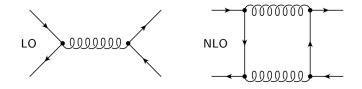
Top Forward-Backward Asymmetry in Dilepton Final States

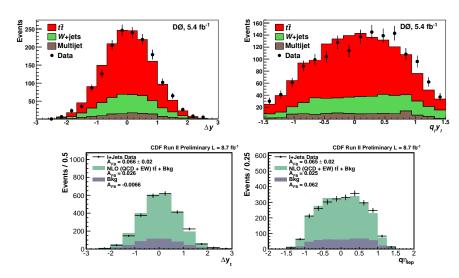

Tim Head on behalf of DØ

The University of Manchester

3 April 2012

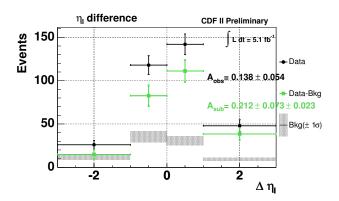
In the Standard Model

- Top quark produced more often in the direction of the proton beam.
 - Corresponding to positive η .
- Major contribution to the asymmetry from interference of:

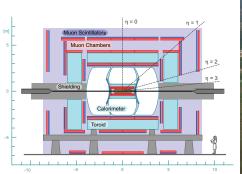

• Size of the top quark based asymmetry is expect to be $\approx (5-9)\%$.

Observables

- Use the lepton from the top quark as proxy.
- Size of lepton based asymmetries $\approx 5\%$.
- We can define several asymmetries:


charge signed rapidity
$$A_{FB}^{\ell} = \frac{N_{\ell}(q \cdot \eta > 0) - N_{\ell}(q \cdot \eta < 0)}{N_{\ell}(q \cdot \eta > 0) + N_{\ell}(q \cdot \eta < 0)}$$
 positive & negative leptons $A_{FB}^{\ell^{\pm}} = \frac{N_{\ell^{\pm}}(\eta > 0) - N_{\ell^{\pm}}(\eta < 0)}{N_{\ell^{\pm}}(\eta > 0) + N_{\ell^{\pm}}(\eta < 0)}$ rapidity difference $A^{\ell\ell} = \frac{N(\Delta \eta > 0) - N(\Delta \eta < 0)}{N(\Delta \eta > 0) + N(\Delta \eta < 0)}$ CP asymmetry $A_{CP}^{\ell} = \frac{N_{\ell^{+}}(\eta > 0) - N_{\ell^{-}}(\eta < 0)}{N_{\ell^{+}}(\eta > 0) + N_{\ell^{-}}(\eta < 0)}$

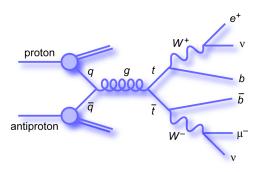
Results so Far


D0 sees: $A_{FB}=(9.2\pm3.7)\%$ and $A_{FB}^{\ell}=(14.2\pm3.8)\%$. CDF sees: $A_{FB}=(6.6\pm2)\%$, no $A_{FB}^{\ell}=(6.5\pm2)\%$

Results so Far (cont)

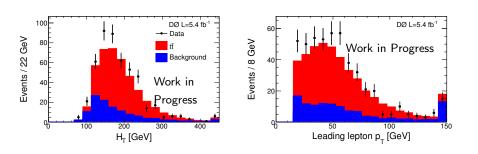
Large $A^{\ell\ell}$ even before background subtraction and unfolding.

The DØ Experiment


colliding protons and anti-protons at $\sqrt{s}=1.96$ TeV, discovery of the top quark in 1995! ... shutdown in Sept 2011.

Measurement Strategy

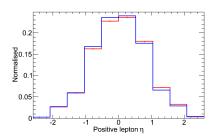
- 1. Select events,
- 2. Make predictions from MC,
- 3. Subtract backgrounds and correct for acceptance,
- 4. Estimate systematic and statistical uncertainties,
- 5. Done.

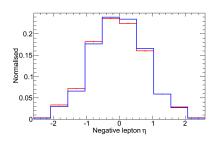


Event Selection and Monte Carlo

- Dilepton event selection as used for spin correlations measurement:
- ullet Two opposite charge leptons ($p_T > 15$ GeV),
 - ▶ Two or more jets ($p_T > 20$ GeV),
 - ▶ Topological selection using MEt. significance, MEt or H_t .
- Comes to a total of 5.4 fb^{-1} .
- Use MC@NLO to model signal
 - Need at least NLO to observe an asymmetry.

