>
</tr>
<tr>
<td>MET<50, H_T > 200, Z</td>
<td>335 359 ± 89</td>
<td>9720 7740 ± 1698</td>
<td>- -</td>
</tr>
<tr>
<td>Totals 4L</td>
<td>13.0 10.4 ± 3.8</td>
<td>20.0 7.8 ± 1.5</td>
<td>45 30 ± 12</td>
</tr>
<tr>
<td>Totals 3L</td>
<td>536 539 ± 94</td>
<td>12894 10267 ± 1754</td>
<td>1086 1291 ± 324</td>
</tr>
</tbody>
</table>

Table 3: Results from 2.1 fb⁻¹ of 2011 data summed over electron and muon flavors. The labels going down the side refer to whether or not there are OSSF pairs, whether or not Z → ℓ⁺ℓ⁻ was excluded (noZ), and the H_T and MET requirements. Labels along the top of the table give the number of τ candidates, 0, 1, or 2. All channels are exclusive. The τ channels serve as “signal” channels for SUSY signals assuming high tan(β) values, for example.
Multileptons

Table 2: Number of events observed in 2.1 fb$^{-1}$ data (obs), the SM expectation, and expected event counts from typical signals. The rows indicate the total number of isolated leptons in the event. The columns indicate the number of τ's among the isolated objects. The number of Drell-Yan pairs is specified by DYn; the S_T ranges are in GeV are Low (< 300 GeV), Mid (300 < S_T < 600 GeV), and High (> 600 GeV); and ZV stands for Z-Veto, indicating there are no OS/SS lepton pairs with invariant mass in the Z window. For example, the entry in row marked “3 (DY1)S_T(Mid)” and column marked “$\tau=1$” would be the number of three lepton events which have one opposite-sign electron or muon (same flavor) pair in it, one tau candidate and the total event S_T in the 300 to 600 GeV range. The channel right above it requires a Z-veto in addition, and thus suffers from significantly less background. The channels are exclusive, i.e., non-overlapping. The column labeled sigA is for the L-RPV signal with λ_{123} coupling for squark and gluino masses of 1100 GeV/c2 and 1000 GeV/c2, while the column labeled sigB is for λ_{123}, 1000 GeV/c2 and 1100 GeV/c2, respectively. Note that the shift in signal between $\tau=0$ and $\tau=1$ channels because λ_{123} is tau rich. The totals at the bottom are for informational purposes.

