

LHC Injectors Upgrade

Update of achievable beam characteristics at injection in LHC

H.Bartosik, C.Bracco, O.Brüning, C.Carli, K.Cornelis, H.Damerau, R.Garoby, S.Gilardoni, <u>B.Goddard</u>,
S.Hancock, K.Hanke, V.Kain, A.Lombardi, M.Meddahi, B.Mikulec, Y.Papaphilippou, G.Rumolo,
E.Shaposhnikova, R.Steerenberg, M.Vretenar, ++

LHC Injectors Upgrade

Contents

- LIU understanding of final^{*} HL-LHC requirements
- Experience with beam until end 2011
- Limitations and mitigations in the injector chain
 - Space charge, electron cloud, beam loading, longitudinal stability, TMCI
- Expected injector chain performance after upgrades
 - Areas still requiring performance improvement
- Possible variant directions in parameter space
- Unknowns, risks and remaining issues
- Conclusion

*after LS3

Requirements from HL-LHC (at 10:00 today) Target: 250-300 fb⁻¹ per year

minimum β^* 25ns 50ns Parameter nominal 1.15E+11 Ν 2.0E+11 3.3E+11 2808 2808 1404 n_b beam current [A] 0.58 1.02 0.84 x-ing angle [µrad] 300 475 520 at LHC collision beam separation $[\sigma]$ 10 10 10 β^* [m] 0.55 0.15 0.15 3.75 2.5 3.0 $\varepsilon_n [\mu m]$ ε_ι [eVs] 2.51 2.5 2.5 1.00E-04 1.00E-04 1.00E-04 energy spread bunch length [m] 7.50E-02 7.50E-02 7.50E-02 IBS horizontal [h] 80 -> 106 25 17 IBS longitudinal [h] 61 -> 6021 16 Piwinski parameter 0.68 2.5 2.5 geom. reduction 0.83 0.37 0.37 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 1 1034 7.4 10³⁴ 8.4 10³⁴ Peak Luminosity Events / crossing 19 141 257

O.Brüning, HI-LUMI event 16-18 November 2011

Requirements from HL-LHC (at 10:35 today) Target: 250-300 fb⁻¹ per year

minimum β^* Parameter nominal 50ns 25ns 1.15E + 112.2E + 113.5E+11 Ν 1404 2808 2808 n_b beam current [A] 1.12 0.89 0.58 x-ing angle [µrad] 300 480 550 beam separation $[\sigma]$ 10 10 10 β* [**m**] 0.55 0.15 0.15 ε_n [μ**m**] 3.75 2.5 3.0 ε_ι [eVs] 2.51 2.5 2.5 1.20E-04 1.20E-04 1.20E-04 energy spread bunch length [m] 7.50E-02 7.50E-02 7.50E-02 IBS horizontal [h] 80 -> 106 20.0 20.7 IBS longitudinal [h] 61 -> 60 15.8 13.2 Piwinski parameter 0.68 2.66 2.54 geom. reduction 0.83 0.37 0.35 beam-beam / IP 3.10E-03 5.0E-03 3.9E-03 Peak Luminosity 1 10³⁴ 9.0 1034 9.0 1034 Events / crossing 19 171 340

O.Brüning, HL-LHC/LIU WS, 30th April 2012

at LHC collision

Required parameters through injector chain

- Assumptions made on emittance blowup* and beam loss. :
 - PSB flat bottom-extr: 5% emittance blowup, 5% beamloss
 - PS inj-extr: 5% emittance blowup, 5% beamloss
 - SPS inj-extr: 10% emittance blowup, 10% beamloss (incl. scraping)
 - LHC inj-flat top: 10% emittance blowup, 10% beamloss
- Total assumed beamloss 27% (PSB flatbottom to LHC flat-top), and total emittance growth 33% (or $\Delta \epsilon \approx 0.7$ um with 2.5 um in LHC)
- For comparison, 2011 operation saw about 13% beamloss (PS injection to LHC flat-top), with $\Delta\epsilon$ of about 60% (0.4 0.5 um to SPS extraction, and $\Delta\epsilon$ 0.5 0.6 um LHC)
- * rather simplistic as several processes will give fixed absolute $\Delta\epsilon$

