QD2 tolerances and tuning

Hector Garcia Morales^{1,2}, Jochem Snuverink², Rogelio Tomas²

¹Universitat Politècnica de Catalunya, Barcelona ²CERN, Geneve

25 Jan 2012

Context

Final Focus Systems

- Comparison Traditional Final Focus vs Local Chromaticity Scheme.
- Traditional Scheme:
 - Dedicated sections for Chromaticity correction in each plane. (CCX, CCY)
 - Longer system.
 - No local correction.
 - Bandwidth limitation.
- Local Correction Scheme
 - Chromaticity corrected locally.
 - Shorter system.
 - Wider Bandwidth

To know more about the comparison see my talk in IWLC11 (Granada).

Final Focus tuning

- Simplex optimization works better when we have a reduced number of variables.
- In the Traditional scheme the number of quadrupoles doubles the number in the Local scheme.
- We need a reduction of variables (quads) to carry out the optimization in the Traditional scheme.
- In principle, it was considered that the most sensitive magnets in terms of the reduction of luminosity due to quad misalignment were QD0 and QF1.
- But...

QD2 tolerance

- We see that in the Traditional scheme, more or less (besides QD0 and QF1) all the quads have the same impact in the luminosity due to misplacements.
- No possible reduction of variables ⇒ Simplex does not work well.
- We wanted to check what happens for the Local Scheme,
- And QD2 turns out to be the most relevant magnet!

Checking with MAPCLASS and ATF2

• We need to verify the results to avoid some possible mistake in the code.

Quad	$ATF2-UL(\Delta_y = 5\mu m)$	CLIC ($\Delta_y = 50 \text{nm}$)
	$\sigma_y^*(\mathrm{nm})$	$\sigma_y^*(\mathrm{nm})$
None	24.24	1.207
QD0	24.86	1.234
QF1	34.38	1.222
QD2	75.70	1.868
QF3	51.95	1.411

• We see that the effect is a characteristic of the Local scheme.

Possible explanation

- This is a first order effect.
- The displaced QD2 generates a dispersion that is amplified at QD0.
- Quad offset induces coupling.
- Result: bigger beam size ⇒ reduction of luminosity.

Possible consequences

- All the effort has been put in the Final Doublet.
- Should we focus on the pseudo Final Doublet (QD2 and QF3)?
- Redirect the tuning procedure?