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Augusto Ceccucci/CERN 

CERN Academic Lectures, June 21, 2012 



 Kaon Physics at the SPS (NA48, NA62)  

 CP-Violation & Quark Mixing  

 Lepton Universality  

 Strong Interaction at Low Energy  

 Rare Decays 

 Neutrino Physics at the SPS 

 Long baseline neutrino experiments  

○ CNGS1    OPERA 

○ CNGS2    ICARUS 

 

 

 

Outline 
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Baryon Asymmetry of the 

Universe (BAU)      

nquark-nantiquark/nquark  (Proto Universe) ~nbaryon/nphoton (Today)~5×10-10  

? 
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Sakharov Conditions for BAU  

Andrei Sakharov (1967) 

 

To allow the development of an  

asymmetry between matter and  

anti-matter   

 

1. Violation of Baryonic Number  

 

2. Thermodynamic Non-equilibrium 

 

3. Violation of C & CP   
 

Origin of BAU: Baryogenesis or Leptogenesis?  
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 CP-Violation 

Da Gino Isidori:   

http://scienzapertutti.lnf.infn.it/P1/schedaCP.html 

 

When the top-left 

and the bottom-right 

Pictures are not 

exactly the same,  

we have CP-Violation 

http://scienzapertutti.lnf.infn.it/P1/schedaCP.html


Types of CP-Violation  

 

 

1. CP Violation in mixing                (indirect) 

2. CP Violation in decays                (direct) 

3. CP Violation in the interference    
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The study of direct CP-violation in the two pion  

Decays of the neutral kaons (e’/e) was the 

main motivation to study kaon decays  

at the SPS  
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NA48/NA62 at CERN  

NA48 

NA62_RK 
 

1997:  e’/e: KL+KS 

1998:  KL+KS 

1999:  KL+KS KS HI 

2000:  KL only KS HI 

2001:  KL+KS KS HI 

2002:  KS/hyperons 

2003:  K+/K– 

2004:  K+/K– 

tests 

NA62 
 

2007:  K
e2/K


2 

2012 Technical Run 

 
2014- 

K++ Data Taking 

tests 2008:  K
e2/K


2 

NA48/1 

NA48/2 

Old Detector New  

Collaboration 

 

New Detector 

(more on this later…) 

 

 
 

  Magnetic spectrometer (4 DCHs): 

    4 views/DCH 

    Δp/p = 0.48% + 0.009%*p  [GeV/c] 

  Liquid Krypton EM calorimeter (LKr) 

 High granularity, quasi-homogeneous; 

 E/E = 3.2%/E1/2 + 9%/E + 0.42% [GeV] 

  x=y=0.42/E1/2 + 0.6mm (1.5mm@10GeV) 
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 Re e’/e measurements versus time 

 
 

 
 

0 0

0 0
/ 1 6 Re ( / )

L L

S S

K K
R

K K

   
e e

   

 

 

   
  

   

PDG Average: (1.67 ± 0.23)  10-3  

Crucial CERN Experiments:  NA31 & NA48  
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Cabibbo-Kobayashi-Maskawa (CKM) 

Quark Mixing Matrix 
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CKM

VVV
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VVV

V

|Vud| = 0.97425 ± 0.00022          0+ → 0+ super-allowed nuclear b decays 

|Vus| = 0.2252 ± 0.0009              Kaon semi-leptonic and leptonic decays 

|Vcd| = 0.230 ± 0.011                  2/1 ratio in neutrino/antineutrino interactions 

|Vcs| =1.006 ± 0.023                   Average of semi-leptonic D and leptonic Ds decays 

|Vcb| = (40.9 ± 1.1) × 10-3           Combination of exclusive and inclusive B decays 

|Vub| =(4.15 ± 0.49) ×10-3            Comb. of exclusive and inclusive charmless B decays 

|Vtb| = 0.89 ± 0.07                      Single top-quark production cross-section 

 

Vtd & Vts accessible from FCNC processes   (loops)  
 