LHC Injectors Upgrade

Resulting <u>required</u> parameters through injector chain

25 ns	PSB inj		PSB extr/PS inj	PS extr/SPS inj	SPS extr/LHC inj	LHC top
Energy Go	eV	0.16	2	26	450	7000
Nb		1	1	72	288	2808
lb [e11 p+	-]	35.2	33.5	2.7	2.4	2.2
Ib in LHC	(e11 p+)	2.9	2.8	2.7	2.4	2.2
Exyn (mm	n.mrad]	1.9	2.0	2.1	2.3	2.5
50 ns	PSB inj		PSB extr/PS inj	PS extr/SPS inj	SPS extr/LHC inj	LHC top
Energy Go	eV	0.16	2	26	450	7000
Nb		1	1	36	144	1404
lb [e11 p+	-]	28.0	26.7	4.2	3.9	3.5
Ib in LHC	[e11 p+]	4.7	4.4	4.2	3.9	3.5
Evvn Imm	modl	2.2	2.4	25	27	2.0

	PSB	PS	SPS	LHC
loss %	5	5	10	10
blowup %	5	5	10	10

Using Oliver's numbers timestamped at 10:35:00 30/4/2012

LHC Injectors Upgrade

2011 to post-LS2

- 2011 : 1.5e11 with 2.5 um for 50 ns (at LHC flat-top)
 - Around 1.1 e11 with 2.8 um for 25 ns, extracted from SPS
- Large improvement still required for either 25 or 50 ns beam
 ×2.4 in brightness for 25 ns...

PSB brightness/SC limit

LHC Injectors Upgrade

PS brightness/SC limit

LHC Injectors Upgrade

Injection energy of 2 GeV (h=7, no compression, dp/p = 0.0013)

Pushing ΔQ_v to -0.30, with long (180 ns) bunches is probably feasible Then looks OK for 50 ns, and close to requirement for 25 ns

SPS brightness/SC limit

LHC Injectors Upgrade

Postulated SPS brightness limit at injection energy of 26 GeV (Q20)

SPS needs to run at $\Delta Q \sim -0.15$ for 25 ns beam, and at around -0.20 for 50 ns

Big question here is whether single bunch performance translates to multibunch, although should gain from working point optimisation

Limits: space charge/brightness

- PSB at 160 MeV
 - Very confident to run with Δ Qy ≈ -0.3 (and reasonable hope for Δ Qy ≈ -0.36, or 1.4 um/2.4e12 p+)
- PS at 2 GeV
 - Very confident to run with $\Delta Qy \approx -0.26$ (and reasonable hope to increase to $\Delta Qy \approx -0.30$, with 180 ns long bunches, giving 1.6 um/2.4e12 p+)
 - Then looks reasonably well matched to what PSB can provide
- SPS: ε_{xy} [um] \approx -1.22 N_b [e12] / Δ Qy, with Q20 optics at 26 GeV
 - Present assumption is to run with $\Delta Qy \approx -0.15$
 - Gives 1.2e11 p+/um or 1.6 um for 2.0e11 p+
 - − Need to increase to $\Delta Qy \approx -0.18 0.20$ for 50 ns beam, or 1.2 um for 2e11 p+
- For 25 ns: suggests limit will be in PSB or PS
- For 50 ns: PS could deliver <1.0 um for 2.0e11, so limit still in SPS

Other limitations

- LHC Injectors Upgrade
 - SPS TMCI : single bunch
 - With Q20 looks like being above ~3.6e11 per bunch (Q'=0)
 - Assumed not to be an issue
 - PS longitudinal coupled bunch instability
 - New coupled-bunch FB with a dedicated kicker cavity should increase limits from present ~1.7e11 to about 3e11 p+/b
 - Much more of an issue for performance reach with 50 ns
 - PS beam loading in 10,20,40 MHz RF systems
 - Limited by transient phase for splitting not a hard limit but will affect bunch-to-bunch quality – more critical for 50 ns beam
 - Limit expected to be ~3e11 per bunch, for 25 and 50 ns spacing
 - PS-SPS transfer parameters studies ongoing
 - Main motivation is longitudinal stability margin in PS. Need to make sure losses do not degrade (too much) with the larger emittance.

SPS longitudinal instabilities

- LHC Injectors Upgrade
 - Longitudinal stability: 25 ns beam unstable at <u>2-3e10</u> p+/b
 - Presently mitigated with long. emittance blowup (0.6 eVs) and 800 MHz
 - Need \geq 0.9 eVs for 25 ns stability with x2 nominal I_b (Q26)
 - Maybe gain from lower impedance (200 MHz and kickers), x2 800 MHz V.
 - Need to answer whether major upgrade of MKE kickers (open C core) is necessary – quantify effect of such a change?
 - Would be very beneficial to transfer longer (e.g. 1.8 ns) bunches to LHC (but need to mitigate capture losses in LHC) -> MD
 - Q20: instability thresholds higher, but need smaller $\epsilon_{\rm I}$ to get same bunch length for given V_{\rm RF}
 - After upgrade, expect factor 2 intensity possible wrt 2011
 - 2.3e11 p+/b for 25 ns, and >3.4e11 p+/b for 50 ns
 - Main unknown is beam stability with high intensity (combination of singleand coupled-bunch effects)

