

Analysis of performance progress in the injectors in 2011

Giovanni Rumolo in HL-LHC / LIU Joint Workshop, 30 March 2012

H. Bartosik, H. Damerau, A. Findlay, S. Gilardoni, B. Goddard, S. Hancock, K. Hanke, G. Iadarola, B. Mikulec, Y. Papaphilippou, E. Shaposhnikova, R. Steerenberg, J. Tan

Focus of the talk → Review the progress made in 2011 with both operational and MD LHC-type beams (protons)

- ☑ SPS improvement because of scrubbing?
- ☑ Special beams explored in MDs
 - Instrumentation-related issues

Overview 2011

- First 50ns beams production was with with single batch PSB/PS transfer (operational until mid July 2011)
- Double batch 50ns beams were already set up during the first long MD block
- Double batch 50ns beams became operational after mid July 2011 and the intensity was gradually ramped up
- 25ns beams are only double batch and were used in MDs (PS, SPS, LHC)

5

LHC Injectors Upgrade

Bunch Number

Courtesy G. Trad, F. Roncarolo

LHC multi-bunch beams in the PSB

LHC Injectors Upgrade

- No obvious pattern from the the PSB
- Maybe the transverse emittances are blown up further down the chain and, as a result, the differences between bunches are equalized?
- Poorer performance of Ring 1 disappeared in 2012

PS intensity limitations

PS: space charge@injection

$$\Delta Q_y = \frac{r_p N_b}{(2\pi)^{3/2} \gamma^3 \beta^2 \sigma_z} \frac{1}{\sqrt{\epsilon_y}} \oint \frac{\sqrt{\beta_y(s)}}{\sqrt{\beta_y(s)\epsilon_y} + \sqrt{\beta_x(s)\epsilon_x + \sigma_\delta^2 D_x^2(s)}} ds$$

	N _b (x 10 ¹⁰ p)	ε _{x,y} (μm)	4σ _t (ns)	ΔQ _y	
LHC50nom (DB)	80	1.1	180	-0.26	
LHC50ult (DB)	120	1.5	180	-0.28	Double batch
LHC25 (DB)	160	2.5	180	-0.26	1.2sec @FB
LHC25ult (DB)	210	3.5	180	-0.24	J
LHC50nom (SB)	160	2.5	130	-0.18	

$\Rightarrow \underbrace{\text{With a good working point, tune spreads in the 0.25-0.3 range are found not}_{to produce significant beam quality degradation on the 1.2 sec flat bottom}$

1) 2)

PS: Coupled Bunch Instability

- Longitudinal coupled bunch instabilities with both 25ns and 50ns beams observed (previously also with 75ns and 150ns beams)
 - ✓ During the ramp
 - \checkmark At flat top when ramping down h=21 during bunch splitting
- What we know about it
 - \Rightarrow Suspected cause is the wide band impedance of the 10MHz cavities
 - ¹⁴ Coupled bunch mode spectrum on the ramp different from flat top
 - Little dependence on the number of bunches in the batch, but growth rates $10^{1.2}$ Scale like, $N_{1/2}$ (larger ε_{-} beneficial!)
 - 1.0 scale like $N_{t/\epsilon}$ (larger ϵ_z beneficial!)
 - .s⇒ Small improvement with 2 gap, relays, parking of invised cavities beneficial
 - E 0.6 → Longitudinal feedback necessary to extend the intensity range Low-energy BUs
- Patesent achievements
 - $\begin{array}{c} \text{High-energy BU} = & \\ 10.0 \Rightarrow 50 \text{ ns beams stably accelerated and extracted up to 1.9 x 10^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerated and extracted up to 1.7 x 3.0 0^{11} \text{ ppb}} \\ \hline 3.0 \Rightarrow 25 \text{ ns beams stably accelerat$

Cycle time [s]

1.4

ntensity 9.0

PS: Electron Cloud

G. ladarola, C. Yin-Vallgren

Electron cloud builds up at flat top for intensities \Rightarrow above 0.8 x 10¹¹ for 25ns beams

Av. intensity = 1.33×10^{11} ppb Av. intensity = 0.83×10^{11} ppb e-cloud signal [a.u.] e-cloud signal [a.u.] 0.15 0.15 25ns, 72b 25ns, 72b 0.1 0.1 0.05 0.05 0 0 0.5 1.5 0.5 1.5 2 O 2 0 1 time [us] time [us] Pick-up signal [a.u.] Pick-up signal [a.u.] 6 4 4 2 MUMUM hann 0 0 0 0 0.5 1 1.5 2 0.5 1.5 2 1 time [us] time [us]

PS: Electron Cloud

Electron cloud builds up at flat top for intensities \Rightarrow above 0.8 x 10¹¹ for 25ns beams

 \Rightarrow above 1.1 x 10¹¹ ppb for 50ns beams

G. Iadarola, C. Yin-Vallgren

- \rightarrow 50ns: up to 1.7 \cdot 10¹¹ ppb delivered for collisions in LHC
- \rightarrow 50ns: up to 1.9 \cdot 10¹¹ ppb delivered to SPS for MDs
- → Nominal 25ns beam (up to 1.3 · 10¹¹ ppb)

