

Talk for SMFNS2013

Dipole magnetic field of magnetars: the effect of magnetar wind

H. Tong
Xinjiang Astronomical Observatory
2013.5

Outline

- 1. Introduction
- 2. Existence of a particle wind
- 3. Rotational energy loss rate
- 4. Wind braking of magnetars
- 5. Conclusions

Traditional magnetar model (2008)

- Magnetar =
 - 1. young NS (SNR & MSC)
 - 2. $B_{dip} > B_{OED} = 4.4 \times 10^{13} \text{ G (braking)}$
 - 3. $B_{mul}=10^{14} 10^{15}$ G (burst and super-Eddington luminosity and persistent emission)

A brief history of magnetars

- 1979: giant flare of SGR 0526-66
- 1986: soft gamma repeaters
- 1992: "magnetars"
- 1998: Timing of SGR 1806-20 giant flare of SGR 1900+14
- 2004: giant flare of SGR 1806-20
- 2006: multiwave era
- 2010: non-detection in Fermi-LAT; low magnetic field SGR (B<7.5*10^12 G)

Failed predictions

- 1. SNe more energetic (2006)
- 2. A larger kick velocity (2007)
- 3. Radio emissions (2006)
- 4. High-energy gamma-ray detectable by Fermi/LAT (2010)
- 5. $B > B_{0ED}$ (2010)
- 6. Always a large $L_x(L_x>E_{dot})$: transients & HBPSRs
- 7. Precession: No

Then ...

- Alternative origin of strong-B
- 2. Alternative mechanisms in the magnetar domain: wind braking of magnetars (Tong, Xu, Song & Qiao 2013, ApJ)
- 3. Alternative models of AXPs/SGRs

Challenges to magnetic dipole braking of magnetars

- 1. SNe more energetic (Vink & Kuiper 2006; Dall'Osso+ 2009)
- 2. Non-detection in Fermi observations (Sasmaz Mus & Gogus 2010; Abdo+ 2010; Tong+ 2010, 2011)
- 3. Low-B SGRs (Rea+ 2010, 2012)
- 4. HBPSRs (Ng & Kaspi 2010; Pons & Perna 2011)

Why wind braking?

- magnetism-powered: L_x >> E_{dot}
- A particle wind E_p ~ L_x >> E_{dot}
 (strong wind case & magnetism-powered)
- Lower dipole field (Harding+ 1999; Thompson+ 2000)

中国科学院新疆天文会 XMY IANG ASTRONOMICAL OBSERVATORY, CAS

Magnetic dipole braking" of normal pulsars

```
Rotational energy: magnetic dipole radiation+particle wind (rotation-powered)
```

```
Effects: higher order modifications, e.g. braking index (Michel 1969; Manchester 1985; Xu & Qiao 2001; Contopoulos & Spitkovsky 2006; Wang+ 2012) timing noise (Lyne+ 2010; Liu+ 2011) +a rotation-powered PWN
```

Exist: intermittent pulsars (Kramer+ 2006; Camilo+ 2012)

Intermittent pulsars B1931+24

(Kramer+ 2006)

中国研写院新疆天文会 Magnetic dipole braking is only a pedagogical model!

- Rotating dipole in vaccum!
- Only as first order approximation to the real case
- Normal pulsars braked down by a rotation-powered particle wind

中国研写院新疆天文会 Existence of a particle wind in magnetars

- 1. Varying period derivative
- 2. Higher level of timing noise (compared with HBPSRs)
- 3. Magnetism-powered PWN
 - a) Correlation between L_{pwn} and L_{x}
 - b) Higher L_{pwn}/E_{dot}

PSR J1622-4950

(Levin+ 2012)

Rotational energy loss rate

In summary

$$\dot{E}_{\rm w} = \dot{E}_{\rm d} \left(\frac{L_{\rm p}}{\dot{E}_{\rm d}}\right)^{1/2} = \dot{E}_{\rm d}^{1/2} L_{\rm p}^{1/2}$$

- Magnetism-powered particle wind
- When $L_p >> E_{dot}$, a much lower magnetic field (plus higher order effects, magnetar case)

Observational effects of wind braking of magnetars

- Main aspects
- Dipole magnetic field
- Acceleration potential
- Spin down evolution and age
- 4. Braking index
- 5. Duty cycles

- Discussions
- 1. A decaying particle wind
- 2. The presence of fallback disk
- Spin down evolution of newly born magnetars
- Magnetism-powered pulsar wind nebula

