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ALPHA

I will try to answer the following questions:

What happens if time runs backwards?
Is right better than left?

Why is the universe made of matter instead of
antimatter?

Is there an anti-universe?
Can we blow up the Vatican with antimatter?

Something completely different - sometimes
Sometimes

Nobody knows.

Nobody knows.

We could, if we had enough. We never will.

Thanks for your attention,
have a good day!

(Seriously, how cool is it to actually get paid to worry about this...)
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Standard Model of

FUNDAMENTAL PARTICLES AND INTERACTIONS

The Standard Model summarizes the current knowledge in Particle Physics. It is the quantum theory that includes the theory of strong interactions (quantum chromodynamics or QCD) and the unified
theory of weak and electromagnetic interactions (electroweak). Gravity is included on this chart because it is one of the fundamental interactions even though not part of the “Standard Model.”

matter constituents
spin = 1/2, 3/2, 5/2, ...

Quarks spin = 1/2
Approx.
Mass
[

FERMIONS

Leptons spin = 1/2

Electric
charge

Mass
GeV/c?

Electric

Flavor charge

Flavor

electron

A « <1x10-8
neutrino

U up 0.003 2/3

€ electron |0.000511 d down

VM :‘el:::?ino §0.0002 0

M mu 0.106 -1 S strange -1/3
Vr ;aetllnrino 50.02 23
T tau 1.7771 -1/3

Spin is the intrinsic angular momentum of particles. Spin is given in units of i, which is the
quantum unit of angular momentum, where fi = h/2x = 6.58x10-25 GeV s = 1.05x10734 J .

0.006 -1/3

C charm 2/3

Electric charges are given in units of the proton’s charge. In SI units the electric charge of
the proton is 1.60x10-1 coulombs.

The energy unit of particle physics is the electronvolt (eV), the energy gained by one elec-
tron in crossing a potential difference of one volt. Masses are given in GeV/c2 (remember.
E = mc?), where 1 GeV = 109 eV = 1.60x107'0 joule. The mass of the proton is 0.938 GeV/c2
=1.67x10"27 kg.

Baryons qqq and Antibaryons qqq

Baryons are fermionic hadrons.
There are about 120 types of baryons. Property
Quark
content

Electric
charge

Mass -
Symbol Name GeV/c2 Acts on:

Particles experiencing:
Particles mediating:

Strength relative to electromag |

for two u quarks at:

for two protons in nucleus

Matter and Antimatter

For every particle type there is a corresponding antiparticle type, denot-
ed by a bar over the particle symbol (unless + or — charge is shown).
Particle and antiparticle have identical mass and spin but opposite
charges. Some electrically neutral bosons (e.g., Z% v, and m, = ¢, but not
KO = ds) are their own antiparticles.

Figures

These diagrams are an artist’s conception of physical processes. They are
not exact and have no meaningful scale. Green shaded areas represent
the cloud of gluons or the gluon field, and red lines the quark paths

A neutron decays to a proton, an electron,
and an antineutrino via a virtual (mediating)
W boson. This is neutron B decay.

Structure within
the Atom
Quark

Size < 1079m

Nucleus

i -18
Size = 1074 m Size <1078 m

Neutron
0 and
@ Proton

Atom Size = 10715

Size ~101%m
If the protons and neutrons in this picture were 10 cm across,

then the quarks and electrons would be less than 0.1 mm in
size and the entire atom would be about 10 km across.

force carriers
spin =0, 1, 2, ...

BOSONS

Unified Electroweak spin =1 Strong (color) spin =1

Electric
charge

Mass
GeV/c2

Mass Electric
GeV/c2  charge

| ovden | 0 | o
photon
W-

-1 Color Charge

Each quark carries one of three types of

“strong charge,” also called “color charge.”

These charges have nothing to do with the

colors of visible light. There are eight possible

types of color charge for gluons. Just as electri-
cally-charged particles interact by exchanging photons, in strong interactions color-charged par-
ticles interact by exchanging gluons. Leptons, photons, and W and Z bosons have no strong
interactions and hence no color charge

Name Name

Quarks Confined in Mesons and Baryons

One cannot isolate quarks and gluons; they are confined in color-neutral particles called
hadrons. This confinement (binding) results from multiple exchanges of gluons among the
color-charged constituents. As color-charged particles (quarks and gluons) move apart, the ener-
gy in the color-force field between them increases. This energy eventually is converted into addi-
tional quark-antiquark pairs (see figure below). The quarks and antiquarks then combine into
hadrons; these are the particles seen to emerge. Two types of hadrons have been observed in
nature: mesons gq and baryons gqq.