Exotic beams in the PSB/PS MDs

- Very bright beams for space charge studies
 - Obtained by re-bucketing SB-type beams in the PSB
 - \checkmark Improved by using bunch shortening at the PS flat bottom
 - ✓ Used for scans of working point
- Intense LHC-type single bunches with high brightness (4 x 10¹¹ ppb, ez=0.3eVs)
- Trains from batch compression schemes
 - ⇒ Scheme h=9 → 10 → 20 → 21 (based on single batch injection 4 x 2 bunches from PSB) successfully tested
 - \Rightarrow No acceleration + splitting (therefore no transfer to SPS)
 - \Rightarrow Can produce shorter 25ns trains of brighter bunches

Pure h = 9

MD block 9-11 May 2011 (e-cloud, high intensity)

 \rightarrow Nominal 25ns (four batches, about 1.15 x 10¹¹ ppb)

- \rightarrow 50ns DB (four batches, 1.4 1.6 x 10¹¹ ppb)
- \rightarrow 50ns SB (four batches, 1.2 1.45 x 10¹¹ ppb)

Beams for LHC

- \rightarrow Operational (April mid July): 50ns SB (four batches, about 1.2 x 10¹¹ ppb)
- \rightarrow Operational (mid July November): 50ns DB (four batches, 1.2 1.45 x 10¹¹ ppb)
- \rightarrow LHC MDs: Nominal 25ns (four batches, about 1.15 x 10¹¹ ppb)

MD block 9-10 November 2011 (Q20, high intensity)

 \rightarrow Nominal 25ns on Q20 (four batches, about 1.15 x 10¹¹ ppb) \rightarrow 50ns DB on Q20/Q26 (four batches, up to 1.7 x 10¹¹ ppb)

- MD block 9-11 May 2011

 \rightarrow Nominal 25ns (four batches, about 1.15 x 10¹¹ ppb)

- ightarrow 50ns DB (four batches, 1.4 1.6 x 10 11 ppb
- \rightarrow 50ns SB (four batches, 1.2 1.45 x 10¹¹ ppb

	Measurements
Max int @ flat top	1.1 x 10 ¹¹ ppb
$\epsilon_{x,y}$ @ flat top	2.4/2.7 μm

Losses hard to quantify for lack of data from the PS

- 25ns beams seem to be in better shape
 - SPS benefits from scrubbing over previous years?
 - Any improvement in emittance diagnostics? (consistent crosschecks between machines)

– MD block 9-11 May 2011

ightarrow Nominal 25ns (four batches, about 1.15 x 10¹¹ ppb)

- \rightarrow 50ns DB (four batches, 1.4 1.6 x 10¹¹ ppb)
- \rightarrow 50ns SB (four batches, 1.2 1.45 x 10¹¹ ppb

	Measurements
Max int @ flat top	1.4 x 10 ¹¹ ppb
$\epsilon_{x,y}$ @ flat top	1.7/1.7 μm

- MD block 9-11 May 2011

ightarrow Nominal 25ns (four batches, about 1.15 x 10¹¹ ppb)

- \rightarrow 50ns DB (four batches, 1.4 1.6 x 10¹¹ ppb)
- \rightarrow 50ns SB (four batches, 1.2 1.45 x 10¹¹ ppb

	Measurements
Max int @ flat top	1.6 x 10 ¹¹ ppb
$\epsilon_{\text{x},\text{y}}$ @ flat top	2.0/1.9 μm

- ☑ Intensity limited by longitudinal instabilities along the ramp and flat top
- ✓ Longitudinal blow up with bandlimited noise needs to be optimized for these intensities

Beams for LHC

- ightarrow Operational (April mid July): 50ns SB (four batches, about 1.2 x 10¹¹ ppb)
- → Operational (mid July November): 50ns DB (four batches, 1.2 1.45 x 10¹¹ ppb)
- \rightarrow LHC MDs: Nominal 25ns (four batches, about 1.15 x 10¹¹ ppb)

Typical logbook entry

- Single bunch limits (TMCI, space charge, emittance blow up)

Single bunch limits (TMCI, space charge, emittance blow up)

LHC Injectors Upgrade

Conclusions

LHC Injectors Upgrade

*Best performance table (2011)		50ns		25ns		Single bunch	
		N _b (10 ¹¹ ppb)	$\frac{(\varepsilon_x + \varepsilon_y)}{2}$	N _b	$\frac{(\varepsilon_x + \varepsilon_y)}{2}$	N _b	$\frac{(\varepsilon_x + \varepsilon_y)}{2}$
PSB		Curves emittance vs. intensity @ flat top				4.0	2.2
PS		1.9	1.9	1.4	3.0	4.0	2.4
SPS	nominal	1.6	1.9	1.15	2.6	2.5	2.5
	Q20	1.7	?	1.2	2.7	3.0	2.2

- Potential improvements of the **PSB** beam (waiting for Linac4)
 - Production: Day by day optimization of injection + capture
 - ✓ Use: Alternative PS schemes (batch compression)
- **PS** performance limited by
 - ✓ Longitudinal CBI (need feedback)
 - ✓ In future \rightarrow space charge @ injection, electron cloud, transverse instabilities
- SPS limitations
 - ✓ Injection + capture losses, longitudinal stability, TMCI, emittance growth
 - Electron cloud seems presently mitigated by years of scrubbing, but what will happen after LS1 (loss of conditioning) and with new stretched parameters?

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

All the machines

- Emittance preservation across the injector chain