 

  

With 3 generations CP violation is 

naturally introduced by an irreducible  

complex phase in the quark mixing matrix 

(Kobayashi  & Maskawa, 1973) 
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CP-Violation in Kaons and CKM  

 Neutral Kaon Mixing (, semi-leptonic) 

 

 

 

 

 Neutral Kaon Decays into    
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Direct CP-Violation 
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Vus and universality 
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Standard-model coupling of  

quarks and leptons to W 



Vus from semileptonic decays 
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“Modern” Vus experimental input 

14 

NA48/2 

NA48/2 
The experiments determine the product of  

              Vus f+(0) and VusfK 

 

Precise theoretical calculations (lattice QCD  

and chiral perturbation theory) allow one to perform  

stringent tests. The theory works very well for kaons. 

  

K± →0 e±  

K± →0 ±  



Evolution of Experimental Input… 
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“Vus Revolution” with experimental input changing ~ 5% in some cases…..” 



…and of the theoretical one f+(0) 
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The Cabibbo angle can be precisely determined (~0.4%)! 

The LQCD calculations are 

Improving, for instance they  

go beyond “quenched”  

approximations (Nf = 2)  

|Vud|2|+|Vus|
2+|Vub|2=0.9999 ± 0.0006   

 

Unitarity test of CKM the first row (PDG 2012): 
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  RK=Ke2/K2  

 

SM 

RK
SM = (2.4770.001)10–5 

 

 Cirigliano & Rosell PRL 99 (2007) 231801 

BSM, 

LFV 

e.g. Masiero, Paradisi Petronzio 

PRD 74 (2006) 011701, 

JHEP 0811 (2008) 042 

Example: 

(D13=510–4, tanb=40, MH=500 GeV/c2) 

lead to RK
MSSM = RK

SM(1+0.013). 

Leptonic decays  

of the pseudoscalar 

mesons are helicity 

Suppressed in the  

standard model  



NA62: RK=Ke2/K2  

19 

Ke2 candidates 

K2 candidates 

Full data set  

145,958 Ke candidates. 
Electron ID efficiency: (99.280.05)%. 
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NA62: RK full data set 

RK = (2.488 ± 0.007stat ± 0.007syst)  10–5 
 

RK = (2.487 ± 0.010)  10–5 

Errors in momentum bins 

are partially correlated 

Published (40% sample) 

CERN-PH-EP-2011-004, 

arXiv:1101.4805, 

PLB B698 (2011) 105 

 

Background source B/(S+B) 
K2 (5.640.20)% 
K2 (e) (0.260.03)% 
Ke2 (SD+) (2.600.11)% 
Ke3(D) (0.180.09)% 
K2(D) (0.120.06)% 
Wrong sign K (0.040.02)% 
Muon halo (2.110.09)% 
Total (10.950.27)% 



RK world average 

World average RK105 Precision 

PDG 2008 2.4470.109 4.5% 

Today 2.4880.009 0.4% 

Other limits on 2HDM-II: 

PRD 82 (2010) 073012 

SM with 4 generations: 

JHEP 1007 (2010) 006. 

bs 

excluded 

21 
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Strong Interaction at low energy 

 At high energy the strong interactions are 
described by Quantum Chromo Dynamics 
(QCD) 

 Below ~ 1 GeV, the strong coupling becomes 
large and the perturbative description is not 
possible 

 An effective theory, Chiral Perturnation Theory 
(ChPT)  allows to study the strong interaction 
at low energy in terms of momenta and light 
meson masses 

 Kaons are a good laboratory to study the 
strong interactions at low energy (  
scattering, radiative decays,…) 



NA48/2: K±→e± & cusp in K±→ ±00 cusp   

K±→e±  Cusp in K±→ ±00 decays 

NA48/2 

NA48/2 

(Ke4) 

Cusp-like structure at the  invariant mass threshold 

EPJC  (2009) 64 



 scattering length 

DIRAC PLB 704 (2011) 