Residual Strong Interaction

The strong binding of color-neutral protons and neutrons to form nuclei is due to residual
strong interactions between their color-charged constituents. It is similar to the residual elec-
trical interaction that binds electrically neutral atoms to form molecules. It can also be
viewed as the exchange of mesons between the hadrons.

PROPERTIES OF THE INTERACTIONS

Interaction

Gravitational

Mass - Energy Electric Charge Color Charge
“ Quarks, Leptons Electrically charged Quarks, Gluon: m

108 m

w* w- 20
0.8

104
1077

3x10""7 m

Two protons colliding at high energy can
produce various hadrons plus very high mass
particles such as Z bosons. Events such as this
one are rare but can yield vital clues to the
structure of matter.

An electron and positron

(antielectron) colliding at high energy can
annihilate to produce B® and

via a virtual Z boson or a virtual photon.
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Mesons qq
St Mesons are bosonic hadrons.

There are about 140 types of mesons.
See Residual Stron,
Interaction Note

Fundamental

Quark Electric
content  charge

Mass

Name GeVic?

Symbol

25 Not applicable
60 to quarks

Not applicable

to hadrons 20

The Particle Adventure
Visit the award-winning web feature The Particle Adventure at
http://ParticleAdventure.org
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U.S. Department of Energy
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Stanford Linear Accelerator Center

American Physical Society, Division of Particles and Fields

AN BURLE INDUSTRIES, INC

©2000 Contemporary Physics Education Project. CPEP is a non-profit organiza-
tion of teachers, physicists, and educators. Send mail to: CPER, MS 50-308, Lawrence
Berkeley National Laboratory, Berkeley, CA, 94720. For information on charts, text
materials, hands-on classroom activities, and workshops, see:
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ALPHA

How do we know all of that?
= From experiments with E=mc?

Some matter

some E

SOMmMe 1

Protons, electrons, etc.

Some more E

Some E

—

Protons, electrons, etc.

ntiprotons, positrons, etc.
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ALPHA

Thinking outside the box - farmer Jensens paradox:

You need to fence in a field of 10000 m?2, with equal sides
How long is each side?

You know a little math, so you write an equation:
A=sxs=5¢?

Easily solved! For 4 = 10000 m?, s must be 100 m.

Wait a minute, I can also solve that equation with s =-100 m
Don’t be an idiot, a length of -100 m is meaningless!

It’s not physical.

CERN Academic Training Lecture 2012
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Physics of really small Physics of really
things (quantum mechanics) fast things
(special relativity)

(C.a P+ ,877102_) = z.h.(,._Tl;

Antimatter !!!
Paul Adrian Maurice Dirac (1902-1984)
Theory implied antimatter (1928, 1929)
Positron discovered (Anderson,1932)
Nobel prize for Dirac (1933)
Doubled the universe
Ruined my life (circa 1983)
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Antimatter in the laboratory

= When we use E=mc? to create mass, we get equal amounts of matter and
antimatter

= This is because quarks and leptons are Fermions (spin 1/2) and must be
created pair-wise; baryon and lepton number are conserved — as far as we
know...

= To create an antiproton, I must have enough energy to also create a proton

= Matter/antimatter pairs annihilate when they meet, destroying the Vatican

 Enrico Fermi (1901-1954)

- University of Chicago (USA)

- Nobel prize 1938

« Should have received 5 or 6 more

CERN Academic Training Lecture 2012 J.S. Hangst



T Symmetries

Symmetry — it starts with a woman

= Amelie ’Emmy” Noether (March 23, 1882 —
April 14, 1935)
= Born in Germany
= Doctoral degree in Erlangen 1907
= Gottingen 1915; tenured 1919
= Fled to the USA 11933
= Bryn Mawr College (only women)

= According to Einstein: ”in the judgment of
the most competent living mathematicians,
[...] the most significant creative mathematical
genius thus far produced since the higher
education of women began."

CERN Academic Training Lecture 2012
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Noether’s Theorem (1918)

Every continuous symmetry leads to a conservation law.

