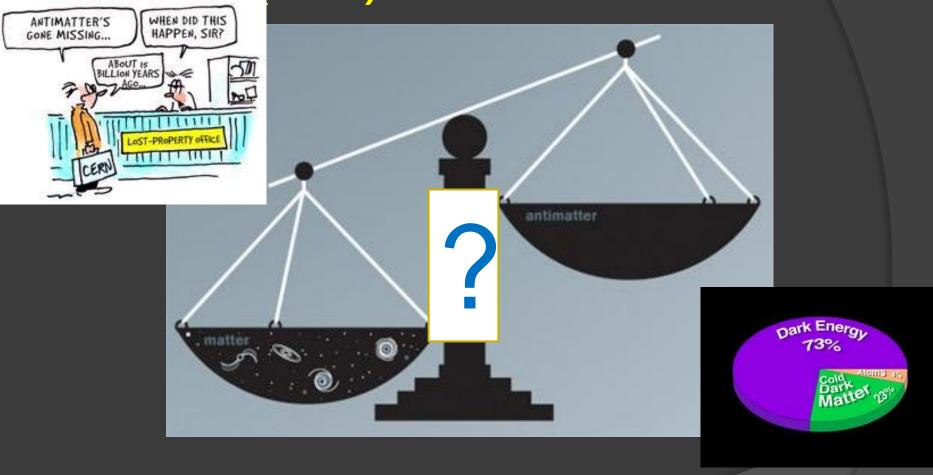


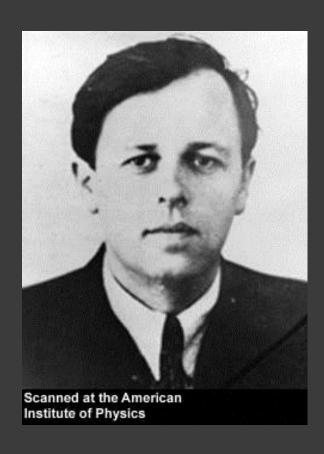
PHYSICS AT THE AD/PS/SPS LECTURE 3: FLAVOUR AND NEUTRINOS

Augusto Ceccucci/CERN


CERN Academic Lectures, June 21, 2012

Outline

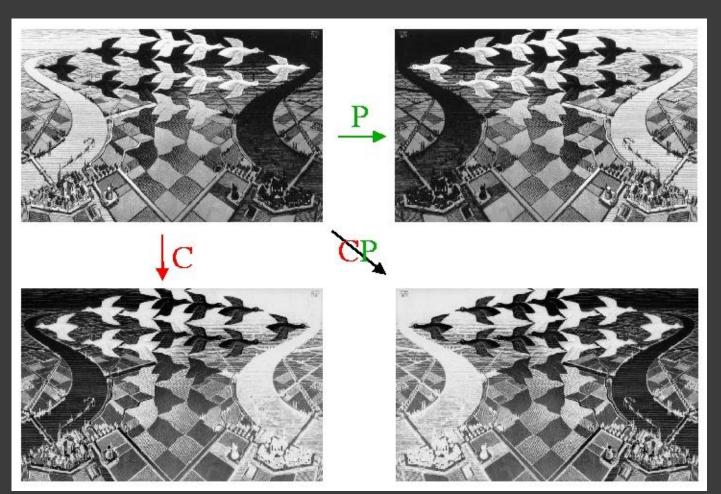
- Kaon Physics at the SPS (NA48, NA62)
 - CP-Violation & Quark Mixing
 - Lepton Universality
 - Strong Interaction at Low Energy
 - Rare Decays
- Neutrino Physics at the SPS
 - Long baseline neutrino experiments
 - CNGS1 OPERA
 - CNGS2 ICARUS

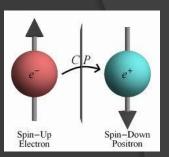

CP-VIOLATION AND QUARK MIXING

Baryon Asymmetry of the Universe (BAU)

n_{quark}-n_{antiquark}/n_{quark} (Proto Universe) ~n_{baryon}/n_{photon} (Today)~5×10⁻¹⁰

Sakharov Conditions for BAU


Andrei Sakharov (1967)


To allow the development of an asymmetry between matter and anti-matter

- 1. Violation of Baryonic Number
- 2. Thermodynamic Non-equilibrium
- 3. Violation of C & CP

Origin of BAU: Baryogenesis or Leptogenesis?

CP-Violation

When the top-left and the bottom-right Pictures are not exactly the same, we have CP-Violation

Da Gino Isidori:

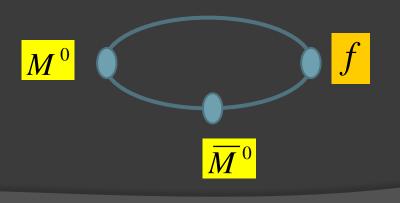
http://scienzapertutti.lnf.infn.it/P1/schedaCP.html

Types of CP-Violation

$$igg|M_Ligg
angle\propto pigg|M^0igg
angle + qigg|\overline{M}^0igg
angle \ igg|M_Higg
angle\propto pigg|M^0igg
angle - qigg|\overline{M}^0igg
angle$$

$$\begin{vmatrix} M_L \rangle \propto p | M^0 \rangle + q | \overline{M}^0 \rangle$$

$$| M_H \rangle \propto p | M^0 \rangle - q | \overline{M}^0 \rangle$$

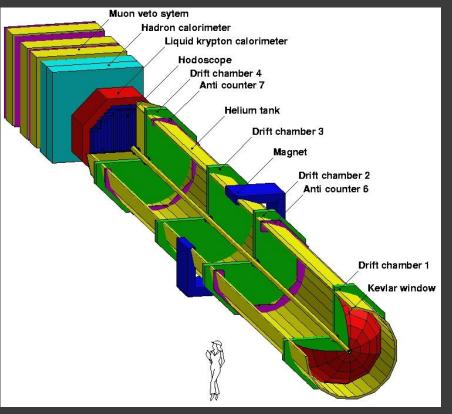

$$\Delta F = 2$$

$$A_f = \langle f | H | M \rangle, \overline{A}_f = \langle f | H | \overline{M} \rangle$$

$$A_{\bar{f}} = \langle f | H | M \rangle, \overline{A}_{\bar{f}} = \langle f | H | \overline{M} \rangle$$

$$\Delta F = 1$$

- 1. CP Violation in mixing $|q/p| \neq 1$ (indirect)
- 2. CP Violation in decays $|\overline{A}_{\bar{f}}/A_f| \neq 1$ (direct)
- CP Violation in the interference


$$\operatorname{Im} \lambda_f \neq 0$$

$$\lambda_f \equiv \frac{q}{p} \frac{\overline{A}_f}{A_f}$$

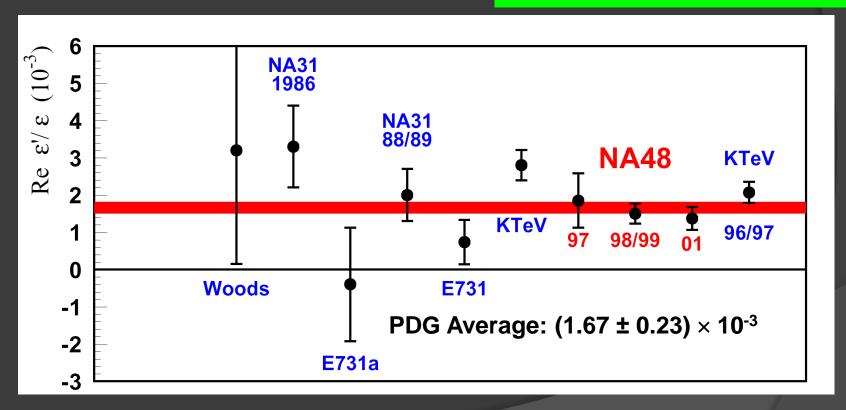
The study of direct CP-violation in the two pion Decays of the neutral kaons (ε'/ε) was the main motivation to study kaon decays at the SPS

NA48/NA62 at CERN

	1997:	ε'/ε: K _L +K _S	3	
NA48	1998:	K _L +K _S		
	1999:	K _L +K _S	K _s HI	
	2000:	K _L only	K _s HI	
	2001:	K _L +K _S	K _s HI	
NA48/1	2002:	K _s /hypero	/hyperons	
NA48/2	2003:	K+/K-		
	2004:	K+/K-		

- Magnetic spectrometer (4 DCHs):
 - 4 views/DCH
 - $\Delta p/p = 0.48\% + 0.009\%*p [GeV/c]$
- Liquid Krypton EM calorimeter (LKr)
 - High granularity, quasi-homogeneous;
 - $\sigma_E/E = 3.2\%/E^{1/2} + 9\%/E + 0.42\%$ [GeV]
 - $\sigma_x = \sigma_y = 0.42/E^{1/2} + 0.6$ mm (1.5mm@10GeV)

Old Detector New Collaboration	NA62_Rk	RK	2007:	Κ [±] _{e2} / Κ [±] _{μ2}	tests
Conaboration				$K^{\pm}_{\ \mathrm{e}2}\!/K^{\pm}_{\ \mu 2}$	tests
	NA62		2012	Technical R	un
(more on this later.)		2014- <i>K</i> ⁺ →π	∵v ⊬ Data Ta l	king


