Ultra-Luminous X-ray sources and Intermediate Mass Black Holes

C. Motch
Observatoire de Strasbourg
With the help of M. Pakull and R. Soria

What is an ULX?

- ULXs defined as non-nuclear unresolved X-ray sources with isotropic Lx \geq 10 ³⁹ erg s⁻¹
 - Lx higher than that of stellar mass Galactic black holes (peak Lx of $\sim 10^{39}$ erg s⁻¹)
 - Lx higher than Eddington luminosity of a typical 10 M_☉ black hole
- In practice Lx = 10^{39} -> few 10^{40} erg s⁻¹ with a couple of outstanding cases...

Stellar environment

- ULX mostly located in nonelliptical galaxies
- Do not correlate with massive (M > 10⁵ M_☉) young star clusters (Swartz+2009)
- Often associated with relatively loose star clusters (or OB associations) with:
 - − masses of a few $10^3 \, \text{M}_{\odot}$
 - ages in the range of 10 -20 Myr (Grisé+2008, 2011)

Optical counterparts

- About 13 confirmed optical counterparts (e.g. Tao+2011):
 - faint m> 23 objects (but see below)
 - mostly blue stars, with colours consistent with those of early type stars
 - Mv suggesting giant stars
- Lx/Lopt typical of Low-Mass Xray Binaries
 - Optical emission dominated by Xray heating
- Usually strong and random optical variability

Optical spectra

- Blue continuum
- Hell in emission, broad and variable profile
- Balmer + other lines sometimes hard to disentangle from nebular emission
- No stellar absorption lines (but see below)
- No periodicity in Hell radial velocities (Roberts 2011)
- ⇒ No dynamical BH mass

Field crowding + nebulae makes observations challenging

Roberts 2011

Powering an ULX

• Use a stellar mass BH (M ≤ 100 M⊙) in super critical accretion regime and/or with beamed radiation:

$$L \approx \frac{1.3 \times 10^{38}}{b} \left(1 + \frac{3}{5} \ln \dot{m} \right) \left(\frac{M}{M_{\odot}} \right) \text{ erg s}^{-1}, \quad 1 \lesssim \dot{m} \lesssim 100$$

$$\dot{m} = \dot{M}/\dot{M}_{Edd}$$
 b = beaming factor (Poutanen+2007)
Strong beaming unlikely (X-ray ionized nebulae)

May reach Lx ~ 10⁴¹erg/s in extreme cases...

Maximum Masses of Stellar Black Holes

Powering an ULX

• Use an intermediate mass BH (M $^{\sim}$ 10 $^{2\text{--}4}$ M $_{\odot}$) in « normal » sub-Eddington regime

$$L \approx \frac{1.3 \times 10^{38}}{b} \dot{m} \left(\frac{M}{M_{\odot}}\right) \text{ erg s}^{-1}, \qquad \dot{m} \lesssim 1$$

Astrophysical importance of ULXs

Stellar mass BHs:

- what make them different from Galactic BHs? Evolutionary paths (apparently) not seen in the Milky Way?
- laboratories to study accretion/ejection physics at near or super Eddington accretion rates.

IMBHs:

- Remnants of BH seeds that through accretion or merging created the super massive BHs in the early universe.
- constrain formation mechanism (extreme environment, low Z).
- Study wind and jet feedback from accreting black holes

Distinguish between stellar and intermediate mass BHs

- Stellar-mass black holes:
 - ULX parent clusters too poor to generate IMBHs (but could be captured)
 - Undergo (super) Eddington accretion. Spectral behaviour at variance with that of galactic (sub-Eddington) BHs
- Intermediate mass black holes candidates:
 - High X-ray luminosities (Lx > few 10^{41} erg/s)
 - Spectral states similar to those of galactic BHs (ie sub-Eddington)

"Canonical" BH accretion states

(From the 1980s... eg, Cyg X-1, GX339-4)

"Canonical" BH accretion states

~ Power-law

IC in inner disk or base of outflow (+BMC from outflow?)

Thermal

Optically-thick emission from disk

Power-law

High/soft state = disk-blackbody spectrum

In the high soft/state disc extends to the last stable orbit

$$T_{in} \approx (L/L_{Edd})^{1/4} M_{BH}^{-1/4}$$

High/soft states can be used to estimate BH mass

ULX X-ray spectra

- Phenomenology in two groups (Makishima 2007):
 - "Simple" power law energy distributions with a broad Γ distribution (1-3) peaking at $\Gamma \approx 1.8$ -2.0
 - "Complex" spectra showing a soft excess and a high energy break at E ≈ 5 keV
- Some ULXs display transitions between "simple" (low Lx) and "high energy break" spectra (high Lx) (e.g. Kubota+2001)
- A few show transitions similars to those of (sub-Eddington) Galactic BHs

"Complex" spectra

- X-ray state not seen in Galactic BHs (Lx<L_{Edd})
- Identified as a new "Ultraluminous" state (Roberts 2007, Gladstone+2009)

(Roberts 2007)

Soft excess and disk emission

- L disk ~ kT_{in}⁴ in standard Shakura & Sunyaev accretion disk
- L disk \sim kT_{in}^{-3.5} in some ULXs -> The observed disc radius is likely at boundary with an inner corona / outflow

High energy spectral break

A common feature in high S/N spectra.