= A mathematical result in classical
mechanics - pre-dates quantum
mechanics

= Also valid in QM and quantum field
theory

= Extremely important for how
physicists regard the universe
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ALPHA

Noether’s Theorem -examples

Symmetry Conserved Quantity

= The description of a
physical system is
independent of time

= The total energy

» The description of a = Linear momentum
physical system is
independent of position
(translation symmetry)

= The description of a .
physical system is invariant
under rotation about an axis

Angular momentum
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Discrete Symmetries

P - parity

= The universe should look the same if we look at it in a mirror

= Or: Nature doesn’t know the difference between left and right (up and
down, forward and back)

= A good symmetry? Before 1957, the answer was ’obviously!’ Left and
right are human conventions; Nature could care less what we think.
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Parity Breaking

T.D. Lee -theory
= born 1926 1 Shanghai
= (Columbia University (USA)
= Nobel Prize 1957

= C.N. Yang - theory
= born 1922
= SUNY Stonybrook (USA)

= C.S. Wu - experiment = Nobel Prize 1957

= 1912-1997 (born i Shanghai)
= Columbia University (USA)

= Confirmed the expectations of Lee and
Yang
= Didn’t win the Nobel Prize!

CERN Academic Training Lecture 2012 J.S. Hangst




Madame Wu’s Experiment

= An unstable nucleus emits a particle (electron or positron)
* The nucleus has it’s spin in a given direction
"= Mesure the distribution of emitted particles with respect to the spin direction

= If more particles come out in one direction (left or right) than the other; parity is
broken

* The weak interaction is the culprit

mirror

nuclear
spin

nuclear spin
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Discrete Symmetries

C - charge conjugation
= The physics of the universe should be the same if we change all of the particles into

their respective antiparticles

= A good symmetry? For electromagnetism and the strong force - yes. Not for the
weak interaction — e.g., neutrino chirality.
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Discrete Symmetries

T — time reversal invariance

What happens if time runs backwards?

For example: make a movie of a physical process and run
it backwards — can you see a difference

A good symmetry?

As usual, not for the weak force...

CERN Academic Training Lecture 2012
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CP Bites the dust

. =  James Cronin
= Val Fitch = Foadt 1931

= Born 1923 = University of Chicago (USA)
= Princeton University (USA) = Nobel prize 1980

= Nobel prize 1980 = Most famous for being a member of

Jeff’s PhD committee Y~

’ } N
.
o = .3
I 7 VA 2 ‘
i
R
, ®
|
.
! !
‘ '

They discovered in 1964 that CP 1s not conserved in the decay
of a K-meson — again a weak interaction effect. These “strange”
particles can change back and forth between particle and
antiparticle — all on their own. But the back and forth rates are
different.
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ALPHA

Two things that never
should have happened

=  Matter (or antimatter)

= Matter with mass (Higgs
mechanism)

= There must have been
some serious symmetry
breaking

= Yoichiro Nambu

born Tokyo 1921

University of Chicago
(USA)

Nobel prize 2008

Also a member of Jeff’s
PhD committee

CERN Academic Training Lecture 2012
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ALPHA

What happened to the antimatter?

= Andrei Sakharov (1921-1989)

= Three conditions for antimatter disappearence
= Baryon number not conserved
= CP- not conserved

= Interactions out of equilibrium in early

universe
= But...
= Baryon number is conserved |
in the laboratory Won Nobel Peace Prize!!!

= CP-violation is way too little
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Discrete symmetries — what’s left?

*Only CPT - the combination of all three — still seems to hold
*Most theorists believe this to be absolutely true — the CPT theorem
*They have NEVER been right in the past

*Antimatter provides a really cool way to check this out — particularly
because we know that we don’t know the whole story about antimatter
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The Essential Question

Niels Bohr

Antihydrogen Hydrogen

How could you possibly work in Denmark
and notr want to know the answer to this?
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Motivations in Brief

*Tests of fundamental symmetries by applying precision atomic
physics techniques to anti-atoms:

*CPT violation?

Lorentz invariance violation?

Physics beyond the Standard Model?

(The initial physics goal of ALPHA was to TRAP antihydrogen atoms,
so that they can be studied in detail.)

*(Ant1)-Gravity - no current experimental effort in ALPHA, but
success 1n ALPHA suggests possibilities for long-term work.
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We’re looking for evidence for NEW PHYSICS

CPT violation? Why not?

Has anyone looked?