O

Re ε'/ε measurements versus time

$$R = \frac{\Gamma(K_L \to \pi^0 \pi^0)}{\Gamma(K_S \to \pi^0 \pi^0)} / \frac{\Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^+ \pi^-)} \approx 1 - 6 \operatorname{Re}(\varepsilon'/\varepsilon)$$

Direct CP Violation

$$\Gamma(K^0 \to \pi^+ \pi^-) \neq \Gamma(\overline{K}^0 \to \pi^+ \pi^-)$$

Crucial CERN Experiments: NA31 & NA48

Cabibbo-Kobayashi-Maskawa (CKM) Quark Mixing Matrix

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

With 3 generations CP violation is naturally introduced by an irreducible complex phase in the quark mixing matrix (Kobayashi & Maskawa, 1973)

$$V_{CKM} = \begin{pmatrix} 1 - \lambda^2 / 2 & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2 / 2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

(PDG 2012)

$$|V_{ud}| = 0.97425 \pm 0.00022$$

$$|V_{us}| = 0.2252 \pm 0.0009$$

$$|V_{cd}| = 0.230 \pm 0.011$$

$$|V_{cs}| = 1.006 \pm 0.023$$

$$|V_{cb}| = (40.9 \pm 1.1) \times 10^{-3}$$

$$|V_{ub}| = (4.15 \pm 0.49) \times 10^{-3}$$

$$|V_{tb}| = 0.89 \pm 0.07$$

 $0^+ \rightarrow 0^+$ super-allowed nuclear β decays

Kaon semi-leptonic and leptonic decays

 $2\mu/1\mu$ ratio in neutrino/antineutrino interactions Average of semi-leptonic D and leptonic D_s decays Combination of exclusive and inclusive B decays Comb. of exclusive and inclusive charmless B decays Single top-quark production cross-section

V_{td} & V_{ts} accessible from FCNC processes (loops)

CP-Violation in Kaons and CKM

 \bullet Neutral Kaon Mixing ($\pi\pi$, semi-leptonic)

$$|\varepsilon| = \frac{G_F^2 f_K^2 m_K m_W^2}{12\sqrt{2}\pi^2 \Delta m_K} \hat{B}_K \{ \eta_1 S(x_c) \operatorname{Im}(V_{cs} V_{cd}^*)^2 + \eta_2 S(x_t) \operatorname{Im}(V_{ts} V_{td}^*)^2 \}$$

$$+ 2\eta_3 S(x_c, x_t) \operatorname{Im}(V_{cs} V_{cd}^* V_{ts} V_{td}^*) \}$$

$$|\varepsilon| = (2.233 \pm 0.015) \times 10^{-3}$$

Neutral Kaon Decays into ππ

PDG Average

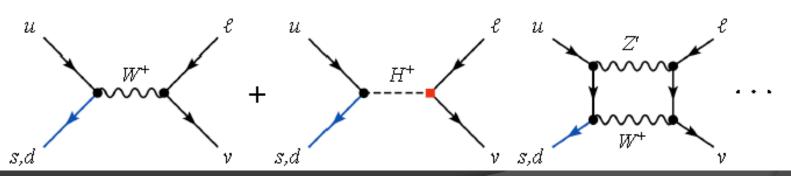
$$\operatorname{Re} \frac{\varepsilon'}{\varepsilon} \propto \operatorname{Im}(V_{td}V_{ts}^*)$$

$$\operatorname{Re}\frac{\varepsilon'}{\varepsilon} = (1.67 \pm 0.23) \times 10^{-3}$$

Direct CP-Violation

V_{us} and universality

$$\frac{g}{\sqrt{2}}W_{\alpha}^{+}\left(\overline{\mathbf{U}}_{L}\mathbf{V}_{\text{CKM}}\gamma^{\alpha}\mathbf{D}_{L} + \overline{e}_{L}\gamma^{\alpha}\nu_{e\,L} + \overline{\mu}_{L}\gamma^{\alpha}\nu_{\mu\,L} + \overline{\tau}_{L}\gamma^{\alpha}\nu_{\tau\,L}\right) + \text{h.c.}$$


$$|V_{ud}|^{2} + |V_{us}|^{2} + |V_{ub}|^{2} = 1$$

Standard-model coupling of quarks and leptons to W

Universality: Is G_F from μ decay equal to G_F from π , K, nuclear β decay?

$$G_{\mu}^2 = (g_{\mu}g_e)^2/M_W^4 \stackrel{?}{=} G_{\text{CKM}}^2 = (g_qg_\ell)^2 (|V_{ud}|^2 + |V_{us}|^2)/M_W^4$$

Physics beyond the Standard Model can break gauge universality:

V_{us} from semileptonic decays

$$\begin{split} \Gamma(K_{\ell 3(\gamma)}) &= \frac{C_K^2 G_F^2 m_K^5}{192 \pi^3} \, S_{\text{EW}} |V_{us}|^2 \, |f_+^{K^0 \pi^-}(0)|^2 \\ & \times \, I_{K\ell}(\lambda_{K\ell}) \, \left(1 + 2 \Delta_K^{SU(2)} + 2 \Delta_{K\ell}^{\text{EM}} \right) \\ \text{with } K &\in \{K^+, K^0\}; \, \ell \in \{e, \mu\}, \, \text{and:} \\ C_K^2 & \text{1/2 for } K^+, \, \text{1 for } K^0 \\ S_{\text{EW}} & \text{Universal SD EW correction (1.0232)} \end{split}$$

Inputs from experiment:

Rates with well-determined treatment of radiative decays:

- · Branching ratios
- Kaon lifetimes

 $I_{K\ell}(\{\lambda\}_{K\ell})$

Integral of form factor over phase space: As parameterize evolution in t

- K_{e3}: Only λ_{+} (or λ_{+}' , λ_{+}'')
- $K_{\mu 3}$: Need λ_{+} and λ_{0}

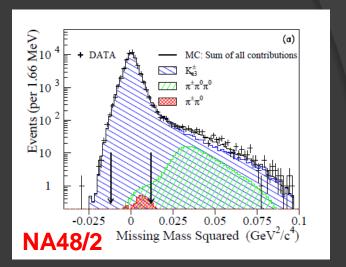
Inputs from theory:

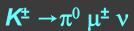
 $f_{+}^{R^0\pi^+}(0)$

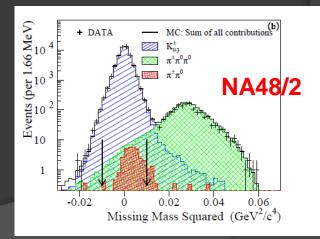
Hadronic matrix element (form factor) at zero momentum transfer (t=0)

 $\Delta_{K}^{SU(2)}$

Form-factor correction for *SU*(2) breaking

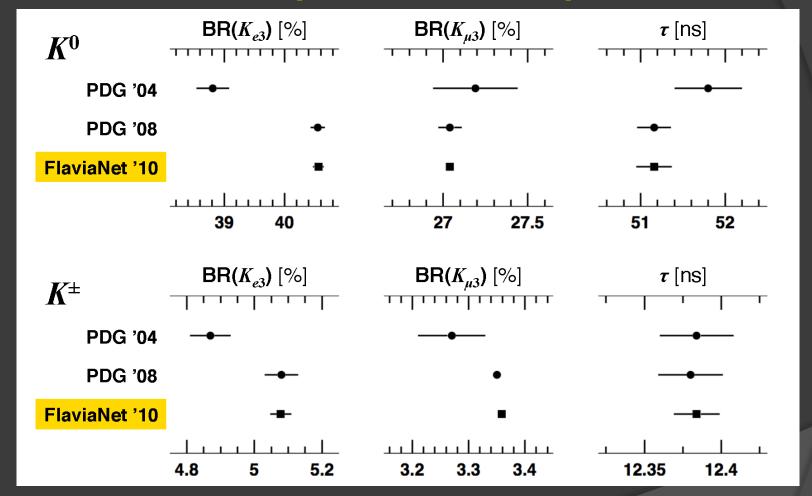

 $\Delta_{K\ell}^{-EM}$


Form-factor correction for long-distance EM effects


"Modern" V_{us} experimental input

$$K^{\pm} \rightarrow \pi^0 e^{\pm} \nu$$

Experiment	Measurement	Year
BNL865	$BR(\mathit{K}^{\scriptscriptstyle{+}}\!\to\pi^{\scriptscriptstyle{0}}{}_{\scriptscriptstyle{\mathrm{D}}}e^{\scriptscriptstyle{+}}v)/BR(\mathit{K}^{\scriptscriptstyle{+}}\!\to\pi^{\scriptscriptstyle{0}}{}_{\scriptscriptstyle{\mathrm{D}}}X^{\scriptscriptstyle{+}})$	2003
KTeV	$\tau(K_S)$	2003
	$BR(K_{Le3}), BR(K_{L\mu3}), \lambda_+(K_{Le3}), \lambda_{+,0}(K_{L\mu3})$	2004
ISTRA+	$\lambda_{+}(K^{-}_{e3}), \lambda_{+,0}(K^{-}_{e3})$	2004
KLOE	$ au(K_L)$	2005
	$BR(K_{Le3}), BR(K_{Lu3}), BR(K_{Se3}), \lambda_+(K_{Le3})$	2006
	$\lambda_{+,0}(K_{Lu3})$	2007
	$ au(K^\pm), \; BR(K_{Le3}), \; BR(K_{L\mu3})$	2008
NA48	$\tau(K_S)$	2002
	$BR(K_{Le3}/2 \; tracks), \lambda_+(K_{Le3})$	2004
	$BR(K_{Se3}/K_{Le3}),\lambda_{+,0}(K_{Lu3})$	2007
NA48/2	$BR(K^{+}_{e3}/\pi^{+}\pi^{0}), \; BR(K^{+}_{\mu3}/\pi^{+}\pi^{0})$	2007

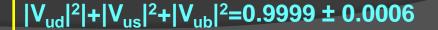


The experiments determine the product of $V_{us} f_{+}(0)$ and $V_{us} f_{K}$


Precise theoretical calculations (lattice QCD and chiral perturbation theory) allow one to perform stringent tests. The theory works very well for kaons.

