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Averaging in GR: why it matters?

®* There is always some process of “averaging” when smoothing out
“real” discrete matter--energy sources as part of “modeling”
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Averaging exact solutions of Einstein’s equations
NOT EQUAL TO solving the averaged Einstein’s equations:

(Gabl9ab]) # (Gav)(gab)|;

(R&b> 2 %(gab’R’> = (Rab> = %(gab> <R> & corr(gab:R)

average Averaged Einstein’s

equations

Einstein’s equations

Non-averaged average solution of averaged
solution of Einstein’s > # Einstein’s equations
equations




Best attempt so far by R Zalaletdinov’s “Macroscopic Gravity:

Zalaletdinov R M, Aweraging Problem in Cosmology and Macroscopic Gravity, Online
Proceedings of the Atlantic Regional Meeting on General Relativity and Gravitation,
Fredericton, NB, Canada, May 2006, ed. R.J. McKellar ( Preprint arXiv:gr-qc/0701116)

Coley A A and Pelavas N 2007 Phys.Rev. D 75 043506; Coley A A, Pelavas N and Zalaletdinov
R M 2005 Phys.Rev.Lett. 95 151102

=> Macroscopic gravity is a non-pertﬁrbative geometrical approach (Za-
laletdinov - 1992-2005) to resolve the Averaging Problem: a reformulation in
a broader context as the problem of macroscopic description of gravitation

A Classical physical phenomena possess two levels of description (Lorentz,
1897, 1916):

fThe microscopic description <= The discrete matter model

!l by a suitable averaging procedure |

The macroscopic description <= The continuous matter model

Lorentz ’theory of electrons Maxwell’s electrodynamics

— (averaging) — Y =

— (averaging) — (Fagy =0, H* = (F)* + 4w P"




Problem: Macroscopic Gravity is INTRACTABLE.

ALSO: we should take these analogies with a
big “grain of salt”, as they often fail ...

* XIX century analogy between elastic waves and electromagnetic waves ---
gave rise to the notion of “ether” as fixed reference frame

Failed !

* Canonical Quantization (Wheeler De Witt) 1970-1980’s attempts to quantize
gravity by analogy with quantization of electromagnetism: Hamiltonian
formalism + “canonical variables” (p,q) + Poisson Parenthesis ---- Classical
Commutators become Quantum Operators (Klein-Gordon equation in

“super space”)
Failed !!




Consolation: we know how to do “spatial” average of covariant scalars along 3-
dimensional “time slices”

Problem: only applicable to spacetimes for which Einstein Equations can be
reduced to purely scalar modes (LRS spacetimes):

* 3-dimensional Lie groups with 2-dimensional orbits (spherical symmetry
°* Most Bianchi models

Best known formalism by Thomas Buchert.

Buchert T, 2000 Gen. Rel. Grav. 32 105; Buchert T, 2000 Gen.Rel. Grav. 32 306-321; Buchert
T 2001 Gen. Rel. Grav. 33 1381-1405; Ellis G F R and Buchert T 2005 Phys.Lett. A347 38-
46; Buchert T and Carfora M 2002 Class.Quant.Grav. 19 6109-6145; Buchert T 2006 Class.
Quantum Grav. 23 819; Buchert T, Larena J and Alimi J M 2006 Class. Quantum Grav. 23
6379; Buchert T 2005 Class. Quantum Grav. 22 L113-L119; Buchert T 2006 Class. Quantum
Grav. 23 817-844 ( Preprint arXiv:gr-ac/0509124)

Good things: it Is a tractable formalism, it provides a non-trivial modification of

the dynamics by emergence of “back-reaction” terms (the statistical correlation
functions from non-linearity)

Problem: does not yield a closed self-consistent set of dynamical equations
unless we make “ad hoc” assumptions on the back-reaction terms




Examine scalar averaging by
means of Szekeres dust models

Why Szekeres models?

Zzekeres models offer a muc
better description of cosmological
structure than spherical LTB o

density [in background units]

Figure 5. The density profile for diffrent time instants: a — 1 Gy
after the Big Bang, b — 5.5 Gy, ¢ — 10 Gy, d — present instant.
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But observations are not the full story
Szekeres models are theoretically interesting !

* They are among the less idealized inhomogeneous &
anisotropic geometries: do not admit isometries (in general).

NOT spherically nor axially symmetric.

mathematically interesting candidates to

— > test theoretical issues not (necessarily)
related to fitting observations.
Averaging: connection to Perturbation
theory and Statistical Mechanics:

averaged
calars

FLRW background —
Perturbations < |ocal scalars

Inhomogeneity

Gravitational entropy <«— ftiisoraar)




Dynamics through 1+3 formalism

T

| {9

Covariant objects:
density P,

expansion H
hg
shear

Oab = V (aUp) — H hap

electric Weyl Ea,b — Hcﬂd Ca,cbd

3
spatial curvature [ = ;?’

Zero vorticity &
zero 4-acceleration
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Are there dynamical effects from averaging ?

Yes because General Relativity is a NON-LINEAR theory:
(%¢) # 5: (A (AB) # (4) (B)

FLRW Raychaudhury equation 7o o Ty 41 |
with Lambda: H = %2 H 3 P A}

4 b
:;Tp gabgﬂ' ?

Szekeres Raychaudhury equation = ] 2
without Lambda: H =i —H

Let’s average Sz equation:  (H) = %j o %
p D

The result Is:

—(H)? — L {p) + Q,

where the “backreaction” is E( (H % (‘H>)2> i <U'a,b0'a'b>,

Q > 0 IT CAN PLAY THE ROLE OF A COSMOLOGICAL

Therefore, if: CONSTANT (accelerating expansion of averages)




0 Can we observed the effects of Back-
Reaction?

YES (IN PRINCIPLE)

O Can we use Back-Reaction to substitute
the Cosmological Constant of the
concordance LCDM model?