Precision of some CPT Tests

i
i
ma,gnetic

moment (g-2)

(e/m)

inertial mass

2? % H-H
T comparison
L1 12000 L
1018 1015 10° 106
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arfa - The dream - Antihydrogen Spectroscopy

1s-2s two-photon spectroscopy

laser
10-8 specitroscopy -

If antihydrogen can be trapped, any type

'l of spectroscopic measurement can be

contemplated
Antihydrogen Hydrogen 10 { \\o
* Doppler effect cancels e A
 High precision in matter sector = =
» test of CPT theorem o \
10—“

1940 1960 1980 2000 2020

f(1S-28) = 2 466 061 413 187 035 (10) Hz - Hansch group (2011)
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A Brief History of Antihydrogen

= CERN (LEAR-TRAP Collaboration): pioneering work on trapping, cooling

of antiprotons; proton/antiproton mass comparison
(to 1996, LEAR closed)

= CERN (LEAR-PS210): Baur et al., 1996, gas-jet experiment in LEAR

p+Xe->H+e +Xe y=2.3 11 atoms observed
= Fermilab (E862): Blanford et al., 1998, gas-jet experiment at FNAL Accumulator
p+H->H+e +H y=95 57 atoms observed

= CERN (AD-1): Amoretti et al., Sept. 2002

ATHENA produces and observes first cold
(< eV) antihydrogen atoms by mixing cold  ~50000 atoms produced
antiprotons and positrons in a Penning trap. M. Amoretti et al.,

Nature 419, 456
(3 Oct 2002)

= CERN (AD-2): Gabrielse et al., Oct. 2002

ATRAP confirms observation of ~170000 atoms produced
antihydrogen atoms, indirect detection.
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A Brief History of Antihydrogen 11

= CERN closes AD for 1.5 years because of LHC construction: November 2004
(ATHENA dissolved and ATRAP I finishes operation)

=_ALPHA proposed (former ATHENA groups + new partners): January 2005

=_ALPHA approved by CERN: June 2005

= AD restarts, ALPHA operational: June 2006

= First ALPHA PRL: January 2007

"ALPHA first to trap antihydrogen: November 2010

"ALPHA confines antihydrogen for 1000 s: June 2011

ALPHA demonstrates resonant interaction with antihydrogen: March 2012
CERN Academic Training Lecture 2012 J.S. Hangst




The CERN AD

* Antiproton technology developed for proton-antiproton collisions in SPS

*AD is descended from the AA (antiproton accumulator) and AC (antiproton collector)
*The AD is the most interesting machine at CERN...

*Nobel prize for van der Meer and Rubia (1984) for discovery of W and Z particles

*Same techniques led to discovery of the Top quark at Fermilab
26 GeV/c protons (5 10"’]
e ! e .
An1iprt;:c;r 3 .:-,-*,f..-n]._m}_. Injection at 3.5 GieVic . Deceleration and Cooling (3.5 — 0.1 GeVic)
Production ! -—

o pucmmnsin |

INJECTION (5 - 107 antiprotons)

Extraction
(Gevie) AD Machine Cycle (10%in200ns) % :
p (GeWo
' 1 |

35 — . L)

Stechastic — '.
2.0 Cooling “ ‘.’

: 2.0 GeVio : "

| Simon van der Meer i

P
-
03 ™
o1 .l :
. 300, 100 MoVic ' » ) (;od“ng - -
0 140 Timo [sec g orhaf’“c/ —
L0
L 'E - A"'-,‘-
Y Gy 5 - if ¥
EXTRACTION (2 - 107 antiprotons) - o= O ER e e ¥
L L &n ion

Eleciron Cooling
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'Y Penning Trap

pI914 anaubepy
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ALPAA Antiproton Slowing and Catching

Si beam counter Degrader Electron cloud

FromAD

Ab 40000 (ALPHA) >rotons are captured from an AD shot.
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aeia — Capture and Cooling of Antiprotons

1) Degrading

. Solenoid B=3T

(t = Os) Antiproton

2) Reflecting
(t = 200ns)

3) Trapping
(t = 500ns)

4) Cooling
(t = ~20s)

€
chradeH 0

I | }

Cold electron cloud

99.9% lost

g -~ E<skv’
Potential T

e

A
Potential

o -/
—_—

A
. |
Potential . y

Technique developed by the TRAP collaboration.
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ALPRA - How do you make a lot of antihydrogen? : ATHENA 2002