NA48/2: EPJC (2010) 70 

PLB 619 (2005) 

Consistent results on the scattering lengths obtained with  

completely independent techniques 

NA48/2 two parameter fit 
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Looking for physics beyond the SM 

 Direct searches: LHC energy frontier 

 Indirect searches: 

1. Improve meaurement precision of CKM 
elements  
 Compare measurements of the same quantities 

which may or may not be sensitive to new physics 

 Extract all CKM angles and sides in many different 
ways → inconsistencies would signal new physics 

2. Study Flavour Changing Neutral Currents 
(FCNC) processes where the SM 
contributions are suppressed and precisely 
predictable → Rare Decays 
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A. Buras list of Flavour Superstars  

28 



Kaon Rare Decays & CKM  

29 

0***  ubudcbcdtbtd VVVVVV

PDG 2012 
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 NA48/1: K0
S →0 ee and K0

S →0   

KS →0 ee 
KS →0  

BR(KS→0ee)  10-9 = 

 5.8 +2.8
-2.3(stat) ±  0.8(syst) 

 

PLB 576 (2003) 

7 events, expected back. 0.15 

BR(KS→0)  10-9 = 

 2.9 +1.4
-1.2(stat) ±  0.2(syst) 

 

PLB 599 (2004) 

6 events, expected back. 0.22 

NA48/1 
NA48/1 

Blind analyses 



 
 

 

 

  

PRL101, arXiv:0808.2459 

arXiv:0909.2221 

•Must bridge the existing gap between  
  theory and experiment  
•A measurement of BR(K +    ) to 10 %  

  determines  Vtd without input from Lattice QCD  
•The strong suppression of the SM component (<10-10) offers 
good sensitivity to NP 
 

 

Rare K Decays: Next Frontier  
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Remarkable stopped 
kaon experiment 



 K      in SM  

                                                 BR≡BR(K     )                                                           

                                                      BR(SM) = (8.5 ± 0.7) × 10-11 

                                                                   J. Brod, M. Gorbahn  

 

 

 

 

 

 

       

  |Vtd| / |Vtd| ≈ 0.4  Pc/Pc   0.7  BR /BR    |Vcb| / |Vcb|  
 

 

 

 

 

 

 

 

 

 

 

(0,0)                                     (1,0)     Pc 

 

 

(,) 

|Vtd|  
~(BR )1/2  

3 % ~2 % (mostly  mc) 62 % BNL 

7%  aim of NA62 (2y) 
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(courtesy by  Christopher Smith)  

Kaon Rare Decays and NP  



Measure Kaon: 
•Time 
•Angles 
•Momentum 

INFN 
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Target 

Total Length 270m 

Decay Region 65m 

Gigatracker (GTK) 

LAV:  
Large Angle Photon Veto 

RICH 

LKr 

SAV 
Small Angle  Veto 

MUV 

CEDAR 

Straw 
Tracker 

CHOD 
Charged 

Hodoscope 

Beam Line + Infra. 

UK 

Bulgaria 
INFN 

INFN INFN 

Mainz 
CERN 

Mexico 

US 

IHEP 
INR 

IHEP 
INR 

Belgium JINR 

CERN 

SPS primary p: 400 GeV/c  

Unsepared beam: 

• 75 GeV/c (Dp/p ~ 1%) 

• 750 MHz   

• /K/p (~6% K+) 

CERN 

CHANTI INFN 



NA62 Technique: Decay in Flight 

~92% of  

Kaon decays 

Kinematically Constraint Decays                                     Unconstraint Decays  

22 )~~( ppm Kmiss 
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K
0 



Gigatracker (GTK) 

 Requirements:  
 Total rate: ~1 GHz /station 

(hence the name!) 