Evolution of Experimental Input...

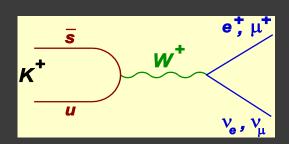
[&]quot;V_{us} Revolution" with experimental input changing ~ 5% in some cases....."


...and of the theoretical one f₊(0)

The LQCD calculations are Improving, for instance they go beyond "quenched" approximations $(N_f = 2)$

The Cabibbo angle can be precisely determined (~0.4%)!

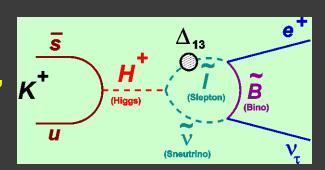
Unitarity test of CKM the first row (PDG 2012):



LEPTON UNIVERSALITY

$R_K = K_{e2}/K_{\mu 2}$

SM



$$R_{K} = \frac{\Gamma(K^{\pm} \to e^{\pm}\nu)}{\Gamma(K^{\pm} \to \mu^{\pm}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot (1 + \delta R_{K}^{rad.corr.})$$

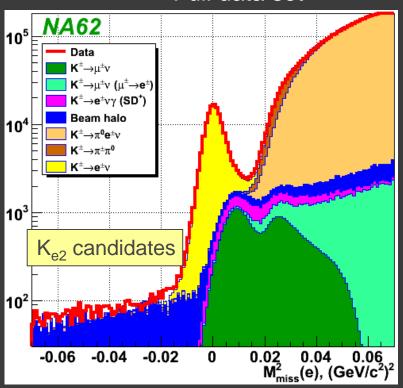
$$R_K^{SM} = (2.477 \pm 0.001) \times 10^{-5}$$

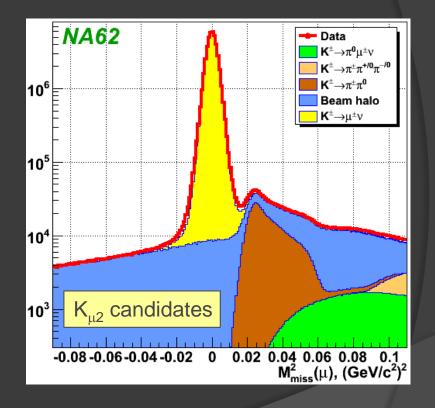
Cirigliano & Rosell PRL 99 (2007) 231801

BSM, LFV

e.g. Masiero, Paradisi Petronzio PRD 74 (2006) 011701, JHEP 0811 (2008) 042

 $\mathbf{R}_{\mathbf{K}}^{\mathsf{LFV}}pprox\mathbf{R}_{\mathbf{K}}^{\mathsf{SM}}\left[\mathbf{1}+\left(rac{\mathbf{m}_{\mathbf{K}}^{\mathbf{4}}}{\mathbf{M}_{\mathbf{H}^{\pm}}^{\mathbf{4}}}
ight)\left(rac{\mathbf{m}_{ au}^{\mathbf{2}}}{\mathbf{M}_{\mathbf{e}}^{\mathbf{2}}}
ight)|\mathbf{\Delta_{13}}|^{\mathbf{2}}\mathrm{tan}^{\mathbf{6}}\,eta
ight]$

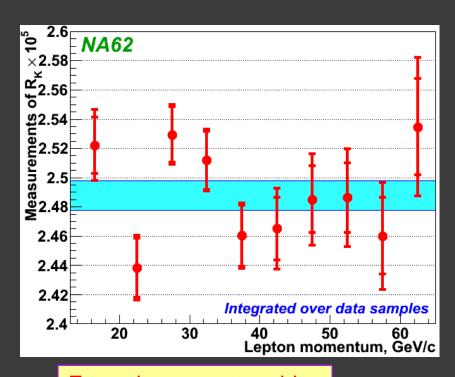

Leptonic decays of the pseudoscalar mesons are helicity Suppressed in the standard model


Example:

 $(\Delta_{13}=5\times10^{-4}, \tan\beta=40, M_H=500 \text{ GeV/c}^2)$ $R_K^{MSSM}=R_K^{SM}(1+0.013).$

NA62: $R_K = K_{e2}/K_{\mu 2}$

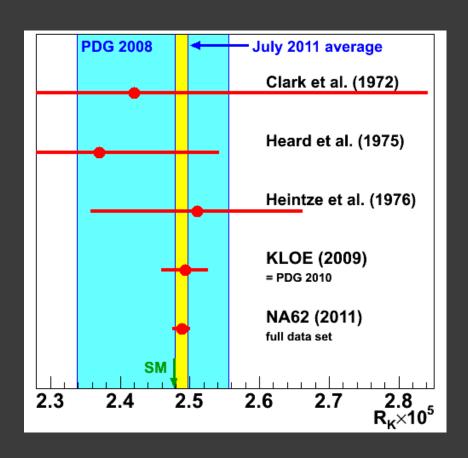
Full data set

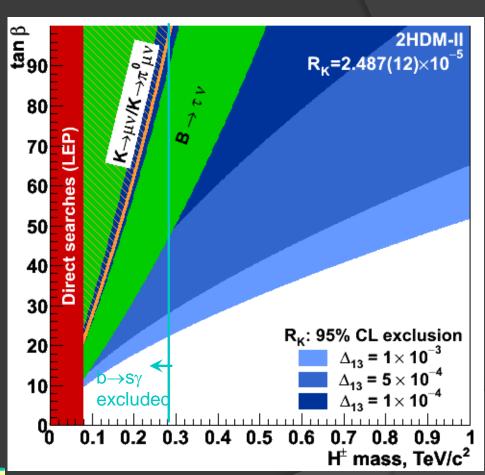

145,958 $K^{\pm} \rightarrow e^{\pm}v$ candidates. Electron ID efficiency: (99.28 \pm 0.05)%.

NA62: R_K full data set

$$R_K = (2.488 \pm 0.007_{stat} \pm 0.007_{syst}) \times 10^{-5}$$

$$R_{\kappa} = (2.487 \pm 0.010) \times 10^{-5}$$


Published (40% sample) CERN-PH-EP-2011-004, arXiv:1101.4805, PLB B698 (2011) 105

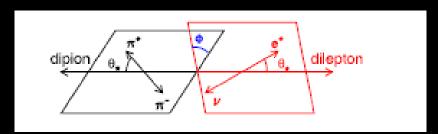

Background source	B/(S+B)
$K_{\mu 2}$	(5.64±0.20)%
$K_{\mu 2} (\mu \rightarrow e)$	(0.26±0.03)%
K_{e2y} (SD+)	(2.60±0.11)%
K _{e3(D)}	$(0.18\pm0.09)\%$
$K_{2\pi(D)}$	(0.12±0.06)%
Wrong sign K	(0.04±0.02)%
Muon halo	(2.11±0.09)%
Total	(10.95±0.27)%

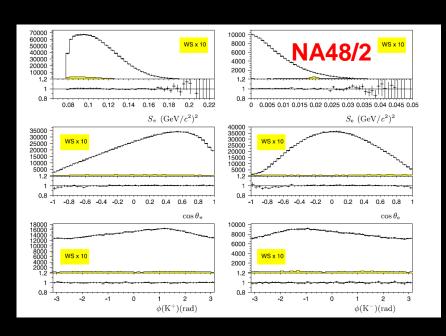
Errors in momentum bins are partially correlated

R_K world average

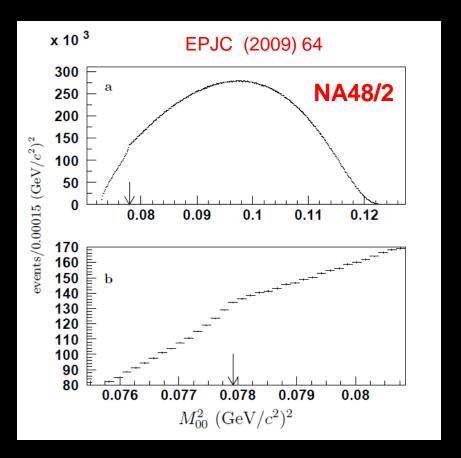
World average	$\delta R_{K} \times 10^{5}$	Precision
PDG 2008	2.447±0.109	4.5%
Today	2.488±0.009	0.4%