Antiproton Accumulation &

Mixing with positrons ] Na-22
H H H Cryostat Source
—p jj | 3 T superconducting solenoid ‘ ﬁ = e+ “
Antiproton 0 I m
Capture Trap Detector Mixing Trap ] ] .
//\\ Csl crystals
i
D .TI""I"I Antlhyd rogen - Mixing frap electrodes
% \//////// Detector 25mm1 H I B
\\
Si strip /./.l \ ==
detectors 0 . 10 cm

4
(8]

00 f i
125 =
60 -40 20 O 20 40 60

axial DOSiﬁOﬂ (mm)

o el
antiprotons

trap potential (V)
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Antihydrogen Signal August 2002 ATHENA

Amoretti et al., Nature 419 (2002) 456

zoj 2004
18 © Cold mixing 1804 © Antiprotons only
150l A Hot mixing 1604 ® Cold mixing (displaced E y window)
1a0|| o — 131+ 22 Golden 1 40-
2 120 Events 1204
= 100 1001
80| 80-
60 60
40; A 40 ' o + *
204 4k £ A ] 2048 *+++**«»+*¢ #¢+W*¢¢+¢w¢ L *m
. 105 0.5 0 0.5 1

cos(©,,)

>50000 Cold Antihydrogen
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Vertical position (cm)

*% % % 4 1 3 3

Horizontal position (cm)

Cold
Mix

2 a1 o0 1 2

Horizontal position {(cm)

Amoretti et al., Nature 419 (2002) 456

Hot
Mix
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ALPFA Trapping Neutral Anti-atoms?

Ioffe-Pritchard Geometry

A al'a alaa

Aside: high n-states cbuld have highei' u

Solenoid field is the minimum in B

Broken rotational symmetry: Can we superpose this on a Penning trap?
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ALPHA - ALLPHA Strategy: Demonstrating Trapped Antihydrogen (from 2005)

*Produce cold antihydrogen at the minimum of a multipolar, minimum-B trap
*Get rid of any remaining charged particles
*Shut off the atom trap as quickly as possible to release any trapped antihydrogen

*Detect the antiproton annihilation from released antihydrogen with a position sensitive
annihilation detector

*Use event topology to reject cosmic rays
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Why is this difficult?

*Keep in mind: 1eV of Kinetic energy is about 72000 K
*The antiprotons are captured at 5 keV

*Typical spacecharge energies of plasmas are a few eV
*The trap for neutral antihydrogen is 0.5 K deep
*Need large B-fields for catching pbars, cooling, etc. —
but need a large delta-B for trapping

One-component plasmas in equilibrium rotate at a constant Qﬂ
angular frequency. The velocities associated with this rotation

are of just as much concern as thermal velocities, as far as

trapping is concerned. Not obvious that high positron

number and density are desirable - sometimes less is more.
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ALPHA

B/B

The ALPHA Approach: higher-order multipole

0.8
0.6 quadr

”
0.4 s

”
P ”
o5 |- ctupole
0 0.2 0.4 0.6 0.8 1
r/r

CERN Academic Training Lecture 2012

J.S. Hangst



Octupole Fabrication at BNL

*Magnets wound directly on
vacuum chamber (1.25 mm wall)
*No metals in support

structure: epoxy/fiber

*High SC/copper ratio cable

Availablfe onrline at www.sciencedirect.com NUCLEAR

INSTRUMENTS

.~ ScienceDirect & METHODS

s 3 RESEARCH
ELSEVIER Nuclear Instruments and Methods in Physics Research A 566 (2006) 746756 $
www.elsevier.com/locate/nima

A magnetic trap for antihydrogen confinement

W. Bertsche®, A. Boston®, P.D. Bowe®, C.L. Cesar®, S. Chapman®, M. Charlton®,

M. Chartier®, A. Deutsch™', J. Fajans®', M.C. Fujiwara® R. Funakoshi®, K. Gomberoff*',
J.S. Hangst®, R.S. Hayano®, M.J. Jenkins®, L.V. Jorgensen®, P. Ko®, N. Madsen®, P. Nolan®,
R.D. Page®, L.G.C. Posada®, A. Povilus®, E. Sarid', D.M. Silveira®, D.P. van der Werl®*,
Y. Yamazaki’ (ALPHA Collaboration) . B.Parker®, J.Escallier®, A.Ghosh®
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aria  Detection of trapped antihydrogen: Rapid Shutdown