SPS beam loading

- SPS 200 MHz: x2 power, $4 \rightarrow 6$ (shorter) cavities, -20% impedance
 - Will allow 10 MV at extraction for 3 A RF current (now 1.5 A)
 - Need to operate existing power plants in pulsed mode (0.75 \rightarrow 1.05 MW)
- After upgrade: same voltage available as now (if pulsed) for 2.3e11 p+/b (25 ns) and 4.6e11 p+/b (50 ns).
 - With larger emittance more V_{RF} needed for same bunch length
 - Will anyway have 10% longer bunches for 2x nominal I, with 10 MV

'Operational' limitations

• Mainly in SPS (to date)

LHC Injectors Upgrade

- Heating of extraction kickers: should be 'solved' with final shielded MKE in LS1. Expect limit to be at least twice present beam power.
 Backup solution of open C core MKE kickers will definitely solve this problem
- ZS sparking: interference with slow extracted FT beams. Difficult to solve – 'ppm' ion trap and main voltage modulation being studied. Last resort is ZS off and retracted during LHC beam, which strongly impacts beam to North Area. Major concern.
- Outgassing of dump and impact on injection kickers MKP vacuum: extra differential pumping and sectorisation planned. Effect is mainly a limitation for scrubbing and setting up, rather than LHC filling. Should be manageable

ecloud

• PS: observed but not yet a limitation.

LHC Injectors Upgrade

- Studies are ongoing to investigate HL-LHC regime
- Mitigations being investigated (coating, double bunch rotation, ...)
- SPS: expected to be major performance limit (beamloss, vacuum, ecloud instability and incoherent emittance growth):
 - More serious for 25 ns beam (but present for 50 ns)
 - Expected to be <u>removed</u> when machine is aC coated (LIU baseline)
 - Scrubbing for 25 ns will be tough...StSt chambers, OP limitations...
 - HBW feedback could cure vertical single bunch ECI

Beampipe profile	SEY threshold @ 1.1 10 ¹¹ p/bunch	SEY threshold @ 2.5 10 ¹¹ p/bunch		
ID 156 (LSS)	1.4	1.1		
ID 130 (LSS)	1.45	1.05		
MBA (Dipole)	1.4	1.45		
MBB (Dipole)	1.15	1.25		

Putting it together

- Assume here:
 - ΔQ of -0.36 possible in PSB
 - ΔQ of -0.30 possible in PS
 - $\Delta Q \text{ of -0.15 possible in SPS (most speculative)}$
 - No limitation from ecloud after aC coating
 - Twice present beam current (2.3e11 for 25 ns, 3.5e11 for 50 ns) possible after SPS RF upgrade
 - Intensity per bunch limited to 3e11 p+ in PS from longitudinal coupled bunch instability and beam loading, with new feedback system in place

25 ns after LIU upgrade

LHC Injectors Upgrade

At Chamonix, announced limit of 2.2e11 p+/b in 3.5 um

Pushing 'reasonably' on PSB and PS space charge, and bunch length at 2 GeV in PS, 2.2e11 in 2.5 um seems feasible. Close to HL-LHC target of 2.2e11 in 2.3 um.

50 ns after LIU upgrade

LHC Injectors Upgrade

At Chamonix, announced 2.7e11 p+/b in 2.7 um. Unchanged

- No change from pushing on PSB and PS space charge limits
- Intensity limited by longitudinal instabilities in PS (and then SPS), and emittance by brightness in SPS at $\Delta Q = -0.15$
- Both 'limits' are informed guesses at the present

'Conceivable' improvements?

LHC Injectors Upgrade

Reduce losses (and SPS blowup) even further!?

- Will be **real challenge** to achieve with x2 beam intensities
- Consider as "stretch" goal also for HL-LHC...!

Stretch	PSB	PS	SPS	LHC
loss %	5	3	8	3
blowup %	5	5	5	2010

Hope for 50 ns?

LHC Injectors Upgrade

- Losses + blowup: need to be brought to "stretch" levels
- Longitudinal stability in PS: would need 3.7e11 p+/b
- SPS tune shift: would need to run at $\Delta Q = -0.18$

 But requires 20% improvement in PS long. stability reach (on top of the factor ~2 assumed possible wrt today!!).