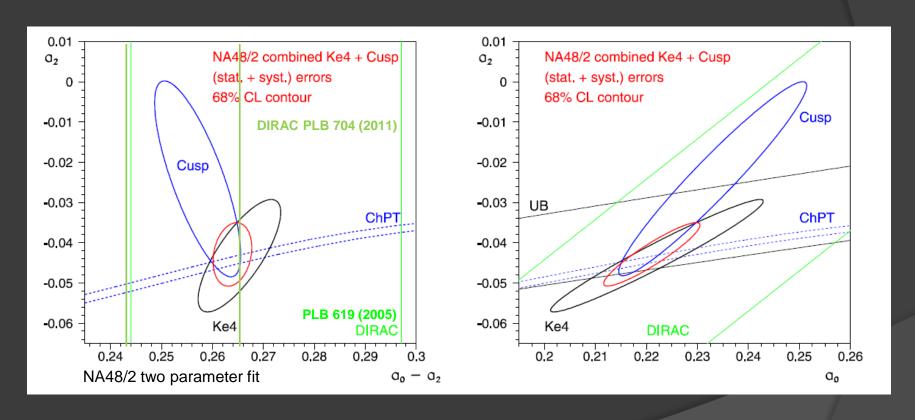
Other limits on 2HDM-II: PRD 82 (2010) 073012 SM with 4 generations: JHEP 1007 (2010) 006.


STRONG INTERACTION AT LOW ENERGY


Strong Interaction at low energy

- At high energy the strong interactions are described by Quantum Chromo Dynamics (QCD)
- Below ~ 1 GeV, the strong coupling becomes large and the perturbative description is not possible
- An effective theory, Chiral Perturnation Theory (ChPT) allows to study the strong interaction at low energy in terms of momenta and light meson masses
- Kaons are a good laboratory to study the strong interactions at low energy (π π scattering, radiative decays,...)


NA48/2: $K^{\pm} \rightarrow \pi^{+}\pi^{-}e^{\pm}\nu$ & cusp in $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ cusp


Cusp in $K^{\pm} \rightarrow \pi^{\pm} \pi^{\circ} \pi^{\circ}$ decays

Cusp-like structure at the $\pi^+\pi^-$ invariant mass threshold

$\pi\pi$ scattering length

NA48/2: EPJC (2010) 70

Consistent results on the scattering lengths obtained with completely independent techniques

RARE DECAYS

Looking for physics beyond the SM

- Direct searches: LHC energy frontier
- Indirect searches:
- Improve meaurement precision of CKM elements
 - Compare measurements of the same quantities which may or may not be sensitive to new physics
 - Extract all CKM angles and sides in many different ways → inconsistencies would signal new physics
- Study Flavour Changing Neutral Currents (FCNC) processes where the SM contributions are suppressed and precisely predictable → Rare Decays

A. Buras list of Flavour Superstars

Superstars of 2011 – 2015 (Flavour Physics)

$$S_{\psi\phi}$$

$$\text{In } B_s^0 - \overline{B}_s^0$$

$$(\mathbf{B}_{s} \to \varphi \varphi)$$

γ from Tree Level Decays

$$\begin{array}{c}
B_s \to \mu^+ \mu^- \\
\left(B_d \to \mu^+ \mu^-\right) \\
\left(B^+ \to \tau^+ \nu_{\tau}\right)
\end{array}$$

$$\mu \to e\gamma$$

$$\tau \to \mu\gamma$$

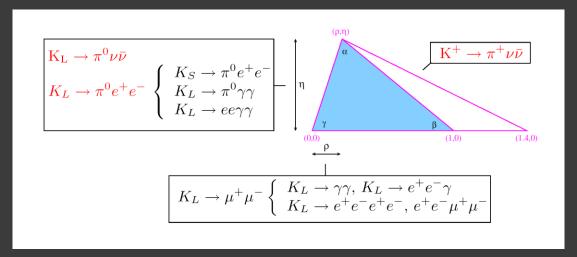
$$\tau \to e\gamma$$

$$\mu \to 3e$$

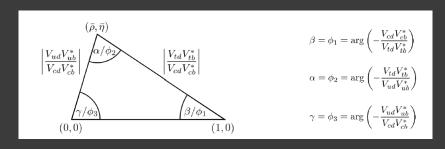
 $\tau \rightarrow 3$ leptons

$$\frac{\mathbf{K}^{+} \to \pi^{+} \nu \overline{\nu}}{\left(\mathbf{K}_{L} \to \pi^{0} \nu \overline{\nu}\right)}$$

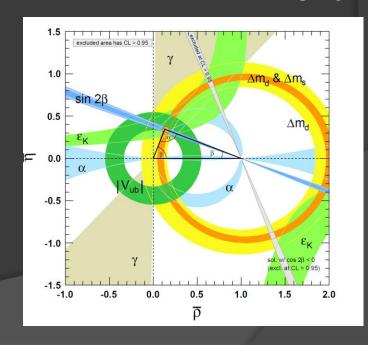
$$\overline{\left(B_d \to K^* \mu^+ \mu^-\right)}$$

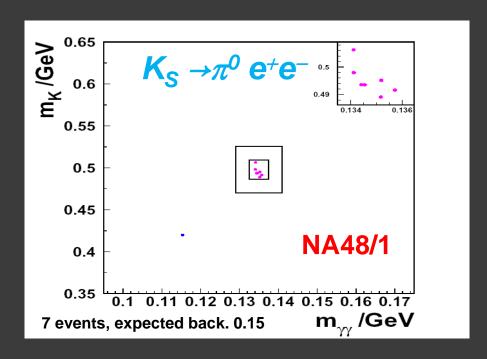

(Lattice)

EDM's
$$(g-2)_{\mu}$$

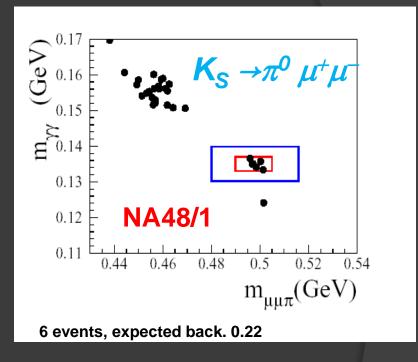

*) Direct **&**P in K₁ →ππ

37 Amsterdam04


Kaon Rare Decays & CKM


PDG 2012

$$V_{td}V_{tb}^* + V_{cd}V_{cb}^* + V_{ud}V_{ub}^* = 0$$


NA48/1: $K_S^0 \to \pi^0 e^+ e^-$ and $K_S^0 \to \pi^0 \mu^+ \mu^-$

$$BR(K_S \rightarrow \pi^0 ee) \times 10^{-9} = 5.8^{+2.8}_{-2.3(stat)} \pm 0.8_{(syst)}$$

PLB 576 (2003)

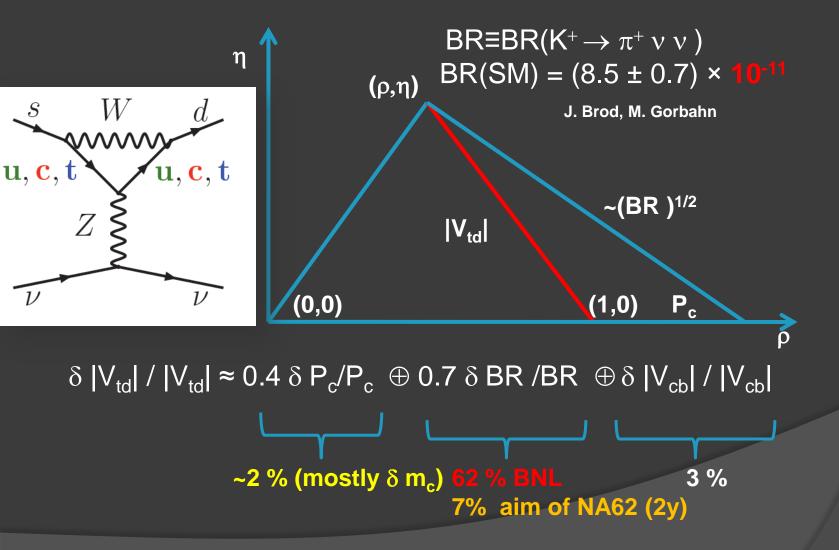
Blind analyses

$$BR(K_S \rightarrow \pi^0 \mu \mu) \times 10^{-9} =$$

2.9 +1.4_{-1.2}(stat) ± 0.2(syst)

PLB 599 (2004)

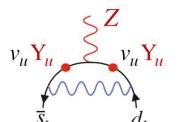
Rare K Decays: Next Frontier


Decay	Branching Ratio (×10 ¹⁰)		
	Theory(SM)	Experiment	
$K^+ \to \pi^+ \nu \overline{\nu}(\gamma)$	$0.85 \pm 0.07^{[1]}$	$1.73^{+1.15[2]}_{-1.05}$	
$K_L^0 \to \pi^0 \nu \overline{\nu}$	$0.27 \pm 0.04^{[3]}$	< 260 (90% CL) ^[4]	