*Hardware patterned after G. Ganetis — IGBT switch to dump resistors

*Signal conditioning hardware from CERN LHC test chain

*Home-made FPGA QPS

*Taps on magnets, vapor cooled leads, and SC leads

*Magnets quench when shutting down — have survived several 103 cycles of this

Magnet Quench Shutdown Comparison

1000 : ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
[ — Upstream Mirror (t = 8.8ms) | ]
r —Octupole (t = 9.5ms) 1
800 | {

600 \
r )

N
AN

‘40‘

Current in Magnet [A]

100 120
Time [ms]

—l
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ALPHA Silicon Vertex Detector

— - Fe—— : -
Lo riid - . -
¢ % e SHRPLIN ord®E0. -\ 2
*

—

3-layer, double-sided modules
Detect antiproton anihilation (not €*)
Fabricated by U. Liverpool

x [em]
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Topology

Typical antiproton annihilation  Typical cosmic ray

... not much going on here
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The Experiment -2010

b)

N
(@)

Annihilation
Detector

antiprotons:

\postrons

antiprotons:

before injection after injection

Potential on Axis [V]

-120 -80 -40 0 40 80 120
Axial Position (z) [mm]

*30000 antiprotons at 200 K

D M nogitrong at 40 K e\mnnm‘rive]y

ontrol experiment — heated positrons (ATHENA)

S~ - LU L G UGS QUL UOULLGLLLLY
Mirror Coils ‘MiX for 1's .

X \q/' ” *Eject trapped charged particles
*Pulsed fields to clear any mirror-
trapped pbars

Trap antihydrogen in magnetic minimum trap ~ *Fast shutdown of trap magnets (9 ms)
Trap depth ~ 0.5 K *Look for annihilating pbar from hbar

*Was it really a neutral? Apply bias
electric fields during shutdown.
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The Result

a 30 I W R L WCR S P i S T AN B B B
E -
’g 20 . " —
s 1 HBAR simulation
e F e ... .1
= 10— =
: . 7 left bias
0 L 1 . .
b 30— I ' I —— right bias
- 4 no bias
u * i
’g 20— . ¢ —
= A - . .
o Y . 41 PBAR simulations
.g B ao* A ¢ .
'_ 10_— A" v o .‘ A e _"'
n ‘ ' Q 1 1 event with heated positrons
0 I L - . . T . P DS S S N
-200 -100 100 200
Axial position, z (mm) Table 1 | Number of annihilations identified in the 30 ms following
the trap shutdown
Type of attempt Number of attempts Antiproton annihilation events
No bias 137 15
Left bias 101 11
Right bias 97 12
No bias, heated positrons 132 1
Left bias, heated positrons 60 0
Right bias, heated positrons 54 0
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Conclusion from 2010 Run

38 annihilations in 335 attempts
Total background 1.4+1.4 events, including cosmic of 0.46+0.01 events — heated positrons
Bias fields prove that the annihilations are not mirror trapped pbars

Trapped antihydrogen for at least 172 ms.
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Trapped Antihydrogen

LETTER

Trapped antihydrogen

G. B. Andresen', M. D. Ashkezari®, M. Baquero-Ruiz’, W. Bertsche®, P. D. Bowe', E. Butler?, C. L. Cesar’, S. Chapman?,

M. Charlton®, A. Deller®, S. Eriksson?, J. Fajans®, T. Friesen’, M. C. Fujiwara®’, D. R. Gill®, A. Gutierrez’, J. S. Hangst',

W. N. Hardy”, M. E. Hayden?, A. J. Humphries®, R. Hydomako’, M. J. Jenkins®, S. Jonsell'?, L. V. Jorgensen®, L. Kurchaninov®,
N. Madsen?, S. Menary", P. Nolan'?, K. Olchanski®, A. Olin®, A. Povilus®, P. Pusa'?, F. Robicheaux'?, E. Sarid'%, S. Seif el Nasr?,
D. M. Silveira'®, C. So°, . W. Storey™, R. I. Thompson’, D. P. van der Werf*, J. S. Wurtele®® & Y. Yamazaki'*'®

doi:10.1038/nature09610

Published online in Nature, 17 November 2010
Physics Breakthrough of the Year (with Yamazaki group!) , 2010 Physics World (UK)
One of the top ten physics stories of 2010 - American Institute of Physics

Most clicked-on story on Nature website for all of 2010
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ALPHA