Conclusions (I)

- LHC Injectors Upgrade
 - Baseline LIU does not reach HL-LHC requirements...
 - To even get close, with all upgrades working:
 - Need ΔQ_y to be pushed in PSB and PS beyond present assumptions
 - Need "stretch" loss/blowup levels in injectors, with HL-LHC ≤10% blowup, and losses of around 3%...
 - Need substantial improvement in PS longitudinal stability reach
 - Expected limits are different for 25 and 50 ns production
 - PSB performance sufficient with 160 MeV injection for both
 - 25 ns: PS (PSB) space charge tune shift (2 GeV injection fixed by PSB).
 - 50 ns: brightness in SPS, PS longitudinal stability, PS beamloading

Unresolved questions/issues

- LHC Injectors Upgrade
 - Electron cloud
 - aC coating or scrubbing in SPS: baseline is aC, final review end 2012.
 - Potential issue with aC of high vacuum pressure: being studied
 - Is ecloud going to be an issue in PS?
 - Q20 operational deployment in SPS after LS1?
 - Need to get experience if we have any hope to push to required levels
 - Prospects for increasing (already ambitious) target for PS longitudinal stability (1.7e11 -> 3.0e11 -> 3.7e11 p+/b)
 - Prospect for PS reaching -0.30, and PSB -0.36 in space charge tune shift

Table of dreams – updated (I)

LHC Injectors Upgrade

25 ns	lb [e11]	Exy [um]	scaled I _b ²/e _{xv}
HL-LHC target (LHC flat-top)	2.0	2.5	1.00
LIU scenario (SPS extraction)			
LIU baseline (>LS2)	2.3	3.6	0.68
+ PS ∆Q to -0.30, PSB DQ to -0.36 (>LS2)	2.2	2.5	0.89
+ "stretch" blowup/losses (>LS3)	2.3	2.4	1.18

50 ns	l [e11]	Exy [um]	scaled I _b ² /e _{xv}
HL-LHC target (LHC flat-top)	3.3	3.0	1.00
LIU scenario (SPS extraction)			
LIU baseline (>LS2)	2.7	2.7	0.55
+ PS longitudinal stability 3.7e11 (>LS3)	3.3	3.3	0.67
+ SPS ∆Q to -0.18 (>LS3)	3.3	2.8	0.79
+ "stretch" blowup/losses (>LS3)	3.4	2.6	1.05

Now including brightness dilution in LHC in final quality factor

Table of dreams – updated (II)

LHC Injectors Upgrade

25 ns	lb	[e11]	Exy [um]	scaled I _b ² /e _{xv}
HL-LHC target (LHC flat-top)		2.2	2.5	1.00
LIU scenario (SPS extraction)				
LIU baseline (>LS2)		2.3	3.6	0.56
+ PS ∆Q to -0.30, PSB DQ to -0.36 (>LS3)		2.2	2.5	0.74
+ "stretch" blowup/losses (>LS3)		2.3	2.4	0.97

50 ns	l [e11]	Exy [um]	scaled I _b ² /e _{xv}
HL-LHC target (LHC flat-top)	3.5	3.0	1.00
LIU scenario (SPS extraction)			
LIU baseline (>LS2)	2.7	2.7	0.49
+ PS longitudinal stability 3.7e11 (>LS3)	3.3	3.3	0.60
+ SPS ∆Q to -0.18 (>LS3)	3.3	2.8	0.70
+ "stretch" blowup/losses (>LS3)	3.4	2.6	0.93

Now including brightness dilution in LHC in final quality factor

Conclusions (II)

- In theory^{*}, not <u>totally</u> impossible to approach HL-LHC request for both 25 and 50 ns, providing
 - 1. Losses and blowup can be reduced to "stretch" levels (25 and 50 ns)
 - 2. PS can run with higher space charge tune shift, nearer $\Delta Q \approx -0.30$ with 180 ns bunch length, and PSB can run with $\Delta Q \approx -036$ (mostly for 25 ns)
 - 3. PS longitudinal stability can improve significantly above present expectation (today at 1.7e11, LIU baseline 3e11, need 3.7e11) (for 50 ns)
 - 4. SPS can increase brightness limit, to $\Delta Q \approx -0.18$ (for 50 ns)

LHC Injectors Upgrade

• Also....we are taking for granted that all planned upgrades fully effective, and that we can approach single bunch limits with multi-bunch operation

*"The difference between theory and practice is in theory somewhat smaller than in practice"