- [1] J.Brod, M.Gorbahn, PRD78, arXiv:0805.4119
- [2] AGS-E787/E949 PRL101, arXiv:0808.2459
- [3] M. Gorbahn, arXiv:0909.2221
- [4] KEK-E391a, arXiv:0911.4789v1

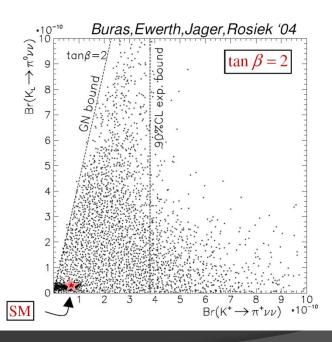
Remarkable stopped kaon experiment

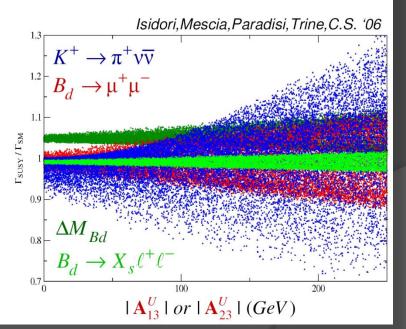
- Must bridge the existing gap between theory and experiment
- •A measurement of BR($K^+ \rightarrow \pi^+ \nu \nu$) to 10 % determines V_{td} without input from Lattice QCD
- •The strong suppression of the SM component ($<10^{-10}$) offers good sensitivity to NP


$K^+ \rightarrow \pi^+ \nu \nu \text{ in SM}$

Kaon Rare Decays and NP

C. The Z penguin (and its associated W box)

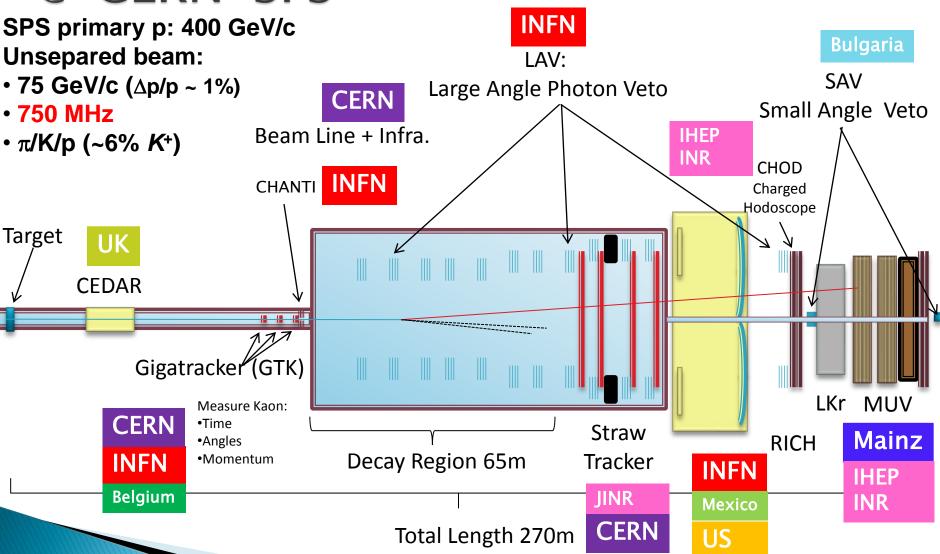


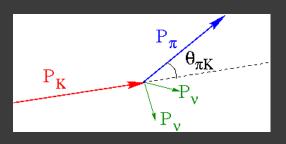

- $SU(2)_L$ breaking: $SM: v_u^2 \mathbf{Y}_u^{*32} \mathbf{Y}_u^{31} \sim m_t^2 V_{ts}^* V_{td}$ $MSSM: v_u^2 \mathbf{A}_{\tilde{u}}^{*32} \mathbf{A}_{\tilde{u}}^{31} \sim m_t^2 \times O(1)$? $MFV: v^2 \mathbf{A}^{*32} \mathbf{A}_{\tilde{u}}^{31} = v_t^2 \mathbf{Y}_{\tilde{u}}^{*1} \mathbf{A}_{\tilde{u}}^{31}$

$$MFV: v_u^2 \mathbf{A}_{\tilde{u}}^{*32} \mathbf{A}_{\tilde{u}}^{31} \sim m_t^2 V_{ts}^* V_{td} |A_0 a_2^* - \cot \beta \mu|^2.$$

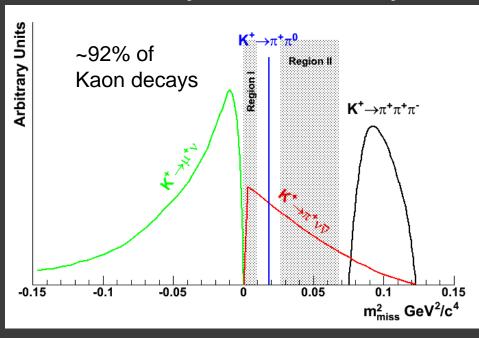
- Relatively slow decoupling (w.r.t. boxes or tree).

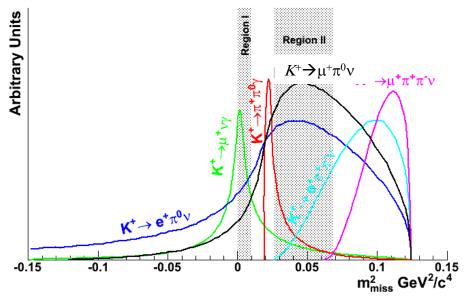
(courtesy by Christopher Smith)




NA62: $K^+ \rightarrow \pi^+ \nu \, \overline{\nu} \, \text{in-flight}$

@ CERN-SPS


NA62 Technique: Decay in Flight



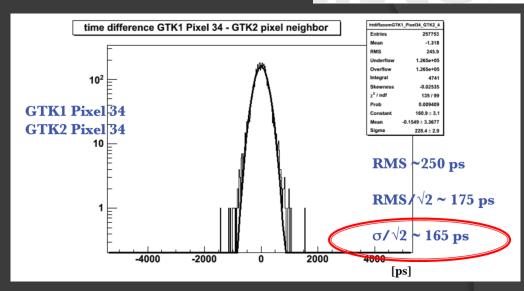
$$m_{miss}^2 = (\widetilde{p}_K - \widetilde{p}_\pi)^2$$

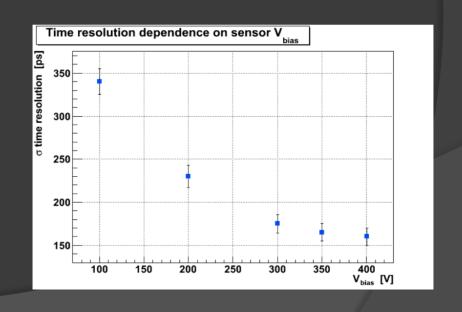
Kinematically Constraint Decays

Unconstraint Decays

Gigatracker (GTK)

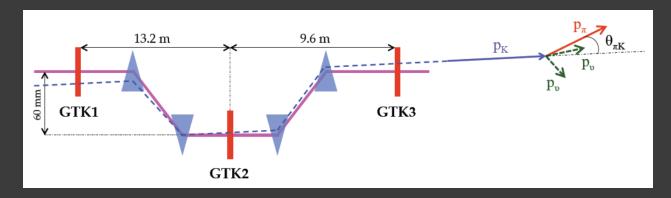
Requirements:

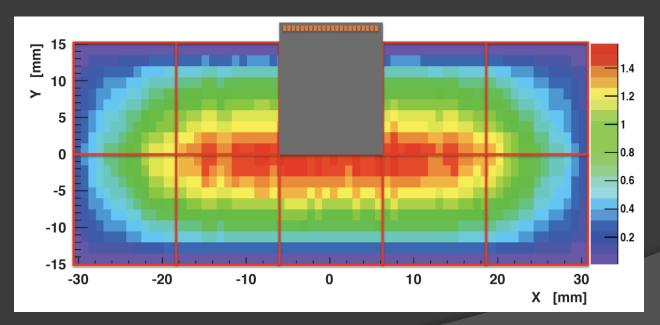

- Total rate: ~1 GHz /station (hence the name!)
- Time resolution:200 ps / station
- Position resolution: pixel size 300 μm x 300 μm
- Thickness: 0.5 % X₀ / station
- Expected fluence: 2 x 10¹⁴ 1
 MeV n_{eq} / year / cm²


Technology:

- hybrid Si pixel
- Flip-chip bonding
- ASIC R/O chip 130 nm IBM CMOS with ToT front-end, DLL TDC

• Choice of sensor:

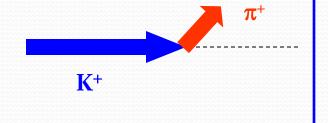

- Planar Si 200 μm thick
- Reverse Bias Voltage as high as possible (but at least 300 Volts)