"The very fact of a proof-of-
principle demonstration of wall-
free confinement of even a small

number of antimatter atoms has an

intrinsic philosophical value."
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AP TOTAL SAMPLE — 2010 — you can tweak 38
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(300+ annihilation events)
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Next published result: ANTIHYDROGEN STORAGE TIME
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ARTICLES

p PUBLISHED ONLINE XXX MONTH XO(XX | DOL %0.3038/NPHYS2025

Confinement of antihydrogen for 1,000 seconds

The ALPHA Collaboration”

Atoms made of a particle and an antiparticle are unstable, usually surviving less than a microsecond. Antihydrogen, made
entirely of antipartides, is believed to be stable, and it is this longevity that holds the promise of predsion studies of
matter-antimatter symmetry. We have recently demonstrated trapping of antihydrogen atoms by releasing them after a
confinement time of 772ms. A critical question for future studies is: how long can anti-atoms be trapped? Here we report
the observation of anti-atom confinement for 1,000 s, extending our earlier results by nearly four orders of magnitude. Our
calculations indicate that most of the trapped anti-atoms reach the ground state. Further, we report the first measurement
of the energy distribution of trapped antihydrogen, which, coupled with detailed comparisons with simulations, provides a
key tool for the systematic investigation of trapping dynamics. These advances openup arange of experimental possibilities,
including predsion studies of charge-parity-time reversal symmetry and cooling to temperatures where gravitational effects

could become apparent.

*Published online 5 June 2011
*First ground state antihydrogen

Important implications for future spectroscopy and gravitational studies, laser

cooling?
*More press circus...
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nature

physics,

Uppng the anti

Cover of Nature Physics — July 2011

CERN Academic Training Lecture 2012 J.S. Hangst



ALPHA

Add Microwaves
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Breit-Rabi Diagram
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Microwave Configurations
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ALPHA Field Map — Not an Ideal Environment for Microwave Spectroscopy

25
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Microwave Procedure

1) Mix antiprotons and positrons for 1 s in the atom trap to produce
antihydrogen.

2) Execute the normal procedures for removing any remaining charged
particles from the trap.

3) During the next 60 s, any trapped antihydrogen atoms are held. During the
first second of this, the mirror coil currents can be adjusted to change the
resonance condition; if changed, the field can then stabilise for 59 s.

4) The trapped atoms are then held for an additional 180 s, during which
microwaves can be introduced - either on- or off- resonance; or no
microwaves are introduced in order to make a control measurement.

5) After the total 240s storage time, the atom trap is rapidly shut down, and any
remaining trapped atoms released and detected by the ALPHA silicon
detector.

Compare survival rate for on-resonance, off-resonance and
no-microwave attempts: “Disappearance Mode”
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‘Disappearance Mode’

Table 2: Totals for all ‘disappearance mode’ series.

Number of cycles Detected antihydrogen Rate

On resonance (1+3) 103 2 0.02+£0.01
Off resonance (2+4) 110 23 0.21+0.04
No microwaves (5+6) 100 40 0.40+0.06
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‘Appearance Mode’ — 7-distribution
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ALPAA ‘Appearance Mode’ — z-distribution
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LETTER

Resonant quantum transitions in trapped
antihydrogen atoms

C. Amole', M. D. Ashkezari?, M. Baquero-Ruiz’, W. Bertsche**°, P. D. Bowe’, E. Butler®, A. Capra’, C. L. Cesar®, M. Charlton®,
A. Deller?, P. H. Donnan'®, S. Eriksson*, J. Fajans®!, T. Friesen'?, M. C. Fujiwara'*>'?, D. R. Gill'?, A. Gutierrez'4, J. S. Hangst’,
W. N. Hardy'*'®, M. E. Hayden?, A.J. Humphries®, C. A. Isaac?, S. Jonsell'®, L. Kurchaninov™, A. Little’, N. Madsen®,

T. K. McKenna', S. Menary', S. C. Napoli*, P. Nolan'’, K. Olchanski'®, A. Olin'*'®, P. Pusa', C. @. Rasmussen’, F. Robicheaux'’,
Sarid'?, C. R. Shields®*, D. M. Silveira®’t, S. Stracka'?, C. So®, R. I. Thompson'?, D. P. van der Werf* & J. S. Wurtele*"

J.
E.
*Published in nature online 7 March, 2012
*First measurement on an antimatter atom

*Shows that it is possible to do physics with few atoms
*... but we’d like to have more
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R What to do with a device that works so well?