 Time resolution:   

       200 ps / station 

 Position resolution: pixel size 
300 m x 300 m 

 Thickness : 0.5 % X0 / station  

 Expected fluence:  2 x 1014 1 
MeV neq  / year / cm2 

 Technology:  
 hybrid Si  pixel  

 Flip-chip bonding 

 ASIC R/O chip 130 nm IBM 
CMOS with ToT front-end, DLL 
TDC 

 Choice of sensor: 
 Planar Si 200 m thick  

 Reverse Bias Voltage as high as 
possible (but at least 300 Volts)  

 

 



GTK: Layout & Rate 

MHz / mm 2 



 NA62 Vetoes   

 Photon vetoes to reject K+ +0  
P(K) = 75 GeV/c 

Requiring P()  < 35 GeV/c  

P(0) > 40 GeV/c           It can hardly be 

missed in the calorimeters  

 

 

 

 

 

 Muon Veto to reject K+   
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Signature: 
•Incoming high momentum K  
•Outgoing low momentum + 

K 

+ 

8 orders of magnitude 0  
suppression required  





 

The NA62 A1-A8 LAV Stations  
all installed in ECN3 
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NA62 photon vetoes: expected 
0 rejection ~ 5×10-8  

Expected background from  K+→0  as 
fraction of the K+→   (SM) signal as a 
function of the kaon decay vertex  

Spasimir Balev 

10% 

60 m fiducial volume 



Straw Tracker in NA62 
 There are two main performance requirements for 

secondary particles: 

42 

From this follow the main requirements on 
the straw detector: 
 
  Spatial resolution ≤ 130 m per  coordinate  and  
≤ 80m per space / point 
 
  ≤ 0.5% of a radiation length (X0) for  each 
chamber 
  Installation inside the vacuum tank   (P <10-5 
mbar) with minimum gas  load for the vacuum system   
 (~10-1 mbar* l/s) 
  For straws near the beam, operation in a high rate 
environment (up to 500kHz/Straw)   
Possible multiplicity veto for triggering  

K+ 

+ 

 

 

qK 



Straws are handled and  
transported under pressure 

•PET 36 micron thick 
•9.9 mm diameter 
•50 nm copper 
•20 nm gold 
•Ultrasound weld 



14/07/11 NA62 Plenary , Hans Danielsson 44 



20/10/11 NA62 Plenary , Hans Danielsson 45 

Spacers  
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Module 0 
996 straws 

Straw Module  



NA62 Spectrometer Reconstruction 

Missing Mass Resolution 

 
The simulation includes:  

Multiple and Single large angle 
Coulomb scattering  

-rays 

Elastic and inelastic nuclear 
interactions 

Errors in the straw spectrometer 
pattern recognition 

 

Giuseppe Ruggiero 

Kinematic Rejection 



NA62 RICH  

 
 K2 :largest BR: 63.4% 

 
 Need ~1012 rejection factor 
•  Kinematics (GTK +STRAW)  : ~105          
•  Muon Veto: ~105   
•  Particle ID   (RICH): ~102       

 
 

 Essential to match the pion track seen by the straw with  track (kaon) seen by 
the beam spectrometer (rate: 800 MHz) 

 To avoid a wrong match which spoils the kinematic suppression,  the RICH 
must measure the pion time  to 100 ps or better to connect to the kaon 
measured in the GTK 

 Radiator: 17 m neon atmospheric pressure; spherical glass mirrors (17m focal 
length; ~ 2000 Hamamatsu  PMT R7400U-03 
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20 GeV/c 

positrons 

pion 

Rings in NA62 RICH prototype 



RICH400: performance 
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pions 

pions pions 

B. Angelucci et al., NIM A621 (2010) 205-211 

Muon suppression (15-35 GeV/c): 0.7% 



NA62 Sensitivity 
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The ORKA proposal at FNAL plans to extend significantly the sensitivity  

of the BNL stopped kaon technique (4th generation experiment), while   

the KOTO experiment at J-PARC addresses K0
L  0  with a pencil beam  
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OPERA Experiment  

 Oscillation Project with Emulsion-tRacking Apparatus 

 Designed to make the first detection of neutrino oscillation in direct 
appearance mode through the study of →t\ 