GTK: Layout & Rate

MHz / mm²

NA62 Vetoes


• Photon vetoes to reject $K^+ \rightarrow \pi^+ \pi^0$

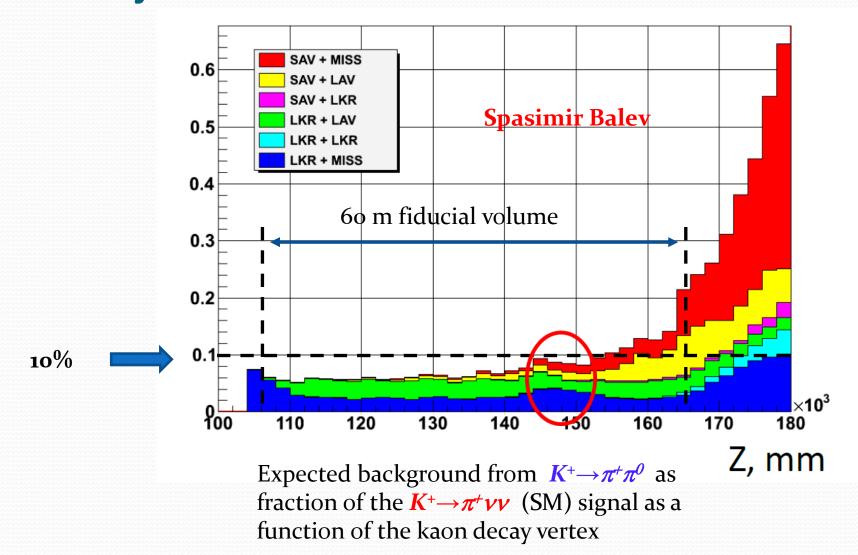
```
P(K^{+}) = 75 \text{ GeV/c}
Requiring P(\pi^{+}) < 35 \text{ GeV/c}
P(\pi^{0}) > 40 \text{ GeV/c} \longrightarrow \text{It can hardly be}
missed in the calorimeters
```

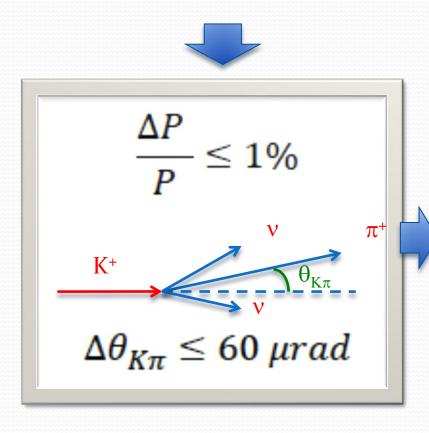
8 orders of magnitude π^{o} suppression required

Signature:

- Incoming high momentum K⁺
- •Outgoing low momentum π^+

• Muon Veto to reject $K^+ \rightarrow \mu^+ \nu$

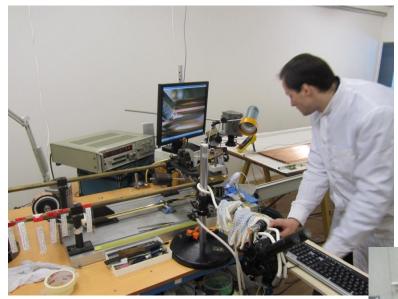




NA62 photon vetoes: expected π^0 rejection ~ 5×10^{-8}

Straw Tracker in NA62

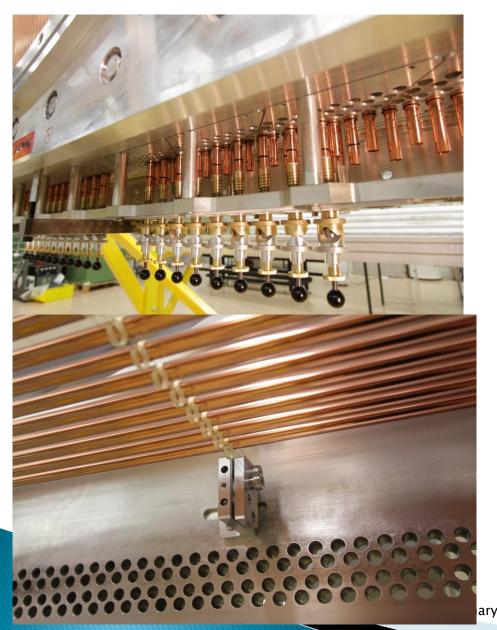
 There are two main performance requirements for secondary particles:



From this follow the main requirements on the straw detector:

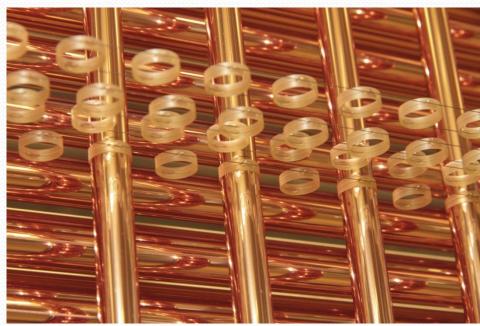
- Spatial resolution \leq 130 μ m per coordinate and \leq 80 μ m per space / point
- ♦ \leq 0.5% of a radiation length (X_o) for each chamber
- ◆ Installation inside the vacuum tank (P <10⁻⁵ mbar) with minimum gas load for the vacuum system (~10⁻¹ mbar* l/s)
- ◆ For straws near the beam, operation in a high rate environment (up to 500kHz/Straw)
- ◆ Possible multiplicity veto for triggering

Straw production

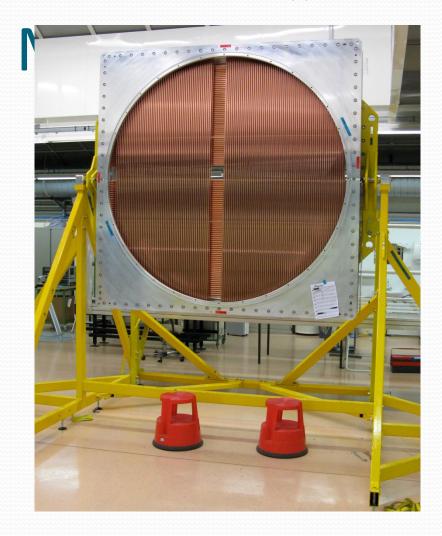


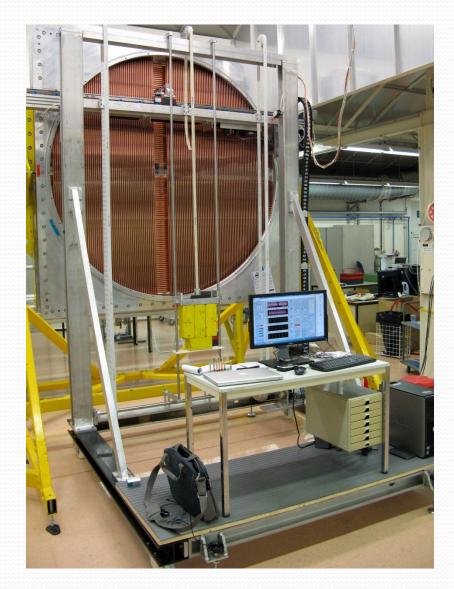
Straws are handled and transported under pressure

- •PET 36 micron thick
- •9.9 mm diameter
- •50 nm copper
- •20 nm gold
- Ultrasound weld


Module assembly -straw insertion

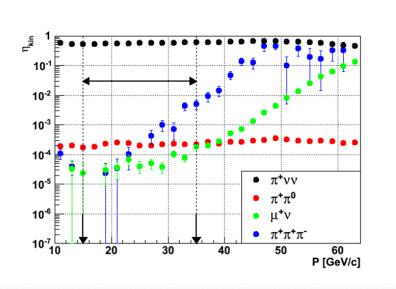
Spacers





Straw Module

996 straws

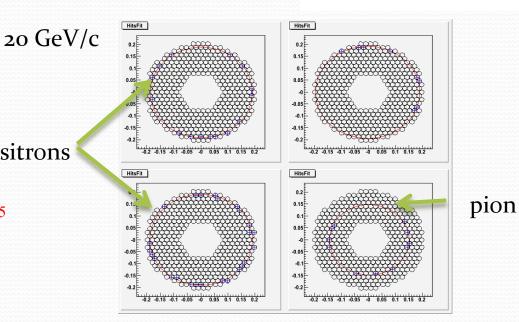

NA62 Spectrometer Reconstruction

Giuseppe Ruggiero

Missing Mass Resolution

Kinematic Rejection

- x The simulation includes:
- Multiple and Single large angle Coulomb scattering
- \star δ -rays
- Elastic and inelastic nuclear interactions
- Errors in the straw spectrometer pattern recognition