<table>
<thead>
<tr>
<th># Bodies (Selection)</th>
<th>obs</th>
<th>SM</th>
<th>sigA</th>
<th>sigB</th>
<th>obs</th>
<th>SM</th>
<th>sigA</th>
<th>sigB</th>
<th>obs</th>
<th>SM</th>
<th>sigA</th>
<th>sigB</th>
</tr>
</thead>
<tbody>
<tr>
<td>> FOUR Lepton Results</td>
<td></td>
</tr>
<tr>
<td>4 (DY1)S_T(High)</td>
<td>0</td>
<td>0.0000 ± 0.0007</td>
<td>2.9</td>
<td>0.3</td>
<td>0</td>
<td>0.00 ± 0.09</td>
<td>2.0</td>
<td>2.5</td>
<td>0</td>
<td>0.09 ± 0.07</td>
<td>0.5</td>
<td>7.0</td>
</tr>
<tr>
<td>4 (DY1)S_T(Mid)</td>
<td>0</td>
<td>0.0011 ± 0.0002</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.11 ± 0.10</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.68 ± 0.30</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 (DY1)S_T(Low)</td>
<td>0</td>
<td>0.02 ± 0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>1.69 ± 0.27</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>1.54 ± 0.41</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 (DY1,ZV)S_T(High)</td>
<td>1</td>
<td>0.002 ± 0.001</td>
<td>12.6</td>
<td>1.1</td>
<td>0</td>
<td>0.02 ± 0.07</td>
<td>6.1</td>
<td>5.5</td>
<td>0</td>
<td>0.10 ± 0.07</td>
<td>0.7</td>
<td>2.4</td>
</tr>
<tr>
<td>4 (DY1)S_T(High)</td>
<td>1</td>
<td>0.010 ± 0.004</td>
<td>2.9</td>
<td>0.4</td>
<td>0</td>
<td>0.22 ± 0.10</td>
<td>1.6</td>
<td>1.8</td>
<td>0</td>
<td>0.15 ± 0.07</td>
<td>0.0</td>
<td>0.3</td>
</tr>
<tr>
<td>4 (DY1,ZV)S_T(Mid)</td>
<td>0</td>
<td>0.008 ± 0.003</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.20 ± 0.09</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.45 ± 0.19</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 (DY1,ZV)S_T(Low)</td>
<td>0</td>
<td>0.027 ± 0.011</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>1.38 ± 0.38</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>0.83 ± 0.44</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 (DY1,ZV)S_T(Low)</td>
<td>0</td>
<td>0.03 ± 0.01</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>2.2 ± 0.14</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>10.0 ± 7.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 (DY1)S_T(Low)</td>
<td>0</td>
<td>0.05 ± 0.013</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>6.6 ± 1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
<td>56.3 ± 22.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4 (DY1,ZV)S_T(High)</td>
<td>0</td>
<td>0.005 ± 0.002</td>
<td>7.7</td>
<td>0.8</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4 (DY1)S_T(High)</td>
<td>0</td>
<td>0.03 ± 0.013</td>
<td>3.9</td>
<td>0.5</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4 (DY1,ZV)S_T(Mid)</td>
<td>0</td>
<td>0.022 ± 0.009</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4 (DY2)S_T(High)</td>
<td>1</td>
<td>0.022 ± 0.009</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4 (DY1)S_T(Low)</td>
<td>0</td>
<td>0.04 ± 0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3 (DY1,ZV)S_T(Low)</td>
<td>0</td>
<td>0.05 ± 0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3 (DY1)S_T(Low)</td>
<td>0</td>
<td>0.07 ± 0.02</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>THREE Lepton Results</td>
<td></td>
</tr>
<tr>
<td>3 (DY1)S_T(High)</td>
<td>2</td>
<td>6.5 ± 0.25</td>
<td>6.3</td>
<td>3.2</td>
<td>10</td>
<td>5.5 ± 1.9</td>
<td>4.0</td>
<td>18.6</td>
<td>10</td>
<td>15.3 ± 3.6</td>
<td>0.5</td>
<td>6.6</td>
</tr>
<tr>
<td>3 (DY1)S_T(Mid)</td>
<td>3</td>
<td>3.8 ± 1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>63</td>
<td>45 ± 15</td>
<td>0.0</td>
<td>0.0</td>
<td>106</td>
<td>114 ± 16</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3 (DY1)S_T(Low)</td>
<td>9</td>
<td>6.4 ± 2.0</td>
<td>0.0</td>
<td>0.0</td>
<td>31</td>
<td>236 ± 42</td>
<td>0.0</td>
<td>0.0</td>
<td>1590</td>
<td>2054 ± 404</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3 (DY1)S_T(High)</td>
<td>4</td>
<td>1.34 ± 0.40</td>
<td>19.9</td>
<td>8.4</td>
<td>5</td>
<td>8.8 ± 1.6</td>
<td>2.7</td>
<td>8.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3 (DY1)S_T(Mid)</td>
<td>8</td>
<td>7.9 ± 2.6</td>
<td>3.2</td>
<td>2.4</td>
<td>21</td>
<td>18.5 ± 2.7</td>
<td>0.3</td>
<td>0.7</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3 (DY1)S_T(Low)</td>
<td>20</td>
<td>10.2 ± 2.8</td>
<td>0.0</td>
<td>0.0</td>
<td>71</td>
<td>64 ± 12</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3 (DY1)S_T(High)</td>
<td>31</td>
<td>43 ± 13</td>
<td>0.0</td>
<td>0.0</td>
<td>216</td>
<td>222 ± 23</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3 (DY1)S_T(Mid)</td>
<td>88</td>
<td>85 ± 21</td>
<td>0.0</td>
<td>0.0</td>
<td>2579</td>
<td>2004 ± 441</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3 (DY1)S_T(Low)</td>
<td>368</td>
<td>381 ± 92</td>
<td>0.0</td>
<td>0.0</td>
<td>9611</td>
<td>7839 ± 1725</td>
<td>0.0</td>
<td>0.0</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Totals</td>
<td>546</td>
<td>549 ± 95</td>
<td>59.0</td>
<td>17.0</td>
<td>12897</td>
<td>10456 ± 1791</td>
<td>17.0</td>
<td>37.0</td>
<td>1977</td>
<td>2228 ± 405</td>
<td>2.0</td>
<td>16.0</td>
</tr>
<tr>
<td>Totals 4L</td>
<td>13</td>
<td>10.4 ± 3.1</td>
<td>29.9</td>
<td>3.1</td>
<td>20</td>
<td>12.4 ± 2.1</td>
<td>9.7</td>
<td>9.8</td>
<td>72</td>
<td>44 ± 23</td>
<td>1.0</td>
<td>10.0</td>
</tr>
<tr>
<td>Totals 3L</td>
<td>533</td>
<td>530 ± 95</td>
<td>29.0</td>
<td>14.0</td>
<td>12667</td>
<td>10443 ± 1791</td>
<td>7.0</td>
<td>27.0</td>
<td>1706</td>
<td>2184 ± 404</td>
<td>0.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>