Event Selection (cont)



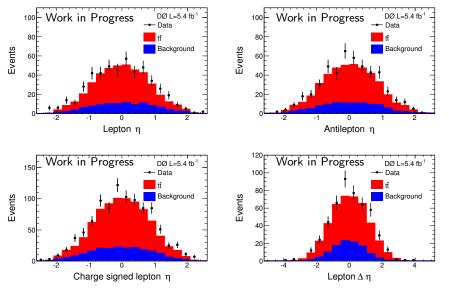

	t₹	Z	Diboson	Fake	Expected	Observed
$N_{jet} >= 2$	381.2 ± 0.6	9805.9 ± 29.6	183.4 ± 1.8	55.9 ± 9.4	10426.4 ± 31.1	10410
Topological	300.8 ± 0.6	84.1 ± 2.4	18.1 ± 0.9	27.6 ± 6.9	430.6 ± 7.4	487

The $t\bar{t}$ contribution is normalised to theoretical cross section.

Theory Prediction

- Asymmetry in MC@NLO is smaller than in theory calculations.
 - Only the production is NLO, decay is only LO.
- Reweight to Bernreuther's (arxiv:1003.3926) lepton rapidity distributions.
- ullet Two dimensional reweighting as a function of η_ℓ and $\eta_{ar\ell}$.
- Predictions: $A^{\ell\ell} \approx 6\%$ and $A^{\ell}_{FB} = A^{\ell^+}_{FB} = -A^{\ell^-}_{FB} \approx 5\%$

Blue is MC@NLO, red is reweighted.


Reconstruction Effects and Acceptance Correction

- Reconstruction effects are very small, as we only use angles.
- Calculate acceptance in MC and correct for it:

$$N_{corr} = N_{obs} imes rac{1}{\epsilon_{acc}}$$

- Using MC@NLO calculate $\epsilon_{acc} = \frac{N_{acc}}{N_{tot}}$, the selection efficiency for each quantity used in the asymmetries.
- Derive a new acceptance correction for JES, bJES, JER, JetID systematic uncertainties.

Final Lepton Distributions

The contribution is normalised to theoretical cross section.

After Background Subtraction and Acceptance Correction

- This is work in progress.
- Combine channels using BLUE method.
- Rapidity difference:

$$A^{\ell\ell} = (3.3 \pm 6.2)\%$$

MC prediction of $A^{\ell\ell}=(5.7\pm0.15)\%$.

• Combining positive and negative leptons:

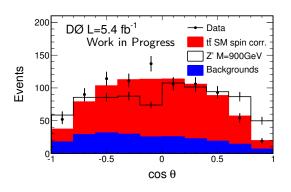
$$A_{FB}^{\ell} = (5.8 \pm 5.3)\%$$

MC prediction of $A_{FB}^{\ell}=(5\pm0.11)\%$.

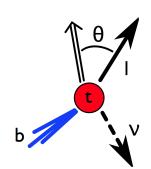
• CP asymmetry:

$$A_{CP}^{\ell} = (-1.8 \pm 5.3)\%$$

• Splitting by lepton charge:


$$A_{FB}^{\ell^+} = (+4.1 \pm 6.9)\%$$

 $A_{FB}^{\ell^-} = (-8.4 \pm 7.8)\%$


Top Polarisation

- Some models which aim to explain the D0 and CDF results predict polarised top quarks.
- This would show up as $B_{1,2} \neq 0$:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_1 d\cos\theta_2} = \frac{1}{4} (1 + B_1 \cos\theta_1 + B_2 \cos\theta_2 - C\cos\theta_1 \cos\theta_2)$$

Well known variables from the spin correlations analysis.

Conclusions

- No significant deviation from the SM observed in the $t\bar{t}$ dominated samples.
- Work in progress.
- After correcting for acceptance, all channels combined:

$$A^{\ell\ell} = (3.3 \pm 6.2)\%$$

 $A^{\ell}_{FB} = (5.8 \pm 5.3)\%$

Predictions:

$$A^{\ell\ell} = (6 \pm 0.15)\%$$

 $A^{\ell}_{FB} = (4 \pm 0.11)\%$