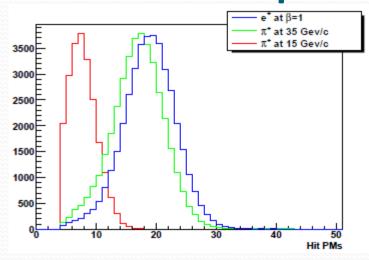

NA62 RICH

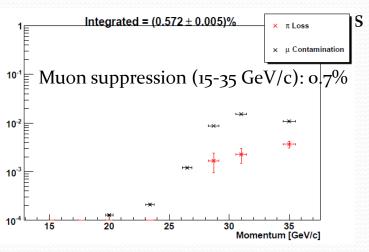
• K_{u2} :largest BR: 63.4%

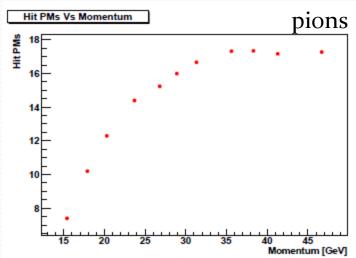
Need ~10^{−12} rejection factor

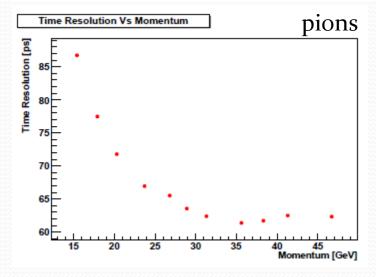
- Kinematics (GTK +STRAW) : $\sim 10^{-5}$
- Muon Veto: ~10^{−5}
- Particle ID (RICH): ~10^{−2}

Rings in NA62 RICH prototype


Essential to match the pion track seen by the straw with track (kaon) seen by the beam spectrometer (rate: 800 MHz)


positrons

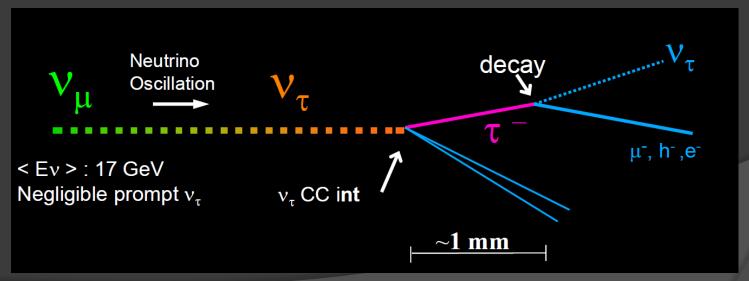

- To avoid a wrong match which spoils the kinematic suppression, the RICH must measure the pion time to 100 ps or better to connect to the kaon measured in the GTK
- Radiator: 17 m neon atmospheric pressure; spherical glass mirrors (17m focal length; ~ 2000 Hamamatsu PMT R7400U-03



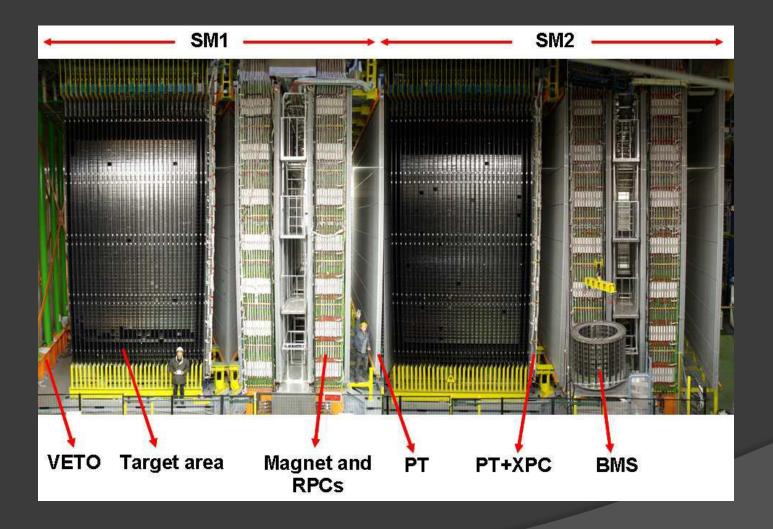
RICH400: performance

B. Angelucci et al., NIM A621 (2010) 205-211

NA62 Sensitivity

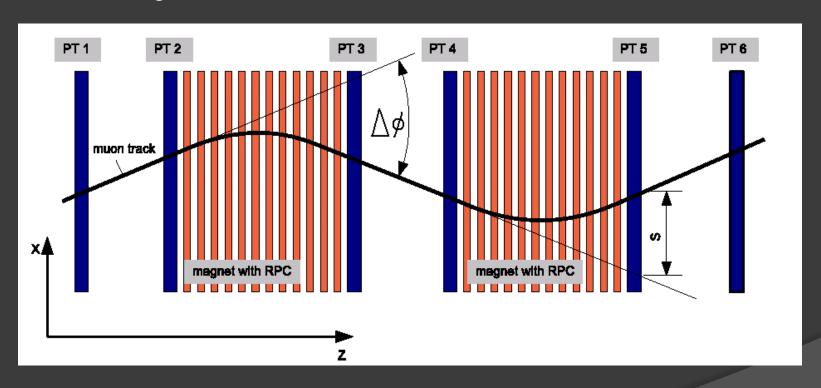

Decay Mode	Events	
Signal: $K^+ \rightarrow \pi^+ \nu \nu$ [flux = 4.8×10 ¹² decay/year]	55 evt/year	
$K^+ \to \pi^+ \pi^0 \ [\eta_{\pi 0} = 2 \times 10^{-8} (3.5 \times 10^{-8})]$	4.3% (7.5%)	
$K^+ \rightarrow \mu^+ \nu$	2.2%	
$K^+ \rightarrow e^+ \pi^+ \pi^- \nu$	≤3%	
Other 3 – track decays	≤1.5%	
$K^+ \rightarrow \pi^+ \pi^0 \gamma$	~2%	
$K^+ \rightarrow \mu^+ \nu \gamma$	~0.7 %	
$K^+ \rightarrow e^+(\mu^+) \pi^0 \nu$, others	negligible	
Expected background	≤13.5% (≤17%)	

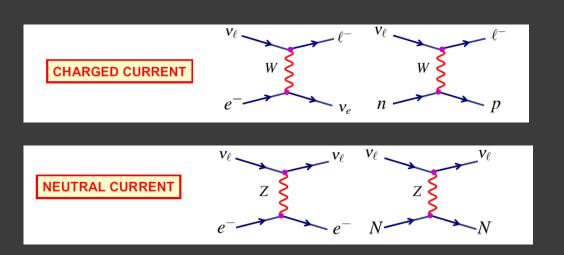
The ORKA proposal at FNAL plans to extend significantly the sensitivity of the BNL stopped kaon technique (4th generation experiment), while the KOTO experiment at J-PARC addresses $K^0_L \to \pi^0 \nu \overline{\nu}$ with a pencil beam


NEUTRINOS: CNGS1 OPERA

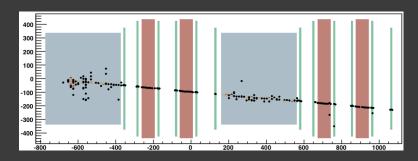
OPERA Experiment

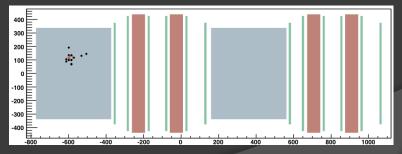
- Oscillation Project with Emulsion-tRacking Apparatus
- Designed to make the first detection of neutrino oscillation in direct appearance mode through the study of $v_{\mu} \rightarrow v_{\tau}$.
- OPERA is a hybrid detector consisting of emulsion/lead target complemented by electronic detectors
- It is placed in the high energy long-baseline CERN to LNGS beam (CNGS) 730 km away from the neutrino source
- The CNGS beam has enough energy to be above the τ threshold
- First \mathbf{v}_{τ} candidate event: Phys. Lett. B 691 (2010)


OPERA Detector


OPERA Muon Spectrometer

PT: Precision Tracker: drift tubes 8 x 8 m²


Magnetised iron and RPC chambers


Neutrino interactions in OPERA

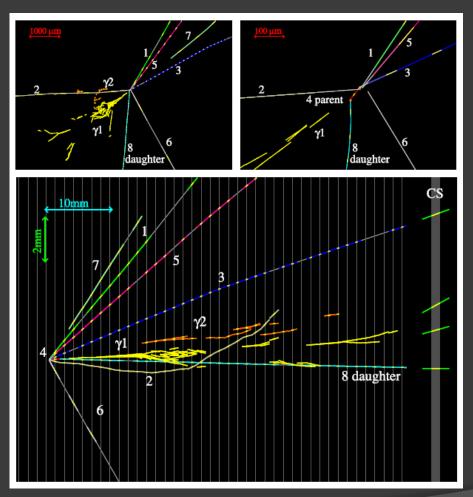
New J.Phys.13:053051,2011

Charged Current (CC) neutrino interaction

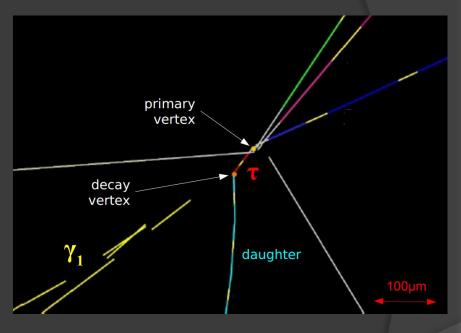
Neutral Current (NC) neutrino interaction