 OPERA is a hybrid detector consisting of emulsion/lead target 
complemented by electronic detectors 

 It is placed in the high energy long-baseline CERN to LNGS beam 
(CNGS) 730 km away from the neutrino source 

 The CNGS beam has enough energy to be above the t threshold 

 First t candidate event: Phys. Lett. B 691 (2010)  
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OPERA Detector 
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OPERA Muon Spectrometer  
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PT: Precision Tracker : drift tubes 8 x 8 m2 

Magnetised iron and RPC chambers  



Neutrino interactions in OPERA 
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New J.Phys.13:053051,2011 

Charged Current (CC) neutrino 

interaction 
Neutral Current (NC) neutrino 

interaction 



OPERA Emulsion Detector  

56 

•Target: 2x625 tons of lead/emulsion 

•Target Part: 31 walls (62 in total) 

•1 wall: brick wall + target tracker (TT) 

•Automatic brick manipulation 

•TT consists of horizontal and vertical strips  

  with 2.6 x 2.6 cm2 effective granularity 

•TT provides a trigger for  interactions 

 
 

 

 

Emulsion cloud chamber (ECC) 

56 1mm thick lead plates 

57 emulsion layers + changeable sheet  

Brick piling station 



Opera first t Candidate  

57 

Phys. Lett. B 691 (2010)  



Opera second t Candidate  
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Presented by M. Nakamura 

 @ Neutrino-2012, Kyoto 

Charm Data/MC comparison  
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ICARUS Concept 

 The Liquid Argon Time 
Projection Chamber: A 
New Concept For 
Neutrino Detector 
C. Rubbia, CERN-EP/77-07 
(1977) 

 Innovative liquid 
argon time projection 
chamber, suitable for 
large volumes 
applications 

 Spatial resolution 
comparable to that of 
bubble chambers bull 
fully electronic 
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ICARUS T600 Detector 

61 

Two identical modules 

•3.6 x 3.9 x 19.6 ~ 275 m3 each 

• Liquid Ar active mass: ~ 476 t 

•Drift length = 1.5 m (1 ms) 

• HV = -75 kV E = 0.5 kV/cm 

• v-drift = 1.55 mm/μs 

Taking data in LNGS hall B 

•4 wire chambers: 

• 2 chambers per module 

• 3 readout wire planes per chamber, wires at 0,±60° 

• ~ 54000 wires, 3 mm pitch, 3!mm plane spacing 

• 20+54 PMTs , 8” Ø, for scintillation light detection: 

• VUV sensitive (128nm) with wave shifter (TPB) 



ICARUS T600 physics potential 

 For 1020 pot: 
 ~2800  CC events 

 ~900 NC events 

 →t 

 →e 

 Sterile neutrinos 

 … 

 

 

 

 

 

 

 

 

 Self-triggered events 

 atmospheric  CC 

interactions 

 Proton decay 3 1032 

nucleons 

 … 
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T600 is a milestone towards the realization of multikton Lar detectors 



ICARUS Energy Reconstruction 
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Deposited energy spectrum  

For Charged Current (CC)  

neutrino Interactions 

Deposited energy spectrum  

For Neutral Current (NC)  

neutrino Interactions 

M. Antonello et al. Phys.Lett. B711 (2012) 270-275 

e-Print: arXiv:1110.3763 [hep-ex] 



ICARUS: Electronic Bubble Chamber 

64 

Shown at NEUTRINO-2012  

In Kyoto by F. Pietropaolo 



Flavour & Neutrinos at SPS: Summary 

 Possible longer term evolution of this of the 
CERN programme:  
 Flavour: test the SM relation 

 

 

    by studying very rare decays of both charged 
and neutral kaons  

 Neutrinos:  
○ Long baseline experiments to address the 

neutrino mass hierarchy and CP violation in the 
leptonic sector 

○ Short baseline experiments (e.g. P347) to clarify 
the situation of sterile neutrinos  

65 
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