Main contender: Comptonizing corona (Stobbart+2006, Gladstone+2009)

$$-kT_e \sim 1-3 \text{ keV}$$

$$-\tau$$
 ~6 -80

$$-T_{max}$$
 disk $\sim 0.2-0.3$ keV

(After Gladstone 2011)

ULX X-ray spectra – a summary

- P13 + environment + X-ray spectral properties favour near to or super Eddington accretion and ordinary (M < 20 M $_{\odot}$) or massive (20 M $_{\odot}$ < M < 100 M $_{\odot}$) stellar mass black holes.
- **However**, some ULXs display typical BH hard/soft transitions (M82 X-1; HLX-1) and low kTin indicating sub-Eddington regimes and hence the likely presence of an IMBH.

ESO 243-49 HLX-1 Best IMBH candidate

- HLX-1 coincident
 with edge-on S0a
 spiral galaxy ESO
 243-49 at ~100 Mpc
- At galaxy distance, $L_x \sim 10^{42}$ erg/s in the 0.2 - 10 keV band

Farrell+2009

ESO 243-49 HLX-1

Displays X-ray state transitions similar to sub-Eddington Galactic BH

If indeed sub–Eddington then MBH $^{\sim}$ 9000 M $_{\odot}$ (conservative limit of 500 M $_{\odot}$ if 10xEddington)

ULX bubbles, jets & micro-quasars

See also F. Mirabel's talk on Saturday

Bubble diameter ~ 26" = 400 pc (!) (much larger than any SNR)

Optical spectra: shock ionised

Vs ~ 100 km/s

Pakull & Mirioni 2002, Pakull+2006

IC342 X1 Pakull & Mirioni 02, 03 Feng & Kaaret 08 Holmberg II X-1 Pakull & Mirioni 02, 03

ULX bubbles

ULX bubbles, jets & micro-quasars

About 25% ULX blow observable bubbles.

The largest ones are most probably shock-ionized nebulae with $E > 10^{52}$ erg, d > 100 pc and $V_{exp} = 80 - 150$ km/s (highly supersonic)

Wind/jet driven bubble with power Lw (Weaver+1977)

R = 0.76
$$(L_{\rm w}/\rho)^{1/5} t^{3/5}$$
; $t = 3/5 R/v$
 $L_{\rm w} = 5 \cdot 10^{39} \text{ erg/s } R_{100}^2 \times v_{100}^3 \times n \approx Lx !$

 t^{10^6} yrs; Lw¹⁰³⁹⁻⁴⁰ erg/s ~ Lx (ULX); $E_0^{10^{53}}$ erg/s (Pakull & Mirioni 2002; Pakull & Grisé 2006)

(super) Eddington sources may thus generate highly energetic outflows with mechanical luminosities comparable to those emitted by BH jets (sub Eddington hard state)

MHD models of super Eddington accretion

Ohsuga+2009/2011

Super Eddington accretion rates

- Geometrically thick disk supported by radiation pressure
- Mild radiation beaming
- High velocity (\approx 0.25c) collimated and hot outflows ($L_{kin} \approx 0.2 L$)
- Lower velocity dense and cooler disk winds

ULX related sources: µQSO SS433 in our Galaxy

- -Weak central X-ray source Lx $\sim 10^{36}$ erg/s, v = 0.26c precessing jets (162.5d)
- -Radial velocity curve favours a low mass BH
- -Mechanically inflated bubble W50 with 'ears' due to $L_{mech} = L_1 \sim 10^{39}$ ergs
- => SS433 is super-critically accreting
- -Would be an ULX if seen face on ? (Begelman+2006, Poutanen+2007)

ASCA image (Kotani 1998)

S26 in NGC 7793

- $-V_{\rm exp} \sim 250 \; {\rm km \; s^{-1}}$
- Linear size ~ 2.5 that of SS433/W50
- Jet power ~ a few 10^{40} erg/s (>> L_{Edd} of accr. BH)
- Age $\sim 2 \times 10^5 \text{ yrs}$
- Low persistent X-ray luminosity $Lx = 7 \cdot 10^{36} \text{ ergs}^{-1}$
- Total energy
 E ~ 10⁵³ erg

Are SS433 & S26 shielded ULXs or "Ultrapowerful sources" (UPSs)? (Feng & Soria 2011).

Origin & role of IMBH

- Super massive BH of $^{\sim}$ 10 9 M $_{\odot}$ already in place in the 1 Gyr old universe.
- Requires Eddington mass accretion rates during 0.5 Gyr for a BH seed mass of $10^2 10^5 \, \mathrm{M}_{\odot}$.
- Merging may also play a role (test by gravitational waves)
- There could be a lot of "fossil" IMBHs floating around in galaxy clusters, no longer surrounded by a visible galaxy (stripped, ejected, primordial?)

High-mass seed

See reviews in Volonteri 2010 & Greene 2013

See F. Mirabel's talk on importance of BHB for reionization

Latest news from HLX-1

Mapelli+ 2013

Swift XRT light curve of HLX-1

Webb+ 2012

One year period: Accretion from a nucleus cluster star on an eccentric orbit ?

Conclusions

- Most ULX are likely (super) Eddington accreting stellar mass BHs.
- Best intermediate mass BH candidates will be found in the high Lx tail of the ULX luminosity function.
- IMBHs may be the left over seeds of SMBH created in the early universe that never grew up. Their nowadays properties may constrain SMBH growth mechanisms.
- ULXs drive strong winds and perhaps jets. Test beds for BH feed back mechanisms (especially in the super Eddington regime believed to dominate in the early universe).
- Is there a class of BH sources transforming most of their accretion energy in jet mechanical energy (no Eddington limit)?
- Future X-ray facilities (eRosita all sky survey; Athena+ follow up) will discover many IMBH candidates.

Muchas gracias Thank you Merci