OPERA Emulsion Detector

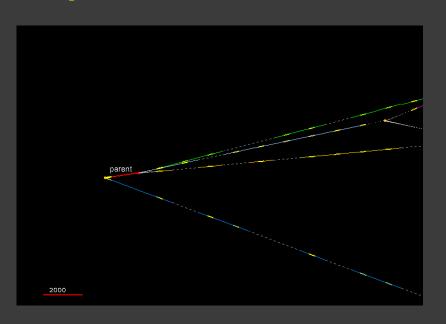
- Target: 2x625 tons of lead/emulsion
- •Target Part: 31 walls (62 in total)
- •1 wall: brick wall + target tracker (TT)
- Automatic brick manipulation
- •TT consists of horizontal and vertical strips with 2.6 x 2.6 cm² effective granularity
- •TT provides a trigger for v interactions



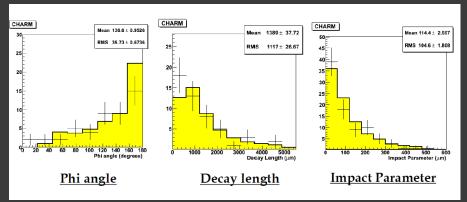
Emulsion cloud chamber (ECC)
56 1mm thick lead plates
57 emulsion layers + changeable sheet



Opera first τ Candidate

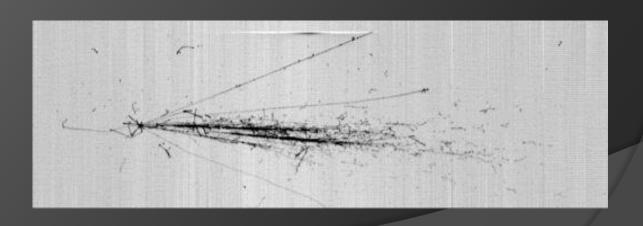


Phys. Lett. B 691 (2010)

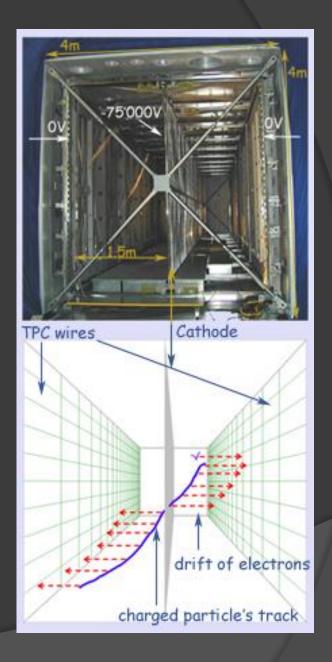


Variable	Cut-off	Value
Missing P_T at primary vertex (GeV/c)	<1.0	$0.57^{+0.32}_{-0.17}$
Angle between parent track and primary	$>\pi/2$	3.01 ± 0.03
hadronic shower in the		
transverse plane (rad)		
Kink angle (mrad)	>20	41±2
Daughter momentum (GeV/c)	>2	12^{+6}_{-3}
Daughter P_T when γ -ray	>0.3	$0.47^{+0.24}_{-0.12}$
at the decay vertex (GeV/c)		
Decay length (μm)	<2 lead plates	1335±35

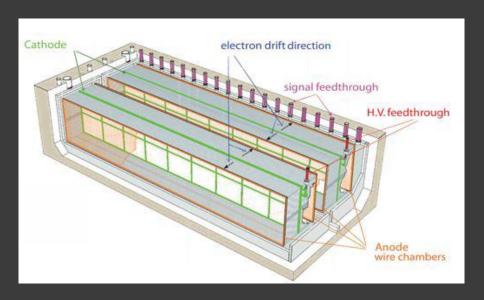
Opera second τ Candidate


Years	Status	# of events for Decay search	Expected ν _τ (Prelimin ary)	Observed ν _τ Candidat e Events	Expected BG for ν _τ (Prelimi nary)
2008- 2009	Finished	2783		1	
2010- 2011	In analysis	1343		1	
2012	Started				
Total		4126	2.1	2	0.2

Presented by M. Nakamura @ Neutrino-2012, Kyoto


Charm Data/MC comparison

NEUTRINOS: CNGS2 ICARUS



ICARUS Concept

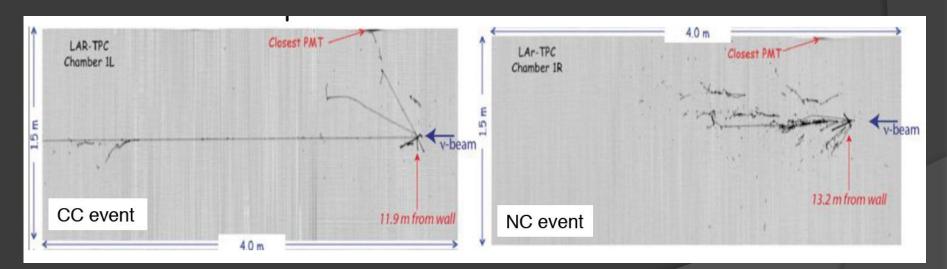
- The Liquid Argon Time Projection Chamber: A New Concept For Neutrino Detector C. Rubbia, CERN-EP/77-07 (1977)
- Innovative liquid argon time projection chamber, suitable for large volumes applications
- Spatial resolution comparable to that of bubble chambers bull fully electronic

ICARUS T600 Detector

Taking data in LNGS hall B

Two identical modules

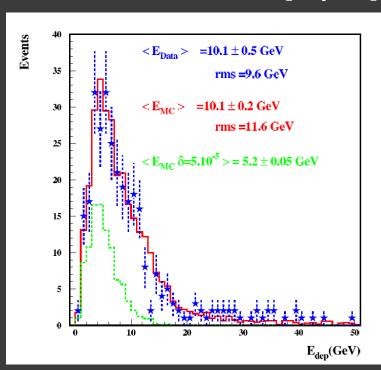
- •3.6 x 3.9 x 19.6 ~ 275 m³ each
- Liquid Ar active mass: ~ 476 t
- •Drift length = 1.5 m (1 ms)
- HV = -75 kV E = 0.5 kV/cm
- v-drift = $1.55 \text{ mm/}\mu\text{s}$


•4 wire chambers:

- 2 chambers per module
- 3 readout wire planes per chamber, wires at 0,±60°
- ~ 54000 wires, 3 mm pitch, 3!mm plane spacing
- 20+54 PMTs , 8" Ø, for scintillation light detection:
 - VUV sensitive (128nm) with wave shifter (TPB)

ICARUS T600 physics potential

- For 10²⁰ pot:
 - ~2800 CC events
 - ~900 NC events
 - $v_{\mu} \rightarrow v_{\tau}$
 - $\nu_{\mu} \rightarrow \nu_{e}$
 - Sterile neutrinos
 - ...

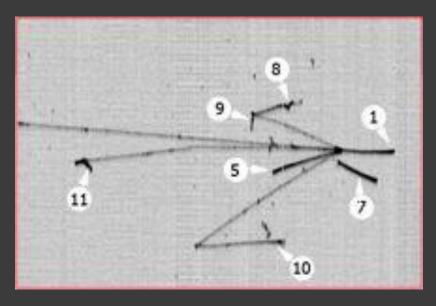

- Self-triggered events
 - atmospheric v CC interactions
 - Proton decay 3 10³² nucleons
 - ...



T600 is a milestone towards the realization of multikton Lar detectors

ICARUS Energy Reconstruction

M. Antonello et al. **Phys.Lett. B711 (2012) 270-275** e-Print: **arXiv:1110.3763 [hep-ex]**



Deposited energy spectrum For Charged Current (CC) neutrino Interactions Deposited energy spectrum For Neutral Current (NC) neutrino Interactions

ICARUS: Electronic Bubble Chamber

Shown at NEUTRINO-2012 In Kyoto by F. Pietropaolo

Track	E _{dep} [MeV]	range [cm]
1(p)	185±16	15
5(p)	192±16	20
7(p)	142±12	17
8 (π)	94±8	12
9(p)	26±2	4
10(p)	141±12	23
11(p)	123±10	6

Flavour & Neutrinos at SPS: Summary

- Possible longer term evolution of this of the CERN programme:
 - Flavour: test the SM relation

$$(\sin 2\beta)_{K \to \pi \nu \bar{\nu}} = (\sin 2\beta)_{B \to J/\psi K_s}$$

by studying very rare decays of both charged and neutral kaons

- Neutrinos:
 - Long baseline experiments to address the neutrino mass hierarchy and CP violation in the leptonic sector
 - Short baseline experiments (e.g. P347) to clarify the situation of sterile neutrinos

Acknowledgements

- I have adapted material taken from the presentations of many of my colleagues in NA48/NA62 and public presentations made by the OPERA and ICARUS Collaborations
- These Collaborations deserve the credit
- I hope I succeeded to entice interest for the research programme that can be performed at the SPS
- The SPS is not just an injector: it has a unique physics programme with kaons, neutrinos, muons, ions and hadron beams
- I think that the overall CERN scientific programme is worth more than the sum of its single parts
- Thank you