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Where are they?



 Traditional magnetar model 
(2008)

Magnetar = 
1. young NS (SNR & MSC)

2. Bdip> BQED=4.4×1013 G (braking)

3. Bmul=1014 -1015 G  (burst and super-
Eddington luminosity and persistent 
emission)



A brief history of magnetars

 1979: giant flare of SGR 0526-66 
 1986: soft gamma repeaters 
 1992: “magnetars”
 1998: Timing of SGR 1806-20
            giant flare of SGR 1900+14 

 2004: giant flare of SGR 1806-20
 2006: multiwave era
 2010: non-detection in Fermi-LAT; 
           low magnetic field SGR (B<7.5*10^12 
G)



Failed predictions

1.  SNe more energetic (2006)
2.  A larger kick velocity (2007)
3.  Radio emissions (2006)
4.  High-energy gamma-ray detectable by 

Fermi/LAT (2010)
5.  B>BQED (2010)

6.  Always a large Lx (Lx>Edot): 
transients & HBPSRs

7. Precession: No



Then ...  

1.  Alternative origin of strong-B
2. Alternative mechanisms in the 

magnetar domain: wind braking of 
magnetars 
(Tong, Xu, Song & Qiao 2013, ApJ)

3.  Alternative models of AXPs/SGRs



Challenges to magnetic dipole 
braking of magnetars

1. SNe more energetic (Vink & Kuiper 
2006; Dall’Osso+ 2009)

2. Non-detection in Fermi observations 
(Sasmaz Mus & Gogus 2010; Abdo+ 
2010; Tong+ 2010, 2011)

3. Low-B SGRs (Rea+ 2010, 2012)

4. HBPSRs (Ng & Kaspi 2010; Pons & Perna 
2011)



Why wind braking?

• magnetism-powered: Lx >> Edot

• A particle wind Ep ～ Lx >> Edot

(strong wind case & magnetism-
powered)

• Lower dipole field 
(Harding+ 1999; Thompson+ 2000)



“Magnetic dipole braking” of 
normal pulsars

Rotational energy: magnetic dipole 
radiation+particle wind (rotation-
powered)

Effects: higher order modifications, e.g. 
braking index (Michel 1969; Manchester 1985; 
Xu & Qiao 2001; Contopoulos & Spitkovsky 2006; 
Wang+ 2012)
timing noise (Lyne+ 2010; Liu+ 2011)
+a rotation-powered PWN

Exist: intermittent pulsars (Kramer+ 2006; 
Camilo+ 2012)



Intermittent pulsars B1931+24
(Kramer+ 2006)



Magnetic dipole braking is only 
a pedagogical model!

• Rotating dipole in vaccum!
• Only as first order approximation to the 

real case
• Normal pulsars braked down by a 

rotation-powered particle wind



Existence of a particle wind in 
magnetars

1. Varying period derivative

2. Higher level of timing noise (compared 
with HBPSRs)

3. Magnetism-powered PWN
a) Correlation between Lpwn and Lx

b) Higher Lpwn/Edot



PSR J1622-4950
(Levin+ 2012)



Rotational energy loss rate

• In summary

• Magnetism-powered particle wind

• When Lp >> Edot, a much lower magnetic 
field (plus higher order effects, magnetar 
case)



Observational effects of wind 
braking of magnetars

• Main aspects
1. Dipole magnetic 

field
2. Acceleration 

potential
3. Spin down 

evolution and age
4. Braking index
5. Duty cycles

• Discussions
1. A decaying particle wind
2. The presence of fallback 

disk
3. Spin down evolution of 

newly born magnetars
4. Magnetism-powered 

pulsar wind nebula



Dipole magnetic field (1): 
magnetic dipole braking

Polar magnetic field



Dipole magnetic field (2): 
wind braking

Dipole magnetic field in the case of wind braking



Dipole magnetic field (3)

• In the case of wind braking:
1. Typical Bdip 10 times lower

2. Magnetar=NS+strong multipole field

3. Multipole field responsible for: bursts, 
persistent emissions, and braking (through 
a particle wind)



Dipole B (case I)



Dipole magnetic field in the case 
of wind braking: summary (1)

1. Bdip 10 times lower than the magnetic 
dipole braking case

– Magnetar SNe energetics will be of normal 
value

2. Bdip from 1012-1015 G
– A strong dipole field is no longer required

3. Several sources with Bdip from 1013-1014 G
– They will become XDINSs naturally

4. More sources with Bdip< 4.4×1013 G
– Low-B magnetars are not unusual 



Dipole magnetic field in the case 
of wind braking: summary (2)

• For a given magnetar
1. Variation of wind luminosity  variation of 

Pdot 

2. Magnetar=NS+strong multipole field
(a higher level of timing noise)
HBPSR=NS+strong dipole field
(no magnetar-like activities, except PSR 
J1846-0258)



Braking index (1)

Definition: 

n=3 for magnetic dipole braking

n=1 for wind braking



Braking index (2): a decaying 
particle wind

A decaying particle wind: 



Braking index as a function of age 
For AXP 4U 0142+61



Magnetism-powered PWN

• Magnetism-powered:
1. Lpwn correlated with Lx 

– For 1E 1547.0-5408 (Vink & Bamba 2009; 
Olausen+ 2011)

2.                        : may be hard to achieve 
for young magnetars
3. A high conversion efficiency

– For RRAT J1819-1458 (Rea+ 2009)
Lpwn/Edot=0.2  (1% for rotation-powered PWNe)



Conclusions (1)
1. Wind braking: 

  Wind-aided spin down
  A lower surface dipole field
 Magnetars=NS+strong multipole field

2. Explain challenging observations of magnetars
a)Their SNe  energies are of normal value
b)Non-detection of magnetars by Fermi-LAT
c) The problem of low-B SGRs
d)The relation between magnetars and HBPSRs
e)A decreasing Pdot during magnetar outburst

3. Low luminosity mangetars more likely to have 
radio emissons

4. Two predictions
– A magentism-powered PWN
– A braking index n<3



Conclusions (2): 
subsequent developments

1. Magnetism-powered pulsar wind nebula 
around SGR Swift J1834.9-0846 (Younes 
et al. 2012)

2. A braking index smaller than 3 
(Tendulkar et al. 2012)

3. Geometrical effect during wind braking:
small inclination angle--> higher B for 
SGR 0418+5729 (Tong & Xu 2012)





A paradigm shift in the future

• FAST: more radio-loud magnetars, 
HBPSRs, intermittent pulsars …

• “Pulsars are magnetic dipole braking”

Pulsars are wind braking
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