Unfortunately NO




EFFECTS OF AVERAGING: Szekeres models are a time
varying coupling of a monopole and a dipole:

scalars expressible as:

but for every domain we have: ( Ad) > 5 — 1

Therefore: hericall = (m)
Sy:::lec:;eicaverages are spherically <A>q il (A >q(t; ?‘)

Conjecture: averaging “smoothes out” non-spherical
structure




Try the following task: weighed average

Construct averages (“q-averages”) with WEIGHT factor F such that

% q-averages of scalars common to FLRW: (p),, (H),, (K),,
satisfy FLRW evolution laws

% Define dimensionless g-fluctuations

5) — P—{Pla  s(H) _ H_{H)g  s(K) _ K—(K)q

(H)q

DEMAND that the dynamics of Szekeres models is
completely determined by q-averages and their q-fluctuations

(pPlg (K)q 7

The idea leads to a RIGOROUS perturbation formalism in which:

% FLRW “background” defined by q-averaged scalars

% The “perturbations” are the q-fluctuations




The result is encouraging: Szekeres = exact perturbations
on FLRW

Evolution equations:

<p >'q == _3<p >q <H > q» FLRW evolution equations

(H)o = Z(H)i— 5 e 5“be.'fff’.‘.‘f'f’.’.f.‘i‘.’f‘.‘f.if’.'.’j...........

:5(P) = g 5(ﬂ)) (H), LD

5(H) = —(1+ 36D (H), 5(H) | 4'”1{{!5’;; (§(H) — 5(p))

Constraints are purely algebraic: evolution of ° perturbatlons

25 (H) — <Q>q5(P) + [1 — ()] 5(K)}

: Friedman FLRW equation
- and FLRW Omega factor




The perturbations provide an invariant
measure of inhomogeneity

Ratio of Weyl to
Ricci curvature.

S — Y2
5@)_?51 £ = 12

§(H) — - o —

¢ where: XY is the eigenvalue of o

2
H

Ratio of anisotropic
to isotropic expansion.




Relation between fluctuations and invariants
D(A) = A(t,r,z,y) — (A)q(t,7)

8 a cb] @ b) a am
- (30128 + 60}0utlug — 678y ) — 5D

47Tp (ha + u“ub) :
47 . 4 )]
.__D(p) €abs o0 = —-?D(p) ( — 3u[Cu ) egj,

—D(H) €ab, Hab — Hhab . D(H) €ab,

while their scalar contractions take the form:

; 25672 5
Ra.bcdRa.b(’d = - ([ ( )]2 2) : Ra.bRa'b = 64,”2)02, (23)

256ﬂ

Clabed e [D(p)]? = 8E.pE?P, (24)

00’ = 6[D(’H)],




Averages of quadratic invariants are statistical
moments: variances & covariances of the density
and Hubble scalar:

Varg(A) = (A2 — (A)?  Cov,(A, B) = (AB) — (A)(B)

(0ab0®), 6(X%)q = 6Var,(H),
3272

(EabEab>q 6<52>q = 6<(\P2)2>q e Var,(p),

(aabEab>q 6(XE), =8mCov,(p, H),

<RabcdRa.bcd ) ;

25672 5 } 4 5

Varq(p) o i<p2>q = ¥ i<R2>q ’

3 3

(32)
(Cabcdca.bcd ) g =

where we used the fact that (R), = 87 (p), and R, R*® = R2.




The gravitational entropy functional of Morita & Buchert)

S = Sua =10 J, psIn [B] FdV, =70 [, pIn | 5| FdV,

(P)q

S

=5 = —370Covy(p, H) = —370(D(p) D(H))q = 0, (37)
q

so that:

Covy(p, H) = (D(H)D(p))q[r] <0 = S(r) >0, (38)

This condivion~ean~arso~pe gIvVen T Terms oI te~g=average ol a scalar
invariant by:

(046 E?%),[r] <0 = S(r) >0, (39)

which is a very elegamt™wayto conmect (32)"withwan unequivocal and
completely coordinate independent marker of inhomogeneity, as it contains
contributions from density and velocity fluctuations. It remains to prove in




Connection and/or analogies
to Statistical Mechanics

WARNING: under construction, so
expect lots of hand waiving !!!




Phase space in Microcanonical ensamble

Take as phase space {p q} = {P H}

coordinates:

Allowed phase space states:

{Ap,Ag} = {1+, 14 6} = {2, A}

Phase space volume occupied
by Szekeres model: L/ o= [1 - 6(p)] [1 e 6(H)]

Microcanonical entropy: available volume in phase space
Si—"kerlngi—F- [111(1 +6(P)) +1In(1 + 5(H))]

NOtiICe: FLRW models are a point of phase space with zero
entro
= o) ) =E




Canonical Ensamble (part 2)

SYSTEM: compact comoving domain,
HEAT BATH: reamining “exterior” of manifold.

Partition function Z(3,J,, Jx) = [,exp(—BH — J,p — JxK) dV},
% Ensamble averages are expectation values:

9 P [SEC s
- [% 111 Z] JszK:U = fe_,@Hde

[ 9 an} S T 6 A
S VR K Iz 2K e
8.7, JmJueo. JE€PHY,

__ [ Ke FPHgy
—  [e-BfHJYV,

0

* Entropy:

5 = ky [B(H)g +10.2) = ky [~ l3fiy +In J Fexp(=Jp p I K) V)

Must satisfy: S >0, VoS >0 where 5 =nSu®




THANKS FOR YOUR
ATTENTION