ALPHA has left the building...
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Cryo-free solenoid

ALPHA-2 : separation of functions

Liquid helium cooled solenoid
Oxford Instruments — financed by Carlsberg!

Atom trap region

access for lasers and microwaves

Positron accumulation
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The ALPHA-2 Atom Trap

Booster

Coils
’ Solenoid
b Mirror Coil Support
J Tube
Solenoid Support
Winding Tube
Form

CERN Academic Training Lecture 2012 J.S. Hangst



ALPHA-2

HTS leads for atom trap magnets
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*350 mm warm bore, 1.5 m long *10 s ramp from 1 T t0 0.65 T
L5t *480,000 €
*10 ppm uniformity over 30 cm (z) x 1 cm (r) *Financed by the Carlsberg foundation
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8.6m

*Extra Low ENergy Antiproton ring
*Decelerate from 5 MeV to 100 keV
*Can trap up to 100 times more pbars 10.0m
*Possible 24 hour operation for all users
*CERN approval directly linked to success in ALPHA
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ALPHA

Hyperfine Transition microwave spectroscopy =2
H extraction in a field-free region 2>

ul%% trap Stable trapping of p and e*
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antiproton catching trap

antiproton transport beamline

positron transport beam line
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ALPHA

AEQIS: Antihydrogen Experiment:

Gravity, Interferometry, Spectroscopy
(atomic physics with antimatter)

Deflectometer
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Antihydrogen formation

positronium
conversion
(nanostructured material)
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laser excitation
(UV and IR)
H beam
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trap electric field
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Antihydrogen atoms are produced in a burst by colliding laser-excited Positronium
with ultra-cold (<1K) antiprotons; the resulting atoms are highy excited (Rydberg atoms)
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Gravity measurement

position-sensitive o

18358313

X Hlllﬂe
13t

Classical atom interferometer (Moiré deflectometer) produces periodic “shadow” on detector. The distance that the horizontally
flying antihydrogen falls depends on the time of flight: the slower atoms will fall more. This drop is measured for different anti-

hydrogen velocities, from which one can determine the strength of the gravitational force.
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ALPHA

Other AD experiments:

*ACE - studies effect of antiprotons on live cells for possible cancer therapy
*ATRAP — antihydrogen trapping and spectroscopy
*Gbar — another gravitational experiment, just approved in 2012, operation in 2017
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Antihydrogen Summary

*Trapped neutral antimatter in 2010 — lots of fun, great relief

*More than 20 years of effort — finally measuring something - first precision spectroscopy of
antihydrogen in ~ 5 years

I have been telling funding agencies this for ~ 15 years
*One front-page story in the New York Times, one best-selling novel, one hit movie (what’s the
impact factor?), physics story of the year twice (various outlets); live on 4/ Jazeera, ongoing

documentary film...

*No matter what Dan Brown, Hollywood (or CERN, or Fermilab, etc.) may tell you, the trapped
antimatter at CERN is at the Antiproton Decelerator, and has nothing at all to do with the LHC

*New device — ALPHA-2 - under construction to allow for laser and improved microwave
spectroscopy as early as 2012

*Gravitational studies in ALPHA? Preliminary thoughts about this.

*With the upcoming construction of ELENA, new experiments coming online — bright times
ahead
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Conclusion: antimatter makes for a poor
weapons strategy

ANGELSEDEMONS

Discovery Channel producer: “Antimatter physicist
recommends nuking Vatican!”

*Claim: the only conceivable portable antimatter with a mass of % gram would be neutral antihydrogen
*Charged plasma densities about 10° cm3; 10?3 particles would need a volume of 10'* cm? or 108 m?
*Hydrogen BEC density about 10'°> cm3; transition about 50 uK — need liquid antihelium and
evaporative cooling
*ALPHA captures about 10° antiprotons every 100 s
*Assuming all of these could be converted to antihydrogen and trapped, it would take
about 10%° seconds to get ¥4 gram; This is 3x10'? years.

*The % gram of antimatter would have an explosive power of about 50 kilotons of TNT,
comparable to the Hiroshima bomb
*How would you safely contain this?

*The most unbelievable part of the film is that anyone with a PhD in physics would go anywhere near
Y4 gram of antimatter contained by a device built by someone with a PhD in physics...
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And now a word from my sponsor:

Probably the best antihydrogen experiment in the world...

Have a nice, thirsty summer!
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