Dipole magnetic field (1): magnetic dipole braking

$$-\dot{E}_{\rm rot} = \dot{E}_{\rm d} = \frac{B_0^2 r_0^6 \Omega^4}{6c^3}$$

$$B_0 = 6.4 \times 10^{19} \sqrt{P\dot{P}} \,\mathrm{G} = 6.4 \times 10^{14} \left(\frac{P}{10 \,\mathrm{s}} \frac{\dot{P}}{10^{-11}}\right)^{1/2} \,\mathrm{G}$$

Polar magnetic field

日科学院新疆天文会 Dipole magnetic field (2): wind braking

$$-\dot{E}_{\rm rot} = \dot{E}_{\rm w} = \dot{E}_{\rm d}^{1/2} L_{\rm p}^{1/2}$$

$$B_0 = 4.0 \times 10^{25} \frac{\dot{P}}{P} L_{\rm p,35}^{-1/2} \,\mathrm{G} = 4.0 \times 10^{13} \frac{\dot{P}/10^{-11}}{P/10 \,\mathrm{s}} L_{\rm p,35}^{-1/2} \,\mathrm{G}$$

Dipole magnetic field in the case of wind braking

Dipole magnetic field (3)

- In the case of wind braking:
 - 1. Typical Bdip 10 times lower
 - Magnetar=NS+strong multipole field
 - Multipole field responsible for: bursts, persistent emissions, and braking (through a particle wind)

Dipole magnetic field in the case of wind braking: summary (1)

- 1. B_{dip} 10 times lower than the magnetic dipole braking case
 - Magnetar SNe energetics will be of normal value
- 2. B_{din} from 10¹²-10¹⁵ G

中圈科学院新疆天文会

- A strong dipole field is no longer required
- 3. Several sources with B_{dip} from 10^{13} - 10^{14} G
 - They will become XDINSs naturally
- 4. More sources with $B_{dip} < 4.4 \times 10^{13} G$
 - Low-B magnetars are not unusual

Dipole magnetic field in the case of wind braking: summary (2)

- For a given magnetar
 - Variation of wind luminosity → variation of Pdot

$$\dot{P} \propto L_{\rm p}^{1/2}$$

2. Magnetar=NS+strong multipole field (a higher level of timing noise)
HBPSR=NS+strong dipole field (no magnetar-like activities, except PSR J1846-0258)

Braking index (1)

Definition:

$$\dot{\Omega} = -(\text{constant})\Omega^n$$

n=3 for magnetic dipole braking
n=1 for wind braking

$$-I\Omega\dot{\Omega} = \left(\frac{B_0^2 r_0^6 \Omega^4}{6c^3}\right)^{1/2} L_{\rm p}^{1/2}$$

中國研学院新疆天文台 Braking index (2): a decaying particle wind

A decaying particle wind:

$$L_{\rm p}(t) = L_{\rm p,0} \left(\frac{t}{t_{\rm D}}\right)^{-\alpha}, \ 0 \le \alpha \le 2$$

Braking index as a function of age

For AXP 4U 0142+61

Magnetism-powered PWN

- Magnetism-powered:
- 1. L_{pwn} correlated with L_{x}
 - For 1E 1547.0-5408 (Vink & Bamba 2009;
 Olausen+ 2011)
- 2. $L_{\mathrm{pwn}} > -\dot{E}_{\mathrm{rot}}$: may be hard to achieve for young magnetars
- 3. A high conversion efficiency
 - For RRAT J1819-1458 (Rea + 2009) $L_{pwn}/E_{dot}=0.2$ (1% for rotation-powered PWNe)

Conclusions (1)

1. Wind braking:

- Wind-aided spin down
- A lower surface dipole field
- Magnetars=NS+strong multipole field
- 2. Explain challenging observations of magnetars
 - a) Their SNe energies are of normal value
 - b) Non-detection of magnetars by Fermi-LAT
 - c) The problem of low-B SGRs
 - d) The relation between magnetars and HBPSRs
 - e) A decreasing Pdot during magnetar outburst
- 3. Low luminosity mangetars more likely to have radio emissons
- 4. Two predictions
 - A magentism-powered PWN
 - A braking index n<3

Conclusions (2):

subsequent developments

- Magnetism-powered pulsar wind nebula around SGR Swift J1834.9-0846 (Younes et al. 2012)
- 2. A braking index smaller than 3 (Tendulkar et al. 2012)
- Geometrical effect during wind braking: small inclination angle--> higher B for SGR 0418+5729 (Tong & Xu 2012)

A paradigm shift in the future

- FAST: more radio-loud magnetars, HBPSRs, intermittent pulsars ...
- "Pulsars are magnetic dipole braking"

Pulsars are wind braking